Review Article

使用化合物识别脊椎动物昼夜节律时钟的调节机制

卷 21, 期 5, 2020

页: [425 - 432] 页: 8

弟呕挨: 10.2174/1389450120666190926143120

价格: $65

摘要

昼夜节律钟是固有的时间跟踪过程,可赋予生物以生存优势。在自然条件下,它们会按照环境时间提示(例如光线)进行调整,大约每天24小时运行,以最大限度地提高生物体的生理效率。该节律的确切时机由称为细胞钟的细胞自治振荡器确定,该振荡器由转录-翻译负反馈回路控制。基于细胞的系统和全动物模型的研究已利用一种药理学方法,其中使用化学化合物识别能够建立和维持细胞时钟的分子机制,例如细胞时钟调节剂的翻译后修饰,细胞时钟靶基因启动子的染色质重塑。以及蜂窝时钟组件的稳定性控制。此外,对化合物的研究有助于光信号通路的表征及其对细胞时钟的影响。在这里,描述了使用化合物研究脊椎动物生物钟系统的分子,细胞和行为方面的方法。

关键词: 昼夜节律时钟,细胞时钟,时钟蛋白,转录,光,斑马鱼。

Next »
图形摘要

[1]
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 2017; 18(3): 164-79.
[http://dx.doi.org/10.1038/nrg.2016.150]. ] [PMID: 27990019]
[2]
Okamura H. Clock genes in cell clocks: roles, actions, and mysteries. J Biol Rhythms 2004; 19(5): 388-99.
[http://dx.doi.org/10.1177/0748730404269169] [PMID: 15534319]
[3]
Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002; 418(6901): 935-41.
[http://dx.doi.org/10.1038/nature00965] [PMID: 12198538]
[4]
Dunlap JC. Molecular bases for circadian clocks. Cell 1999; 96(2): 271-90.
[http://dx.doi.org/10.1016/S0092-8674(00)80566-8] [PMID: 9988221]
[5]
Schibler U, Sassone-Corsi P. A web of circadian pacemakers. Cell 2002; 111(7): 919-22.
[http://dx.doi.org/10.1016/S0092-8674(02)01225-4] [PMID: 12507418]
[6]
King DP, Takahashi JS. Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci 2000; 23: 713-42.
[http://dx.doi.org/10.1146/annurev.neuro.23.1.713] [PMID: 10845079]
[7]
DeBruyne JP, Weaver DR, Reppert SM. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 2007; 10(5): 543-5.
[http://dx.doi.org/10.1038/nn1884] [PMID: 17417633]
[8]
Sahar S, Sassone-Corsi P. Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 2009; 9(12): 886-96.
[http://dx.doi.org/10.1038/nrc2747] [PMID: 19935677]
[9]
Idda ML, Bertolucci C, Vallone D, Gothilf Y, Sánchez-Vázquez FJ, Foulkes NS. Circadian clocks: lessons from fish. Prog Brain Res 2012; 199: 41-57.
[http://dx.doi.org/10.1016/B978-0-444-59427-3.00003-4] [PMID: 22877658]
[10]
Frøland Steindal IA, Whitmore D. Circadian clocks in fish-what have we learned so far? Biology (Basel) 2019; 8(1)E17
[http://dx.doi.org/10.3390/biology8010017] [PMID: 30893815]
[11]
Whitmore D, Foulkes NS, Strähle U, Sassone-Corsi P. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci 1998; 1(8): 701-7.
[http://dx.doi.org/10.1038/3703] [PMID: 10196586]
[12]
Tamai TK, Carr AJ, Whitmore D. Zebrafish circadian clocks: cells that see light. Biochem Soc Trans 2005; 33(Pt 5): 962-6.
[http://dx.doi.org/10.1042/BST0330962] [PMID: 16246021]
[13]
Whitmore D, Foulkes NS, Sassone-Corsi P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 2000; 404(6773): 87-91.
[http://dx.doi.org/10.1038/35003589] [PMID: 10716448]
[14]
Pando MP, Pinchak AB, Cermakian N, Sassone-Corsi P. A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. Proc Natl Acad Sci USA 2001; 98(18): 10178-83.
[http://dx.doi.org/10.1073/pnas.181228598] [PMID: 11517315]
[15]
Hurd MW, Cahill GM. Entraining signals initiate behavioral circadian rhythmicity in larval zebrafish. J Biol Rhythms 2002; 17(4): 307-14.
[http://dx.doi.org/10.1177/074873002129002618] [PMID: 12164247]
[16]
Hirayama J, Kaneko M, Cardone L, Cahill G, Sassone-Corsi P. Analysis of circadian rhythms in zebrafish. Methods Enzymol 2005; 393: 186-204.
[http://dx.doi.org/10.1016/S0076-6879(05)93005-X] [PMID: 15817288]
[17]
Rihel J, Prober DA, Arvanites A, et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 2010; 327(5963): 348-51.
[http://dx.doi.org/10.1126/science.1183090] [PMID: 20075256]
[18]
Blum ID, Bell B, Wu MN. Time for Bed: Genetic mechanisms mediating the circadian regulation of sleep. Trends Genet 2018; 34(5): 379-88.
[http://dx.doi.org/10.1016/j.tig.2018.01.001] [PMID: 29395381]
[19]
Mosser EA, Chiu CN, Tamai TK, et al. Identification of pathways that regulate circadian rhythms using a larval zebrafish small molecule screen. Sci Rep 2019; 9(1): 12405.
[http://dx.doi.org/10.1038/s41598-019-48914-7] [PMID: 31455847]
[20]
Hirayama J, Sassone-Corsi P. Structural and functional features of transcription factors controlling the circadian clock. Curr Opin Genet Dev 2005; 15(5): 548-56.
[http://dx.doi.org/10.1016/j.gde.2005.07.003] [PMID: 16095901]
[21]
Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 2007; 8(2): 139-48.
[http://dx.doi.org/10.1038/nrm2106] [PMID: 17245414]
[22]
Uchida Y, Hirayama J, Nishina H. A common origin: signaling similarities in the regulation of the circadian clock and DNA damage responses. Biol Pharm Bull 2010; 33(4): 535-44.
[http://dx.doi.org/10.1248/bpb.33.535] [PMID: 20410582]
[23]
Ma YT, Luo H, Guan WJ, et al. O-GlcNAcylation of BMAL1 regulates circadian rhythms in NIH3T3 fibroblasts. Biochem Biophys Res Commun 2013; 431(3): 382-7.
[http://dx.doi.org/10.1016/j.bbrc.2013.01.043] [PMID: 23337503]
[24]
Kaasik K, Kivimäe S, Allen JJ, et al. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 2013; 17(2): 291-302.
[http://dx.doi.org/10.1016/j.cmet.2012.12.017] [PMID: 23395175]
[25]
Li MD, Ruan HB, Hughes ME, et al. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 2013; 17(2): 303-10.
[http://dx.doi.org/10.1016/j.cmet.2012.12.015] [PMID: 23395176]
[26]
Chen Z, Yoo SH, Takahashi JS. Development and therapeutic potential of small-molecule modulators of circadian systems. Annu Rev Pharmacol Toxicol 2018; 58: 231-52.
[http://dx.doi.org/10.1146/annurev-pharmtox-010617-052645] [PMID: 28968186]
[27]
Lowrey PL, Shimomura K, Antoch MP, et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 2000; 288(5465): 483-92.
[http://dx.doi.org/10.1126/science.288.5465.483] [PMID: 10775102]
[28]
Narasimamurthy R, Hunt SR, Lu Y, et al. CK1δ/ε protein kinase primes the PER2 circadian phosphoswitch. Proc Natl Acad Sci USA 2018; 115(23): 5986-91.
[http://dx.doi.org/10.1073/pnas.1721076115] [PMID: 29784789]
[29]
Toh KL, Jones CR, He Y, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001; 291(5506): 1040-3.
[http://dx.doi.org/10.1126/science.1057499] [PMID: 11232563]
[30]
Ebisawa T, Uchiyama M, Kajimura N, et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2001; 2(4): 342-6.
[http://dx.doi.org/10.1093/embo-reports/kve070] [PMID: 11306557]
[31]
Hirota T, Kay SA. High-throughput screening and chemical biology: new approaches for understanding circadian clock mechanisms. Chem Biol 2009; 16(9): 921-7.
[http://dx.doi.org/10.1016/j.chembiol.2009.09.002] [PMID: 19778719]
[32]
Gaspar L, Brown SA. Measuring circadian clock function in human cells. Methods Enzymol 2015; 552: 231-56.
[http://dx.doi.org/10.1016/bs.mie.2014.10.023] [PMID: 25707280]
[33]
Yagita K, Yamanaka I, Koinuma S, Shigeyoshi Y, Uchiyama Y. Mini screening of kinase inhibitors affecting period-length of mammalian cellular circadian clock. Acta Histochem Cytochem 2009; 42(3): 89-93.
[http://dx.doi.org/10.1267/ahc.09015] [PMID: 19617956]
[34]
Kon N, Sugiyama Y, Yoshitane H, Kameshita I, Fukada Y. Cell-based inhibitor screening identifies multiple protein kinases important for circadian clock oscillations. Commun Integr Biol 2015; 8(4)e982405
[http://dx.doi.org/10.4161/19420889.2014.982405] [PMID: 26478783]
[35]
Maier B, Wendt S, Vanselow JT, et al. A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev 2009; 23(6): 708-18.
[http://dx.doi.org/10.1101/gad.512209] [PMID: 19299560]
[36]
Tamaru T, Hirayama J, Isojima Y, et al. CK2alpha phosphorylates BMAL1 to regulate the mammalian clock. Nat Struct Mol Biol 2009; 16(4): 446-8.
[http://dx.doi.org/10.1038/nsmb.1578] [PMID: 19330005]
[37]
Uchida Y, Osaki T, Yamasaki T, et al. Involvement of stress kinase mitogen-activated protein kinase kinase 7 in regulation of mammalian circadian clock. J Biol Chem 2012; 287(11): 8318-26.
[http://dx.doi.org/10.1074/jbc.M111.308908] [PMID: 22267733]
[38]
Yoshitane H, Honma S, Imamura K, et al. JNK regulates the photic response of the mammalian circadian clock. EMBO Rep 2012; 13(5): 455-61.
[http://dx.doi.org/10.1038/embor.2012.37] [PMID: 22441692]
[39]
Kon N, Yoshikawa T, Honma S, et al. CaMKII is essential for the cellular clock and coupling between morning and evening behavioral rhythms. Genes Dev 2014; 28(10): 1101-10.
[http://dx.doi.org/10.1101/gad.237511.114] [PMID: 24831701]
[40]
Top D, Harms E, Syed S, Adams EL, Saez L. GSK-3 and CK2 kinases converge on timeless to regulate the master clock. Cell Rep 2016; 16(2): 357-67.
[http://dx.doi.org/10.1016/j.celrep.2016.06.005] [PMID: 27346344]
[41]
Zhang EE, Liu AC, Hirota T, et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 2009; 139(1): 199-210.
[http://dx.doi.org/10.1016/j.cell.2009.08.031] [PMID: 19765810]
[42]
Hirota T, Lee JW, Lewis WG, et al. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol 2010; 8(12)e1000559
[http://dx.doi.org/10.1371/journal.pbio.1000559] [PMID: 21179498]
[43]
Hirota T, Lee JW, St John PC, et al. Identification of small molecule activators of cryptochrome. Science 2012; 337(6098): 1094-7.
[http://dx.doi.org/10.1126/science.1223710] [PMID: 22798407]
[44]
Oshima T, Niwa Y, Kuwata K, et al. Cell-based screen identifies a new potent and highly selective CK2 inhibitor for modulation of circadian rhythms and cancer cell growth. Sci Adv 2019; 5(1)eaau9060
[http://dx.doi.org/10.1126/sciadv.aau9060] [PMID: 30746467]
[45]
Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006; 125(3): 497-508.
[http://dx.doi.org/10.1016/j.cell.2006.03.033] [PMID: 16678094]
[46]
Hirayama J, Sahar S, Grimaldi B, et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 2007; 450(7172): 1086-90.
[http://dx.doi.org/10.1038/nature06394] [PMID: 18075593]
[47]
Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008; 134(2): 329-40.
[http://dx.doi.org/10.1016/j.cell.2008.07.002] [PMID: 18662547]
[48]
Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 2013; 153(7): 1448-60.
[http://dx.doi.org/10.1016/j.cell.2013.05.027] [PMID: 23791176]
[49]
Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008; 134(2): 317-28.
[http://dx.doi.org/10.1016/j.cell.2008.06.050] [PMID: 18662546]
[50]
Bellet MM, Nakahata Y, Boudjelal M, et al. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc Natl Acad Sci USA 2013; 110(9): 3333-8.
[http://dx.doi.org/10.1073/pnas.1214266110] [PMID: 23341587]
[51]
Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P. Circadian clock control by SUMOylation of BMAL1. Science 2005; 309(5739): 1390-4.
[http://dx.doi.org/10.1126/science.1110689] [PMID: 16109848]
[52]
Lee J, Lee Y, Lee MJ, et al. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol Cell Biol 2008; 28(19): 6056-65.
[http://dx.doi.org/10.1128/MCB.00583-08] [PMID: 18644859]
[53]
Liu AC, Welsh DK, Ko CH, et al. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 2007; 129(3): 605-16.
[http://dx.doi.org/10.1016/j.cell.2007.02.047] [PMID: 17482552]
[54]
Hegazi S, Lowden C, Rios Garcia J, et al. A symphony of signals: Intercellular and intracellular signaling mechanisms underlying circadian timekeeping in mice and flies. Int J Mol Sci 2019; 20(9)E2363
[http://dx.doi.org/10.3390/ijms20092363] [PMID: 31086044]
[55]
van der Horst GT, Muijtjens M, Kobayashi K, et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 1999; 398(6728): 627-30.
[http://dx.doi.org/10.1038/19323] [PMID: 10217146]
[56]
Debruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM. A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 2006; 50(3): 465-77.
[http://dx.doi.org/10.1016/j.neuron.2006.03.041] [PMID: 16675400]
[57]
DeBruyne JP, Weaver DR, Reppert SM. Peripheral circadian oscillators require CLOCK. Curr Biol 2007; 17(14): R538-9.
[http://dx.doi.org/10.1016/j.cub.2007.05.067] [PMID: 17637349]
[58]
Hirayama J, Alifu Y, Hamabe R, et al. The clock components Period2, Cryptochrome1a, and Cryptochrome2a function in establishing light-dependent behavioral rhythms and/or total activity levels in zebrafish. Sci Rep 2019; 9(1): 196.
[http://dx.doi.org/10.1038/s41598-018-37879-8] [PMID: 30655599]
[59]
Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 2006; 26(51): 13400-10.
[http://dx.doi.org/10.1523/JNEUROSCI.4332-06.2006] [PMID: 17182791]
[60]
Gandhi AV, Mosser EA, Oikonomou G, Prober DA. Melatonin is required for the circadian regulation of sleep. Neuron 2015; 85(6): 1193-9.
[http://dx.doi.org/10.1016/j.neuron.2015.02.016] [PMID: 25754820]
[61]
Shigeyoshi Y, Taguchi K, Yamamoto S, et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 1997; 91(7): 1043-53.
[http://dx.doi.org/10.1016/S0092-8674(00)80494-8] [PMID: 9428526]
[62]
Hirota T, Fukada Y. Resetting mechanism of central and peripheral circadian clocks in mammals. Zool Sci 2004; 21(4): 359-68.
[http://dx.doi.org/10.2108/zsj.21.359] [PMID: 15118222]
[63]
Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999; 79(1): 143-80.
[http://dx.doi.org/10.1152/physrev.1999.79.1.143] [PMID: 9922370]
[64]
Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S. MAPK pathways in radiation responses. Oncogene 2003; 22(37): 5885-96.
[http://dx.doi.org/10.1038/sj.onc.1206701] [PMID: 12947395]
[65]
Cermakian N, Pando MP, Thompson CL, et al. Light induction of a vertebrate clock gene involves signaling through blue-light receptors and MAP kinases. Curr Biol 2002; 12(10): 844-8.
[http://dx.doi.org/10.1016/S0960-9822(02)00835-7] [PMID: 12015122]
[66]
Hirayama J, Cho S, Sassone-Corsi P. Circadian control by the reduction/oxidation pathway: catalase represses light-dependent clock gene expression in the zebrafish. Proc Natl Acad Sci USA 2007; 104(40): 15747-52.
[http://dx.doi.org/10.1073/pnas.0705614104] [PMID: 17898172]
[67]
Hirayama J, Miyamura N, Uchida Y, et al. Common light signaling pathways controlling DNA repair and circadian clock entrainment in zebrafish. Cell Cycle 2009; 8(17): 2794-801.
[http://dx.doi.org/10.4161/cc.8.17.9447] [PMID: 19652538]
[68]
Ramos BC, Moraes MN, Poletini MO, Lima LH, Castrucci AM. From blue light to clock genes in zebrafish ZEM-2S cells. PLoS One 2014; 9(9)e106252
[http://dx.doi.org/10.1371/journal.pone.0106252] [PMID: 25184495]
[69]
Pagano C, Siauciunaite R, Idda ML, et al. Evolution shapes the responsiveness of the D-box enhancer element to light and reactive oxygen species in vertebrates. Sci Rep 2018; 8(1): 13180.
[http://dx.doi.org/10.1038/s41598-018-31570-8] [PMID: 30181539]
[70]
Mracek P, Pagano C, Fröhlich N, et al. ERK signaling regulates light-induced gene expression via d-box enhancers in a differential, wavelength-dependent manner. PLoS One 2013; 8(6)e67858
[http://dx.doi.org/10.1371/journal.pone.0067858] [PMID: 23840779]
[71]
Obrietan K, Impey S, Storm DR. Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat Neurosci 1998; 1(8): 693-700.
[http://dx.doi.org/10.1038/3695] [PMID: 10196585]
[72]
Antoun G, Bouchard-Cannon P, Cheng HY. Regulation of MAPK/ERK signaling and photic entrainment of the suprachiasmatic nucleus circadian clock by Raf kinase inhibitor protein. J Neurosci 2012; 32(14): 4867-77.
[http://dx.doi.org/10.1523/JNEUROSCI.5650-11.2012] [PMID: 22492043]
[73]
Siauciunaite R, Foulkes NS, Calabrò V, Vallone D. Evolution shapes the gene expression response to oxidative stress. Int J Mol Sci 2019; 20(12)E3040
[http://dx.doi.org/10.3390/ijms20123040] [PMID: 31234431]
[74]
Osaki T, Uchida Y, Hirayama J, Nishina H. Diphenyleneiodonium chloride, an inhibitor of reduced nicotinamide adenine dinucleotide phosphate oxidase, suppresses light-dependent induction of clock and DNA repair genes in zebrafish. Biol Pharm Bull 2011; 34(8): 1343-7.
[http://dx.doi.org/10.1248/bpb.34.1343] [PMID: 21804230]
[75]
Hockberger PE, Skimina TA, Centonze VE, et al. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc Natl Acad Sci USA 1999; 96(11): 6255-60.
[http://dx.doi.org/10.1073/pnas.96.11.6255] [PMID: 10339574]
[76]
Bogachev AV, Baykov AA, Bertsova YV. Flavin transferase: the maturation factor of flavin-containing oxidoreductases. Biochem Soc Trans 2018; 46(5): 1161-9.
[http://dx.doi.org/10.1042/BST20180524] [PMID: 30154099]
[77]
Kaneko M, Cahill GM. Light-dependent development of circadian gene expression in transgenic zebrafish. PLoS Biol 2005; 3(2)e34
[http://dx.doi.org/10.1371/journal.pbio.0030034] [PMID: 15685291]
[78]
Dekens MP, Whitmore D. Autonomous onset of the circadian clock in the zebrafish embryo. EMBO J 2008; 27(20): 2757-65.
[http://dx.doi.org/10.1038/emboj.2008.183] [PMID: 18800057]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy