Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Сatalytic Phosphorylation of Aromatic C-H Bonds: from Traditional Approaches to Electrochemistry

Author(s): Sofia Strekalova *, Mikhail Khrizanforov *, Oleg Sinyashin and Yulia Budnikova

Volume 23, Issue 16, 2019

Page: [1756 - 1770] Pages: 15

DOI: 10.2174/1385272822666191007145336

Price: $65

Abstract

The interest in organophosphorus compounds with a C-P bond is due to their wide use in various fields, especially in medicine and agrochemistry. Prominent examples of anti-cancer, antibacterial, and anti-HIV agents are therapeutic candidates containing a phosphonic acid group fragment. This review provides modern synthetic methods for obtaining phosphorylated aromatic and heteroaromatic compounds with the participation of complexes and salts of various metals developed in recent years as well modern protocol - electrochemical synthesis which allows carrying out reactions at room temperature and normal pressure with no additional oxidants or bases. Herein, we demonstrate new trends and evolution of phosphorylation reactions in catalysis.

Keywords: Phosphorylation, C-H activation, catalysis, electrochemical synthesis, heteroaromatic compounds, organophosphorus compounds.

Graphical Abstract

[1]
Balzarini, J.; Holy, A.; Jindrich, J.; Naesens, L.; Snoeck, R.; Schols, D.; De Clercq, E. Differential antiherpesvirus and antiretrovirus effects of the (S) and (R) enantiomers of acyclic nucleoside phosphonates: potent and selective in vitro and in vivo antiretrovirus activities of (R)-9-(2-phosphonomethoxypropyl)-2,6-diaminopurine. Antimicrob. Agents Chemother., 1993, 37(2), 332-338.
[http://dx.doi.org/10.1128/AAC.37.2.332] [PMID: 8452366]
[2]
Illy, N.; Fache, M.; Ménard, R.; Negrell, C.; Caillol, S.; David, G. Correction: Phosphorylation of bio-based compounds: The state of the art. Polym. Chem., 2016, 7(7), 1517-1517.
[http://dx.doi.org/10.1039/C6PY90019D]
[3]
Firmino, A.D.G.; Figueira, F.; Tomé, J.P.; Paz, F.A.A.; Rocha, J. Metal–Organic Frameworks assembled from tetraphosphonic ligands and lanthanides. Coord. Chem. Rev., 2018, 355, 133-149.
[http://dx.doi.org/10.1016/j.ccr.2017.08.001]
[4]
Kozak, W.; Rachon, J.; Daśko, M.; Demkowicz, S. Selected methods for the chemical phosphorylation and thiophosphorylation of phenols. Asian J. Org. Chem., 2018, 7(2), 314-323.
[http://dx.doi.org/10.1002/ajoc.201700638]
[5]
Budzisz, E.; Brzezinska, E.; Krajewska, U.; Rozalski, M. Cytotoxic effects, alkylating properties and molecular modelling of coumarin derivatives and their phosphonic analogues. Eur. J. Med. Chem., 2003, 38(6), 597-603.
[http://dx.doi.org/10.1016/S0223-5234(03)00086-2] [PMID: 12832131]
[6]
Qin, X.; Hao, X.; Han, H.; Zhu, S.; Yang, Y.; Wu, B.; Hussain, S.; Parveen, S.; Jing, C.; Ma, B.; Zhu, C. Design and synthesis of potent and multifunctional aldose reductase inhibitors based on quinoxalinones. J. Med. Chem., 2015, 58(3), 1254-1267.
[http://dx.doi.org/10.1021/jm501484b] [PMID: 25602762]
[7]
Yang, L.; Wang, P.; Wu, J.F.; Yang, L.M.; Wang, R.R.; Pang, W.; Li, Y.G.; Shen, Y.M.; Zheng, Y.T.; Li, X. Design, synthesis and anti-HIV-1 evaluation of hydrazide-based peptidomimetics as selective gelatinase inhibitors. Bioorg. Med. Chem., 2016, 24(9), 2125-2136.
[http://dx.doi.org/10.1016/j.bmc.2016.03.043] [PMID: 27039251]
[8]
Egorova, A.V.; Svintsitskaya, N.I.; Dogadina, A.V. Synthesis of Phosphorylated Indoles. Russ. J. Gen. Chem., 2018, 88(11), 2276-2289.
[http://dx.doi.org/10.1134/S1070363218110063]
[9]
Gong, P.; Ye, K.; Sun, J.; Chen, P.; Xue, P.; Yang, H.; Lu, R. Electroluminescence and fluorescence response towards acid vapors depending on the structures of indole-fused phospholes. RSC Advances, 2015, 5(115), 94990-94996.
