Abstract
Background: Nitrite is a multifunctional food additive used for control of toxigenic Clostridium botulinum in foodstuffs. However, there is a growing concern about the carcinogenic and teratogenic effects of nitrite. The present research was done to assess the effects of Citrus sinensis essential oil and nitrite on the growth probability of C. botulinum type A using predictive mathematical modeling technique in broth media.
Methods: Essential oil of C. sinensis was collected using Clevenger. Multifactorial design included diverse C. sinensis, nitrite and NaCl concentrations and also different pH ranges and storage temperatures were arranged in BHI broth medium. C. botulinum type A strains were then inoculated and their growth model was analyzed.
Results: The synergistic inhibitory effects of nitrite and C. sinensis were significant (P<0.05). C. sinensis (0.045%) and nitrite (20 ppm) strongly decreased the growth of C. botulinum (log P%= - 2.2 versus log P%= 1.15). Decreasing temperature up to 25°C significantly affected growth probability of C. botulinum (P<0.05). Increasing NaCl concentration up to 3% did not cause any significant differences in the growth of C. botulinum (P= 0.062). Bacterial growth in broth media was completely inhibited at pH 5.5 and also in media contained C. sinensis (0.045%) and nitrite (60 ppm) at pH 6.5 (log P%= -3.76).
Conclusion: Using certain concentrations of C. sinensis essential oil with other suboptimal factors (pH and temperature) and nitrite can control the growth of C. botulinum in broth media.
Keywords: Citrus sinensis, Clostridium botulinum, growth probability, nitrite, broth media, modeling.
Graphical Abstract
[http://dx.doi.org/10.1007/978-3-319-28368-5_4]
[http://dx.doi.org/10.1371/journal.pone.0116381] [PMID: 25658638]
[http://dx.doi.org/10.3109/15563650.2010.535003] [PMID: 21171845]
[http://dx.doi.org/10.5713/ajas.17.0675] [PMID: 29531192]
[http://dx.doi.org/10.1016/j.meatsci.2016.03.009] [PMID: 26994928]
[http://dx.doi.org/10.14336/AD.2017.1207] [PMID: 30271668]
[http://dx.doi.org/10.1016/j.radphyschem.2015.10.008]
[http://dx.doi.org/10.1016/j.meatsci.2018.07.032] [PMID: 30086439]
[http://dx.doi.org/10.1016/j.tifs.2015.05.008]
[http://dx.doi.org/10.1016/j.foodchem.2017.05.051] [PMID: 28554616]
[http://dx.doi.org/10.1371/journal.pone.0087723] [PMID: 24489955]
[http://dx.doi.org/10.1111/j.1365-2672.2006.03035.x] [PMID: 17105553]
[http://dx.doi.org/10.1038/s41598-017-11818-5] [PMID: 28904369]
[http://dx.doi.org/10.1016/j.foodres.2017.01.012] [PMID: 28290281]
[http://dx.doi.org/10.1016/j.lwt.2006.07.007]
[http://dx.doi.org/10.1002/ffj.1829]
[http://dx.doi.org/10.1006/fmic.1998.0196]
[http://dx.doi.org/10.1111/jfs.12058]
[http://dx.doi.org/10.1016/S0168-1605(98)00014-2] [PMID: 9620122]
[http://dx.doi.org/10.2298/JSC101218141A]
[http://dx.doi.org/10.1016/j.chroma.2005.12.030] [PMID: 16384566]
[http://dx.doi.org/10.1016/j.foodchem.2010.05.068]
[http://dx.doi.org/10.1002/ffj.1076]
[http://dx.doi.org/10.1016/j.indcrop.2014.05.055]
[http://dx.doi.org/10.1016/j.foodcont.2012.01.050]
[http://dx.doi.org/10.1016/j.foodcont.2015.06.057]
[http://dx.doi.org/10.4315/0362-028X-53.11.958] [PMID: 31022781]
[http://dx.doi.org/10.4315/0362-028X-67.1.199] [PMID: 14717375]
[http://dx.doi.org/10.1111/j.1745-4565.2010.00222.x]
[http://dx.doi.org/10.1006/fmic.1996.0075]
[http://dx.doi.org/10.3390/medicines4030058] [PMID: 28930272]
[http://dx.doi.org/10.1111/j.1745-4565.1986.tb00557.x]
[http://dx.doi.org/10.1016/0168-1605(90)90075-G] [PMID: 2204405]
[http://dx.doi.org/10.1002/9781118684856.ch6]
[http://dx.doi.org/10.1111/j.1365-2621.2000.tb10614.x]
[http://dx.doi.org/10.1300/J030v16n02_04]
[http://dx.doi.org/10.1016/j.foodcont.2015.10.012]
[http://dx.doi.org/10.1016/j.foodcont.2018.04.054]
[http://dx.doi.org/10.1016/j.foodcont.2009.12.023]