[http://dx.doi.org/10.1039/C5RA19867D]
[10]
Troev, K.D. Chemistry and Application of H-Phosphonates; Elsevier Science Ltd: Amsterdam, 2006.
[11]
Muhammad, M.H.; Chen, X.L.; Yu, B.; Qu, L.B.; Zhao, Y.F. Applications of H-phosphonates for C element bond formation. Pure Appl. Chem., 2019, 91, 33-41.
[http://dx.doi.org/10.1515/pac-2018-0906]
[12]
Onodera, H.; Nakajima, A.; Nakanishi, T.; Fushimi, K.; Hasegawa, Y. Thermostable Eu (III)-nanorod luminophores with effective photosensitized energy transfer. J. Alloys Compd., 2015, 648, 651-657.
[http://dx.doi.org/10.1016/j.jallcom.2015.06.140]
[13]
Palmer, R.K.; Atwal, K.; Bakaj, I.; Carlucci-Derbyshire, S.; Buber, M.T.; Cerne, R.; Cortés, R.Y.; Devantier, H.R.; Jorgensen, V.; Pawlyk, A.; Lee, S.P.; Sprous, D.G.; Zhang, Z.; Bryant, R. Triphenylphosphine oxide is a potent and selective inhibitor of the transient receptor potential melastatin-5 ion channel. Assay Drug Dev. Technol., 2010, 8(6), 703-713.
[http://dx.doi.org/10.1089/adt.2010.0334] [PMID: 21158685]
[14]
Monge, S.; David, G. Phosphorus-based polymers: from synthesis to applications; Royal Society of Chemistry: Cambridge, 2014.
[http://dx.doi.org/10.1039/9781782624523]
[15]
Corbridge, D.E.C. Phosphorus: chemistry, biochemistry and technology; CRC Press: New York, 2013.
[16]
Van der Jeught, S.; Stevens, C.V. Direct phosphonylation of aromatic azaheterocycles. Chem. Rev., 2009, 109(6), 2672-2702.
[http://dx.doi.org/10.1021/cr800315j] [PMID: 19449857]
[17]
Bhattacharya, A.K.; Thyagarajan, G. Michaelis-Arbuzov rearrangement. Chem. Rev., 1981, 81(4), 415-430.
[http://dx.doi.org/10.1021/cr00044a004]
[18]
Isshiki, R.; Muto, K.; Yamaguchi, J. Decarbonylative C-P bond formation using aromatic esters and organophosphorus compounds. Org. Lett., 2018, 20(4), 1150-1153.
[http://dx.doi.org/10.1021/acs.orglett.8b00080] [PMID: 29392955]
[19]
Liao, L.L.; Gui, Y.Y.; Zhang, X.B.; Shen, G.; Liu, H.D.; Zhou, W.J.; Li, J.; Yu, D.G. Phosphorylation of alkenyl and aryl C-O bonds via photoredox/nickel dual catalysis. Org. Lett., 2017, 19(14), 3735-3738.
[http://dx.doi.org/10.1021/acs.orglett.7b01561] [PMID: 28686460]
[20]
Liu, C.; Szostak, M. Decarbonylative Phosphorylation of amides by palladium and nickel catalysis: The hirao cross-coupling of amide derivatives. Angew. Chem. Int. Ed. Engl., 2017, 56(41), 12718-12722.
[http://dx.doi.org/10.1002/anie.201707102] [PMID: 28809072]
[21]
Wei, W.; Li, X.; Gu, M.; Yao, H.; Lin, A. Cu/Pd cooperatively catalyzed tandem C-N and C-P bond formation: access to phosphorated 2H-indazoles. Org. Biomol. Chem., 2017, 15(39), 8458-8462.
[http://dx.doi.org/10.1039/C7OB02323E] [PMID: 28953279]
[22]
Budnikova, Y.H.; Gryaznova, T.V.; Grinenko, V.V.; Dudkina, Y.B. Khrizanforov. M.N. Eco-efficient electrocatalytic C–P bond formation. Pure Appl. Chem., 2017, 89(3), 311-330.
[http://dx.doi.org/10.1515/pac-2016-1001]
[23]
Li, X.S.; Han, Y.P.; Zhu, X.Y.; Li, M.; Wei, W.X.; Liang, Y.M. Synthesis of organophosphorus compounds through copper-catalyzed annulation involving C-O and C-P bond formations. J. Org. Chem., 2017, 82(21), 11636-11643.
[http://dx.doi.org/10.1021/acs.joc.7b01947] [PMID: 29025263]
[24]
Budnikova, Y.H.; Sinyashin, O.G. Phosphorylation of C–H bonds of aromatic compounds using metals and metal complexes. Russ. Chem. Rev., 2015, 84(9), 917-951.
[http://dx.doi.org/10.1070/RCR4525]
[25]
Jason, E.F.; Fields, E.K. Free-Radical phosphonation of aromatic compounds. J. Org. Chem., 1962, 27(4), 1402-1405.
[http://dx.doi.org/10.1021/jo01051a067]
[26]
Berger, O.; Montchamp, J.L. Manganese-mediated intermolecular arylation of H-phosphinates and related compounds. Chemistry, 2014, 20(39), 12385-12388.
[http://dx.doi.org/10.1002/chem.201404507] [PMID: 25125086]
[27]
Huang, X.F.; Wu, Q.L.; He, J.S.; Huang, Z.Z. A dehydrogenative cross-coupling reaction between aromatic aldehydes or ketones and dialkyl H-phosphonates for formyl or acylphenylphosphonates. Org. Biomol. Chem., 2015, 13(15), 4466-4472.
[http://dx.doi.org/10.1039/C5OB00161G] [PMID: 25773505]
[28]
Lu, G.; Lin, B.; Gao, Y.; Ying, J.; Tang, G.; Zhao, Y. Mn(OAc)3-Mediated Synthesis of 3-Phosphonyldihydrofurans from β-Ketophosphonates and Alkenes. Synlett, 2017, 28(6), 724-728.
[29]
Grayaznova, T.V.; Dudkina, Y.B.; Islamov, D.R.; Kataeva, O.N.; Sinyashin, O.G.; Vicic, D.A.; Budnikova, Y.H. Pyridine-directed palladium-catalyzed electrochemical phosphonation of C (sp2)–H bond. J. Organomet. Chem., 2015, 785, 68-71.
[http://dx.doi.org/10.1016/j.jorganchem.2015.03.001]
[30]
Kagayama, T.; Nakano, A.; Sakaguchi, S.; Ishii, Y. Phosphonation of arenes with dialkyl phosphites catalyzed by Mn(II)/Co(II)/O2 redox couple. Org. Lett., 2006, 8(3), 407-409.
[http://dx.doi.org/10.1021/ol052406s] [PMID: 16435846]
[31]
Mu, X.J.; Zou, J.P.; Qian, Q.F.; Zhang, W. Manganese(III) acetate promoted regioselective phosphonation of heteroaryl compounds. Org. Lett., 2006, 8(23), 5291-5293.
[http://dx.doi.org/10.1021/ol062082n] [PMID: 17078700]
[32]
Li, L.; Wang, J.J.; Wang, G.W. Manganese (III) acetate-promoted cross-coupling reaction of benzothiazole/thiazole derivatives with organophosphorus compounds under ball-milling conditions. J. Org. Chem., 2016, 81(13), 5433-5439.
[http://dx.doi.org/10.1021/acs.joc.6b00786] [PMID: 27248000]
[33]
Fisher, H.C.; Berger, O.; Gelat, F.; Montchamp, J.L. Manganese‐catalyzed and promoted reactions of h‐phosphinate esters. Adv. Synth. Catal., 2014, 356(6), 1199-1204.
[http://dx.doi.org/10.1002/adsc.201301157]
[34]
Yang, J.; Chen, T.; Han, L.B. C-P bond-forming reactions via C-O/P-H cross-coupling catalyzed by nickel. J. Am. Chem. Soc., 2015, 137(5), 1782-1785.
[http://dx.doi.org/10.1021/ja512498u] [PMID: 25629169]
[35]
Xu, H.; Muto, K.; Yamaguchi, J.; Zhao, C.; Itami, K.; Musaev, D.G. Key mechanistic features of Ni-catalyzed C-H/C-O biaryl coupling of azoles and naphthalen-2-yl pivalates. J. Am. Chem. Soc., 2014, 136(42), 14834-14844.
[http://dx.doi.org/10.1021/ja5071174] [PMID: 25259782]
[36]
Zhang, S.Q.; Taylor, B.L.H.; Ji, C.L.; Gao, Y.; Harris, M.R.; Hanna, L.E.; Jarvo, E.R.; Houk, K.N.; Hong, X. Mechanism and origins of ligand-controlled stereoselectivity of ni-catalyzed suzuki-miyaura coupling with benzylic esters: A computational study. J. Am. Chem. Soc., 2017, 139(37), 12994-13005.
[http://dx.doi.org/10.1021/jacs.7b04973] [PMID: 28838241]
[37]
Jing, C.; Chen, X.; Sun, K.; Yang, Y.; Chen, T.; Liu, Y.; Qu, L.; Zhao, Y.; Yu, B. Copper-Catalyzed C4-H Regioselective Phosphorylation/Trifluoromethylation of Free 1-Naphthylamines. Org. Lett., 2019, 21(2), 486-489.
[http://dx.doi.org/10.1021/acs.orglett.8b03768] [PMID: 30600683]
[38]
Li, R.; Chen, X.; Wei, S.; Sun, K.; Fan, L.; Liu, Y.; Qu, L.; Zhao, Y.; Yu, B. A Visible‐light‐promoted metal‐free strategy towards arylphosphonates: Organic‐dye‐catalyzed phosphorylation of arylhydrazines with trialkylphosphites. Adv. Synth. Catal., 2018, 360(24), 4807-4813.
[http://dx.doi.org/10.1002/adsc.201801122]
[39]
Skalicka-Woźniak, K. Orhan, I.E.; Cordell, G.A.; Nabavi, S.M.; Budzyńska, B. Implication of coumarins towards central nervous system disorders. Pharmacol. Res., 2016, 103, 188-203.
[http://dx.doi.org/10.1016/j.phrs.2015.11.023] [PMID: 26657416]
[40]
Srikrishna, D.; Godugu, C.; Dubey, P.K. A review on pharmacological properties of coumarins. Mini Rev. Med. Chem., 2018, 18(2), 113-141.
[http://dx.doi.org/10.2174/1389557516666160801094919] [PMID: 27488585]
[41]
Villamizar, M.C.O.; Galvis, C.E.P.; Méndez, L.Y.V.; Kouznetsov, V.V. Coumarin-Based Molecules as Suitable Models for Developing New Neuroprotective Agents Through Structural Modification.Discovery and Development of Neuroprotective Agents from Natural Products Chapter 5; Brahmachari, G., Ed.; Elsevier Inc., 2018, pp. 149-235.
[http://dx.doi.org/10.1016/B978-0-12-809593-5.00005-7]
[42]
Kim, I.; Min, M.; Kang, D.; Kim, K.; Hong, S. Direct phosphonation of quinolinones and coumarins driven by the photochemical activity of substrates and products. Org. Lett., 2017, 19(6), 1394-1397.
[http://dx.doi.org/10.1021/acs.orglett.7b00299] [PMID: 28251857]
[43]
Chougala, B.M.; Shastri, S.L.; Holiyachi, M.; Shastri, L.A.; More, S.S.; Ramesh, K.V. Synthesis, anti-microbial and anti-cancer evaluation study of 3-(3-benzofuranyl)-coumarin derivatives. Med. Chem. Res., 2015, 24(12), 4128-4138.
[http://dx.doi.org/10.1007/s00044-015-1449-y]
[44]
Budzisz, E. Synthesis, reactions and biological activity of phosphorus-containing derivatives of chromone and coumarin. Phosphorus Sulfur Silicon Relat. Elem., 2004, 179(10), 2131-2147.
[http://dx.doi.org/10.1080/10426500490475139]
[45]
Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules, 2018, 23(2), 250-250.
[http://dx.doi.org/10.3390/molecules23020250] [PMID: 29382051]
[46]
Pinto, D.C.G.A.; Silva, A.M.S. Anticancer natural coumarins as lead compounds for the discovery of new drugs. Curr. Top. Med. Chem., 2017, 17(29), 3190-3198.
[PMID: 29243581]
[47]
Reddy, T.S.; Choi, M.S. Dicyanovinylcoumarin as a turn-on fluorescent sensor for cyanide ion. J. Photochem. Photobiol. Chem., 2018, 351, 108-114.
[http://dx.doi.org/10.1016/j.jphotochem.2017.10.021]
[48]
Matta, A.; Bahadur, V.; Taniike, T.; Van der Eycken, J.; Singh, B.K. Synthesis, characterisation and photophysical studies of oxadiazolyl coumarin: A new class of blue light emitting fluorescent dyes. Dyes Pigments, 2017, 140, 250-260.
[http://dx.doi.org/10.1016/j.dyepig.2017.01.050]
[49]
Trichili, S.; Khemakhem, K.; Ben Maktouf, L.; Ammar, H.; Abid, S. Synthesis, characterization and fluorescence spectroscopy of novel 3-(substituted ethenyl). Coumarins. Lett. Org. Chem., 2017, 14(1), 2-7.
[http://dx.doi.org/10.2174/1570178614666161208150044]
[50]
Joshi, S.; Kumari, S.; Bhattacharjee, R.; Sarmah, A.; Sakhuja, R.; Pant, D.D. Experimental and theoretical study: Determination of dipole moment of synthesized coumarin–triazole derivatives and application as turn off fluorescence sensor: High sensitivity for iron (III) ions. Sens. Actuators B Chem., 2015, 220, 1266-1278.
[http://dx.doi.org/10.1016/j.snb.2015.07.053]
[51]
Singh, R.K.; Rogers, M.D. An efficient synthesis of diethyl coumarin‐3‐phosphonates. J. Heterocycl. Chem., 1985, 22(6), 1713-1714.
[http://dx.doi.org/10.1002/jhet.5570220648]
[52]
Bouyssou, P.; Chenault, J. Phosphonates and phosphine oxides as reagents in a one-pot synthesis of coumarins. Tetrahedron Lett., 1991, 32(39), 5341-5344.
[http://dx.doi.org/10.1016/S0040-4039(00)92380-3]
[53]
Rodios, N.A.; Bojilova, A.; Terzis, A.; Raptopoulou, C.P. Reaction of 3‐nitro‐and 3‐diethylphosphonocoumarin with phenacyl bromide. X‐ray molecular structure of 3‐nitro‐3, 4‐phenacylidenecoumarin. J. Heterocycl. Chem., 1994, 31(5), 1129-1133.
[http://dx.doi.org/10.1002/jhet.5570310505]
[54]
Bojilova, A.; Nikolova, R.; Ivanov, C.; Rodios, N.A.; Terzis, A.; Raptopoulou, C.P. A comparative study of the interaction of salicylaldehydes with phosphonoacetates under Knoevenagel reaction conditions. Synthesis of 1, 2-benzoxaphosphorines and their dimers. Tetrahedron, 1996, 52(38), 12597-12612.
[http://dx.doi.org/10.1016/0040-4020(96)00748-X]
[55]
Takeuchi, Y.; Ueda, N.; Uesugi, K.; Abe, H.; Nishioka, H.; Harayama, T. Convenient synthesis of a simple coumarin from salicylaldehyde and Wittig reagent. IV: Improved synthetic method of substituted coumarins. Heterocycles, 2003, 59(1), 217-224.
[http://dx.doi.org/10.3987/COM-02-S23]
[56]
Borges, M.F.M.; Roleira, F.M.F.; Milhazes, N.J.S.P.; Villare, E.U.; Penin, L.S. Simple coumarins: Privileged scaffolds in medicinal chemistry. Frontiers in Medicinal Chemistry, 4th ed; Reitz, A.B.; Choudhary, M.I.; Atta-ur- Rahman, , Eds.; Bentham Science Publisher, 2010, pp. 23-85.
[57]
Zhou, P.; Jiang, Y.J.; Zou, J.P.; Zhang, W. Manganese (III) acetate mediated free-radical phosphonylation of flavones and coumarins. Synthesis, 2012, 44(7), 1043-1050.
[http://dx.doi.org/10.1055/s-0031-1289748]
[58]
Mi, X.; Huang, M.; Zhang, J.; Wang, C.; Wu, Y. Regioselective palladium-catalyzed phosphonation of coumarins with dialkyl H-phosphonates via C-H functionalization. Org. Lett., 2013, 15(24), 6266-6269.
[http://dx.doi.org/10.1021/ol4031167] [PMID: 24274120]
[59]
Mi, X.; Wang, C.; Huang, M.; Zhang, J.; Wu, Y.; Wu, Y. Silver-catalyzed synthesis of 3-phosphorated coumarins via radical cyclization of alkynoates and dialkyl H-phosphonates. Org. Lett., 2014, 16(12), 3356-3359.
[http://dx.doi.org/10.1021/ol5013839] [PMID: 24921182]
[60]
Niu, L.; Liu, J.; Yi, H.; Wang, S.; Liang, X.A.; Singh, A.K.; Chiang, C.W.; Lei, A. Visible-light-induced external oxidant-free oxidative phosphonylation of C (sp2)–H Bonds. ACS Catal., 2017, 7(11), 7412-7416.
[http://dx.doi.org/10.1021/acscatal.7b02418]
[61]
Yuan, J.W.; Li, Y.Z.; Yang, L.R.; Mai, W.P.; Mao, P.; Xiao, Y.M.; Qu, L.B. Silver-catalyzed direct Csp2-H radical phosphorylation of coumarins with H-phosphites. Tetrahedron, 2015, 71(42), 8178-8186.
[http://dx.doi.org/10.1016/j.tet.2015.08.026]
[62]
Wang, H.; Li, X.; Wu, F.; Wan, B. Direct oxidative CP bond formation of indoles with dialkyl phosphites. Synthesis, 2012, 44(6), 941-945.
[http://dx.doi.org/10.1055/s-0031-1289700]
[63]
Xiang, C.B.; Bian, Y.J.; Mao, X.R.; Huang, Z.Z. Coupling reactions of heteroarenes with phosphites under silver catalysis. J. Org. Chem., 2012, 77(17), 7706-7710.
[http://dx.doi.org/10.1021/jo301108g] [PMID: 22901007]
[64]
Kim, S.H.; Kim, K.H.; Lim, J.W.; Kim, J.N. An expedient synthesis of pyrrole-2-phosphonates via direct oxidative phosphorylation and γ-hydroxy-γ-butyrolactams from pyrroles. Tetrahedron Lett., 2014, 55(2), 531-534.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.082]
[65]
Zhang, H.J.; Lin, W.; Wu, Z.; Ruan, W.; Wen, T.B. Silver-mediated direct phosphorylation of benzothiazoles and thiazoles with diarylphosphine oxides. Chem. Commun. (Camb.), 2015, 51(16), 3450-3453.
[http://dx.doi.org/10.1039/C4CC10017D] [PMID: 25626586]
[66]
Bennett, R.; Burger, A.; Volk, W. Communications-3-Pyridylphosphonic Acid. J. Org. Chem., 1958, 23(6), 940-940.
[http://dx.doi.org/10.1021/jo01100a033]
[67]
Freedman, L.D.; Doak, G.O. The Preparation of the Isomeric Ethylphenylphosphonic Acids1. J. Am. Chem. Soc., 1955, 77(1), 173-174.
[http://dx.doi.org/10.1021/ja01606a055]
[68]
Bost, R.W.; Quin, L.D. Synthesis of two benzimidazole-5-phosphonic acids and benzoxazole-6-phosphonic acid1. J. Org. Chem., 1953, 18(4), 358-361.
[http://dx.doi.org/10.1021/jo01132a002]
[69]
Ashby, E.C.; Kosolapoff, G.M. The chemistry of phosphonic acids with aromatic nuclei. II. The isomeric tolylphosphonic acids. J. Am. Chem. Soc., 1953, 75(20), 4903-4905.
[http://dx.doi.org/10.1021/ja01116a007]
[70]
Cadogan, J.I.G.; Sears, D.J.; Smith, D.M.; Todd, M.J. Reduction of nitro-and nitroso-compounds by tervalent phosphorus reagents. Part V. Reduction of alkyl-and methoxy-nitrobenzenes, and nitrobenzene by trialkyl phosphites. J. Chem. Soc. C, 1969, 20, 2813-2819.
[http://dx.doi.org/10.1039/j39690002813]
[71]
Volkov, P.A.; Khrapova, K.O.; Telezhkin, A.A.; Ivanova, N.I.; Albanov, A.I.; Gusarova, N.K.; Trofimov, B.A. Catalyst-Free Phosphorylation of acridine with secondary phosphine chalcogenides: Nucleophilic addition vs SNHAr reaction. Org. Lett., 2018, 20(23), 7388-7391.
[http://dx.doi.org/10.1021/acs.orglett.8b03061] [PMID: 30444374]
[72]
Zhang, H.; Zhang, X.Y.; Dong, D.Q.; Wang, Z.L. Copper-catalyzed cross-coupling reactions for C–P bond formation. RSC Advances, 2015, 5(65), 52824-52831.
[http://dx.doi.org/10.1039/C5RA08858E]
[73]
Zhou, A.X.; Mao, L.L.; Wang, G.W.; Yang, S.D. A unique copper-catalyzed cross-coupling reaction by hydrogen (H2) removal for the stereoselective synthesis of 3-phosphoindoles. Chem. Commun. (Camb.), 2014, 50(62), 8529-8532.
[http://dx.doi.org/10.1039/C4CC01815J] [PMID: 24949909]
[74]
Feng, C.G.; Ye, M.; Xiao, K.J.; Li, S.; Yu, J.Q. Pd(II)-catalyzed phosphorylation of aryl C-H bonds. J. Am. Chem. Soc., 2013, 135(25), 9322-9325.
[http://dx.doi.org/10.1021/ja404526x] [PMID: 23755825]
[75]
Li, C.; Yano, T.; Ishida, N.; Murakami, M. Pyridine-directed palladium-catalyzed phosphonation of C(sp2)-H bonds. Angew. Chem. Int. Ed. Engl., 2013, 52(37), 9801-9804.
[http://dx.doi.org/10.1002/anie.201305202] [PMID: 23881771]
[76]
Hong, G.; Mao, D.; Wu, S.; Wang, L. Palladium-catalyzed direct regioselective ortho-phosphonation of aromatic azo compounds with dialkyl phosphites. J. Org. Chem., 2014, 79(21), 10629-10635.
[http://dx.doi.org/10.1021/jo501928x] [PMID: 25296117]
[77]
Hou, C.; Ren, Y.; Lang, R.; Hu, X.; Xia, C.; Li, F. Palladium-catalyzed direct phosphonation of azoles with dialkyl phosphites. Chem. Commun. (Camb.), 2012, 48(42), 5181-5183.
[http://dx.doi.org/10.1039/c2cc30429e] [PMID: 22517113]
[78]
Komatsuda, M.; Muto, K.; Yamaguchi, J. Pd-catalyzed dearomative allylation of benzyl phosphates. Org. Lett., 2018, 20(14), 4354-4357.
[http://dx.doi.org/10.1021/acs.orglett.8b01807] [PMID: 29975060]
[79]
Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X. Direct phosphonation of quinoxalin-2(1H)-ones under transition-metal-free conditions. Chem. Commun. (Camb.), 2016, 52(13), 2846-2849.
[http://dx.doi.org/10.1039/C5CC08049E] [PMID: 26779573]
[80]
Luo, K.; Chen, Y.Z.; Chen, L.X.; Wu, L. Autoxidative C(sp2)-P Formation: Direct phosphorylation of heteroarenes under oxygen, metal-free, and solvent-free conditions. J. Org. Chem., 2016, 81(11), 4682-4689.
[http://dx.doi.org/10.1021/acs.joc.6b00592] [PMID: 27167319]
[81]
Wang, H.; Cui, X.; Pei, Y.; Zhang, Q.; Bai, J.; Wei, D.; Wu, Y. Direct regioselective phosphonation of heteroaryl N-oxides with H-phosphonates under metal and external oxidant free conditions. Chem. Commun. (Camb.), 2014, 50(92), 14409-14411.
[http://dx.doi.org/10.1039/C4CC07060G] [PMID: 25300423]
[82]
Budnikova, Y.H. Opportunities and challenges for combining electro-and organometallic catalysis in C(sp2)-H phosphonation. Pure Appl. Chem., 2019, 91(1), 17-31.
[http://dx.doi.org/10.1515/pac-2018-0904]
[83]
Budnikova, Y.H. Transition metal-promoted reactions of diarylphosphine oxides as a synthetic method for organophosphorus heterocyclic compounds. Chem. Heterocycl. Compd., 2018, 54(3), 269-279.
[http://dx.doi.org/10.1007/s10593-018-2261-7]
[84]
Deng, L.; Wang, Y.; Mei, H.; Pan, Y.; Han, J. electrochemical dehydrogenative phosphorylation of alcohols for the synthesis of organophosphinates. J. Org. Chem., 2019, 84(2), 949-956.
[http://dx.doi.org/10.1021/acs.joc.8b02882] [PMID: 30608670]
[85]
Yang, Q.L.; Fang, P.; Mei, T.S. Recent advances in organic electrochemical C—H functionalization. Chin. J. Chem., 2018, 36(4), 338-352.
[http://dx.doi.org/10.1002/cjoc.201700740]
[86]
Ohmori, H.; Nakai, S.; Masui, M. Anodic oxidation of organophosphorus compounds. Part 2. Formation of dialkyl arylphosphonates via arylation of trialkyl phosphites. J. Chem. Soc., Perkin Trans. 1, 1979, 2023-2026.
[http://dx.doi.org/10.1039/p19790002023]
[87]
Nikitin, E.V.; Romakhin, A.S.; Parakin, O.V.; Romanov, G.V.; Kargin, Y.M.; Pudovik, A.N. Electrochemical synthesis of aryl phosphonates. Russ. Chem. Bull., 1983, 32(3), 566-569.
[http://dx.doi.org/10.1007/BF00953100]
[88]
Kargin, Y.M.; Budnikova, Y.G. Electrochemistry of organophosphorus compounds. Russ. J. Gen. Chem., 2001, 71(9), 1393-1421.
[http://dx.doi.org/10.1023/A:1013906019685]
[89]
Cruz, H.; Gallardo, I.; Guirado, G. Electrochemical synthesis of organophosphorus compounds through nucleophilic aromatic substitution: Mechanistic investigations and synthetic scope. Eur. J. Org. Chem., 2011, 2011(36), 7378-7389.
[http://dx.doi.org/10.1002/ejoc.201101357]
[90]
Khrizanforov, M.N.; Strekalova, S.O.; Gryaznova, T.V.; Khrizanforova, V.V.; Budnikova, Y.H. New method of metal-induced oxidative phosphorylation of benzene. Russ. Chem. Bull., 2015, 64(8), 1926-1932.
[http://dx.doi.org/10.1007/s11172-015-1095-z]
[91]
Khrizanforov, M.N.; Strekalova, S.O.; Kholin, K.V.; Khrizanforova, V.V.; Kadirov, M.K.; Gryaznova, T.V.; Budnikova, Y.H. Novel approach to metal-induced oxidative phosphorylation of aromatic compounds. Catal. Today, 2017, 279, 133-141.
[http://dx.doi.org/10.1016/j.cattod.2016.06.001]
[92]
Strekalova, S.O.; Khrizanforov, M.N.; Gryaznova, T.V.; Khrizanforova, V.V.; Budnikova, Y.H. Electrochemical phosphorylation of coumarins catalyzed by transition metal complexes (Ni—Mn, Co—Mn). Russ. Chem. Bull., 2016, 65(5), 1295-1298.
[http://dx.doi.org/10.1007/s11172-016-1451-7]
[93]
Grinenko, V.V.; Khrizanforov, M.N.; Strekalova, S.O.; Khrizanforova, V.V.; Kholin, K.V.; Gryaznova, T.V.; Budnikova, Y.H. Electrooxidative phosphorylation of coumarins by bimetallic catalytic systems Ni (II)/Mn (II) or Co (II)/Mn (II). Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(11-12), 1660-1661.
[http://dx.doi.org/10.1080/10426507.2016.1225062]
[94]
Strekalova, S.; Khrizanforov, M.; Budnikova, Y. Evaluation of transition metal catalysts in electrochemically induced aromatic phosphonation. Molecules, 2019, 24(9), 1823.
[http://dx.doi.org/10.3390/molecules24091823] [PMID: 31083594]
[95]
Dudkina, Y.B.; Gryaznova, T.V.; Kataeva, O.N.; Budnikova, Y.H.; Sinyashin, O.G. Electrochemical CH phosphorylation of 2-phenylpyridine in the presence of palladium salts. Russ. Chem. Bull., 2014, 63(12), 2641-2646.
[http://dx.doi.org/10.1007/s11172-014-0792-3]
[96]
Henyecz, R.; Oroszy, R.; Keglevich, G. Microwave-assisted hirao reaction of heteroaryl bromides and> P (O) H reagents using Pd(OAc)2 as the catalyst precursor in the absence of added P-ligands. Curr. Org. Chem., 2019, 23(10), 1151-1157.
[http://dx.doi.org/10.2174/1385272823666190621114915]
[97]
Kohler, M.C.; Grimes, T.V.; Wang, X.; Cundari, T.R.; Stockland, R.A. Jr Arylpalladium phosphonate complexes as reactive intermediates in phosphorus− carbon bond forming reactions. Organometallics, 2009, 28(4), 1193-1201.
[http://dx.doi.org/10.1021/om800906m]
[98]
Strekalova, S.O.; Khrizanforov, M.N.; Shamsieva, A.V.; Grinenko, V.V.; Gryaznova, T.V.; Musina, E.I.; Karasik, A.A.; Budnikova, Y.H. Direct phosphorylation of pyridine in the presence of Ni(BF4)2bpy and CoCl2bpy metal complexes. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(11-12), 1545-1546.
[http://dx.doi.org/10.1080/10426507.2016.1213252]
[99]
Yurko, E.O.; Gryaznova, T.V.; Budnikova, Y.H. Electrochemical CH phosphonation of caffeine. Phosphorus Sulfur Silicon Relat. Elem., 2019, 14, 1-2.
[http://dx.doi.org/10.1080/10426507.2018.1541897]
[100]
Yurko, E.O.; Gryaznova, T.V.; Kholin, K.V.; Khrizanforova, V.V.; Budnikova, Y.H. External oxidant-free cross-coupling: electrochemically induced aromatic C-H phosphonation of azoles with dialkyl-H-phosphonates under silver catalysis. Dalton Trans., 2017, 47(1), 190-196.
[http://dx.doi.org/10.1039/C7DT03650G] [PMID: 29192918]
[101]
Khrizanforov, M.; Strekalova, S.; Khrizanforova, V.; Dobrynin, A.; Kholin, K.; Gryaznova, T.; Grinenko, V.; Gubaidullin, A.; Kadirov, M.K.; Budnikova, Y. Cobalt-Catalyzed Green Cross-Dehydrogenative C(sp2)-H/PH Coupling Reactions. Top. Catal., 2018, 61(18-19), 1949-1956.
[http://dx.doi.org/10.1007/s11244-018-1014-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy