Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Copper Catalyzed Autoxidation of Sulphur Dioxide and Inhibition by Methanoic Acid

Author(s): Arun Kumar Sharma* and Devarkonda Satay Narayan Prasad*

Volume 10, Issue 1, 2020

Page: [33 - 46] Pages: 14

DOI: 10.2174/1877946809666190926130048

Abstract

Background: Today, acid rain problem is one of the serious global problems to the environment in which pH of the rain water decreases, causing harmful effect to nature, buildings, monuments, vegetation and human being as well. Therefore, the objective of the paper to find out some organic inhibitors present in the atmosphere that inhibited the acid rain.

Objective: In this paper, we studied the chemistry of Cu (II)-methanoic acid-S(IV)-O2 in acetate buffered medium by earlier reported methods in literature. Gravimetric analysis was carried out to find the end product and confirmed that it was sulphate with 98 % recovery.

Methods: Experiments were carried out at 303 ≤ T/K ≤ 313, 4.0 ≤ pH ≤ 5.35, 1.0×10−3 mol/dm3 ≤ S(IV) ≤ 10.0×10−3 mol/dm3, 5×10−6 mol/dm3 ≤ [Cu(II)] ≤ 2.5×10−5 mol/dm3, 6×10−6 mol/dm3≤[methanoic acid]≤7×10-4 mol/dm3. The value of apparent activation energy and inhibition parameter B was calculated in the presence of methanoic acid found as 29.07 kJ mol-1and 3.18 x 103 mol dm-3, respectively. The thermodynamic parameters were found as frequency factor (1.59 x 10-6s-1), entropy (-358.92 J K-1 mol-1), enthalpy (20.97 k J mol-1), and Gibbs free energy (172.83k J mol-1), respectively.

Results: We observed that methanoic acid acts as an inhibitor in copper catalyzed autoxidation of SO2 in acidic medium. Therefore, on the basis of the observed results a free radical mechanism has been identified. The results are useful for modeling rain water acidity and therefore a great use of meteorology and atmospheric chemistry. This study is important in understanding the mechanism of the oxidation of S(IV) by O2.

Conclusion: This study suggests that since organic inhibitors are found in the atmosphere, their concentrations and their influence on the oxidation of aqueous SO2 should be taken into account. The intervention of methanoic acid in the autoxidation of aqueous SO2 plays a role in deciding the fate of both methanoic acid and SO2. The influence of inhibitors may be used to calculate the lifetime of SO2, Methanoic acid has high values of kinh and, therefore, it would be degraded by sulfate radical anions in atmospheric waters.

Keywords: Autoxidation, copper, inhibition, kinetics, methanoic acid, SO2.

Graphical Abstract

[1]
Shen, X.; Zhao, Y.; Chen, Z.; Huang, D. Heterogenous reactions of volate organic compounds in the atmosphere. Atmos. Environ., 2013, 68, 297-314.
[http://dx.doi.org/10.1016/j.atmosenv.2012.11.027]
[2]
Loflund, M.; Kasper-Giebl, A.; Schuster, B.; Giebl, H.; Hitzenberger, R. Puxbaum, formic, acetic, oxalic, malonic and succinic acid concentrations and their contributions to organic carbon in cloud water. Atmos. Environ., 2002, 36, 1553-1558.
[http://dx.doi.org/10.1016/S1352-2310(01)00573-8]
[3]
Manoj, S.V.; Mishra, C.D.; Sharma, M.; Rani, A.; Jain, R.; Bansal, S.P.; Gupta, K.S. Iron, manganese and copper concentrations in wet precipitations and kinetics of the oxidation of SO2 in rain water at two urban sites, Jaipur and Kota, in western, India. Atmos. Environ., 2000, 34, 4479-4486.
[http://dx.doi.org/10.1016/S1352-2310(00)00117-5]
[4]
Sharma, A.K.; Singh, A.; Mehta, R.K.; Sharma, S.; Bansal, S.P.; Gupta, K.S. Kinetics of copper(II) catalyzed oxidation of S(IV) by atmospheric oxygen in ammonia buffered solutions. Int. J. Chem. Kinet., 2011, 43, 379-392.
[http://dx.doi.org/10.1002/kin.20550]
[5]
Khursan, S.L.; Semes’ko, D.G.; Safiullin, R.L. Quantum-chemical modeling of the detachment of hydrogen atoms by the sulfate radical anion. Russ. J. Phys. Chem., 2006, 80, 366-371.
[http://dx.doi.org/10.1134/S0036024406030113]
[6]
Rani, A.; Prasad, D.S.N.; Madnawat, P.V.S.; Gupta, K.S. The role of free fall atmospheric dust in catalyzing autoxidation of aqueous sulfur dioxide. Atmos. Environ., 1992, 26A, 667-673.
[http://dx.doi.org/10.1016/0960-1686(92)90178-N]
[7]
Gupta, K.S.; Bhargava, P.; Manoj, S.V. Kinetics of silver(I) catalysed oxidation of sulfur(IV) by peroxodisulfate. Indian J. Chem., 1999, 38A, 692-697.
[8]
Gupta, K.S.; Bhargava, P.; Manoj, S.V.; Bhargava, R. Kinetics and mechanism of silver(I) catalyzed oxidation of aqueous sulphur(IV) in acetate buffered medium. Transit. Metal Chem., 2000, 25, 329-332.
[http://dx.doi.org/10.1023/A:1007003502735]
[9]
Manoj, S.V.; Gupta, K.S.; Bhargava, P. Kinetics of tetra ammine copper(II) catalysed oxidation of sulphur(IV) by peroxydisulphate in ammonia buffer. Transit. Metal Chem., 2000, 25, 274-278.
[http://dx.doi.org/10.1023/A:1007067115356]
[10]
Prasad, D.S.N.; Rani, A.; Gupta, K.S. Surface-catalyzed autoxidation of sulfur(IV) in aqueous silica and copper(II) oxide suspensions. Environ. Sci. Technol., 1992, 26, 1361-1368.
[http://dx.doi.org/10.1021/es00031a013]
[11]
Gupta, K.S. Aqueous phase atmospheric oxidation of sulfur dioxide by oxygen: Role of trace atmospheric constituentsmetals, volatile organic compounds and ammonia. J. Indian Chem. Soc., 2012, 89, 713-724.
[12]
Prasad, D.S.N.; Rani, A.; Sharma, M.; Gupta, K.S. Rates of autoxidation of sulphur(IV) in aqueous suspensions of limestone powder, Implications for scrubber chemistry. Indian J. Chem., 1992, 1, 87-92.
[13]
Prasad, D.S.N.; Mehta, R.K.; Parashar, P.; Madnawat, P.V.S.; Rani, A.; Singh, U.; Manoj, S.V.; Bansal, S.P.; Gupta, K.S. Kinetics of surface-catalysed autoxidation of aqueous sulfur dioxide in cobalt (III) oxide suspensions. J. Indian Chem. Soc., 2003, 80, 391-394.
[14]
Rani, A.; Prasad, D.S.N.; Bhargava, R.; Gupta, K.S. Dynamics of autoxidation of sulfur dioxide in aqueous suspensions of cadmium oxide. Bull. Chem. Soc., 1991, 63, 1995-1961.
[http://dx.doi.org/10.1246/bcsj.64.1955]
[15]
Rani, A.; Prasad, D.S.N.; Jain, U.; Gupta, K.S. Dynamics of multiphase glass powder catalysed autoxidation sulfur dioxide in bulk in aqueous phase. Indian J. Chem., 1991, 30A, 756-764.
[16]
Gupta, K.S.; Singh, R.; Saxena, D.; Manoj, S.V.; Sharma, M. Role of manganese dioxide in the autoxidation of sulfur (IV) in oxic and anoxic suspensions. Indian J. Chem., 1999, 38A, 1129-1138.
[17]
Bhargava, R.; Prasad, D.S.N.; Rani, A.; Bhargava, P.; Jain, U.; Gupta, K.S. Kinetics of autoxidation of aqueous sulfur dioxide in suspensions of nickel(III) oxide. Transit. Metal Chem., 1992, 17, 238-241.
[http://dx.doi.org/10.1007/BF02910846]
[18]
Gupta, K.S.; Mehta, R.K.; Sharma, A.K.; Mudgal, P.K.; Bansal, S.P. Kinetics of the uninhibited and ethanol-inhibited CoO, Co2O3 and Ni2O3 catalyzed autoxidation of Sulfur(IV) in alkaline medium. Transit. Metal Chem., 2008, 33, 809-817.
[http://dx.doi.org/10.1007/s11243-008-9115-6]
[19]
Manoj, S.V.; Sharma, M.; Gupta, K.S. Role of cuprous oxide in autoxidation of aqueous sulphur dioxide and its atmospheric implications. Atmos. Environ., 1999, 33, 1503-1512.
[http://dx.doi.org/10.1016/S1352-2310(98)00241-6]
[20]
Grgic, I.; Podkrajsek, B.; Barzaghi, P.; Herrmann, H. Scavenging of SO4- radical anions by mono- and dicarboxylic acids in the Mn(II)-catalyzed S(IV) oxidation in aqueous solution. Atmos. Environ., 2007, 41, 9187-9194.
[http://dx.doi.org/10.1016/j.atmosenv.2007.07.051]
[21]
Grgic, I.; Dovzan, A.; Bercic, G.; Hudnik, V. The effect of atmospheric organic compound son the Fe-catalyzed S(IV) autoxidation in aqueous solution. J. Atmos. Chem., 1998, 29, 315-337.
[http://dx.doi.org/10.1023/A:1005918912994]
[22]
Qiangwei, L.; Lidong, W.; Yi, Z.; Yongliang, M.; Shuai, C.; Shuang, L.; Peiyao, X.; Jiming, H. Oxidation rate of magnesium sulfite catalyzed by cobalt ions. Environ. Sci. Technol., 2014, 48(7), 4145-4152.
[http://dx.doi.org/10.1021/es404872w] [PMID: 24588305]
[23]
Li, Q.; Yang, Y.; Wang, L.; Xu, P.; Han, Y. Mechanism and kinetics of magnesium sulfite oxidation catalyzed by multiwalled carbon nanotube. Appl. Catal. B, 2017, 203, 851-858.
[http://dx.doi.org/10.1016/j.apcatb.2016.10.076]
[24]
Wang, L.; Wang, J.; Xu, P.; Li, Q.; Zhang, W.; Cui, S. Selectivity of transition metal catalysts in promoting the oxidation of solid sulfites in flue gas desulfurization. Appl. Catal. A Gen., 2015, 508, 52-60.
[http://dx.doi.org/10.1016/j.apcata.2015.10.008]
[25]
Wang, L.; Cui, S.; Li, Q.; Wang, J.; Liu, S. Kinetics and mechanism of magnesium sulphite oxidation promoted by a novel cobalt-based molecularsieve catalyst. Appl. Catal. A Gen., 2016, 511, 16-22.
[http://dx.doi.org/10.1016/j.apcata.2015.11.028]
[26]
Sharma, R.; Acharya, S.; Sharma, A.K. Synthesis of calcium sulphate and sodium sulphate from waste stream of exhaust flue gases containing SO2. J. Sci. Ind. Res., 2010, 69, 691-694.
[27]
Sharma, R.; Acharya, S.; Sharma, A.K. A case study for removal of sulphur-di-oxide from exhaust flue gases at thermal power plant, Rajasthan (India). J. Environ. Sci. Eng., 2011, 53(1), 31-38.
[PMID: 22324143]
[28]
Podkrajsek, B.; Grgic, I.; Tursic, J.; Bercic, G. Influence of atmospheric carboxylic acids on catalytic oxidation of sulfur (IV). J. Atmos. Chem., 2006, 54, 103-120.
[29]
Wilkosz, I.; Mainka, A. Mn (II)-catalysed S(IV) oxidation and its inhibition by acetic acid in acidic aqueous solutions. J. Atmos. Chem., 2008, 60, 1-17.
[http://dx.doi.org/10.1007/s10874-008-9105-2]
[30]
Ziajka, J.; Beer, F.; Warneck, P. Iron-catalyzed oxidation of bisulfite aqueous solution: Evidence for a free radical chain mechanism. Atmos. Environ., 1994, 28, 2549-2552.
[http://dx.doi.org/10.1016/1352-2310(94)90405-7]
[31]
Wolf, A.; Deutsch, F.; Hoffmann, P.; Ortner, H.M. The influence of oxalate on Fe-catalyzed S(IV) oxidation by oxygen in aqueous solution. J. Atmos. Chem., 2000, 37, 125-135.
[http://dx.doi.org/10.1023/A:1006462025384]
[32]
Lidong, W.; Yongliang, M.; Wendi, Z.; Qiangwei, L.; Yi, Z.; Zhanchao, Z. Macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid. J. Hazard. Mater., 2013, 258-259, 61-69.
[http://dx.doi.org/10.1016/j.jhazmat.2013.04.018] [PMID: 23692683]
[33]
Sharma, A.K.; Prasad, D.S.N. Influence of pH and organics on autoxidation of S(IV) catalyzed by Ag (I). Recent Adv. Petrochem Sci., 2017, 3(1), 1-2.
[34]
Sharma, A.K.; Sharma, R.; Prasad, D.S.N. Role of organics in atmospheric catalytic autoxidation of aqueous sulphur dioxide in acidic medium. Malaysian J. Chem., 2017, 19(1), 1-12.
[35]
Dayal, Y.; Gupta, K.S. Role of some organic inhibitors on oxidation of SO2 in rain water medium. Env. Sc. Pollu. Res., 2014, 21, 3474-3483.
[http://dx.doi.org/10.1007/s11356-013-2253-1]
[36]
Dayal, Y.; Gupta, K.S. The influence of hydroxyl organic compounds on the oxidation of SO2 by oxygen. Env. Sc. Pollu. Res., 2014, 21, 7808-7817.
[37]
Meena, V.K.; Dhayal, Y.; Saxena, D.; Rani, A.; Chandel, C.P.S.; Gupta, K.S. The influence of diesel-truck exhaust particles on the kinetics of the atmospheric oxidation of dissolved sulfur dioxide by oxygen. Environ. Sci. Pollut. Res. Int., 2016, 23(17), 17380-17392.
[http://dx.doi.org/10.1007/s11356-016-6844-5] [PMID: 27230141]
[38]
Meena, V.; Dayal, Y.; Rathore, D.S.; Chandel, C.P.; Gupta, K.S. Inhibition of aquated sulfurdioxide autoxidation by aliphatic, acyclic, aromatic, and heterocyclic volatile organic compounds. Int. J. Chem. Kinet., 2017, 49(4), 221-233.
[http://dx.doi.org/10.1002/kin.21069]
[39]
Meena, V.; Dayal, Y.; Rathore, D.S.; Chandel, C.P.; Gupta, K.S. Inhibition of atmospheric aqueous phase autoxidation ofsulphur dioxide by volatile organic compounds: Mono-, diandtri-substituted benzenes and benzoic acids. Prog. React. Kinet. Mech., 2017, 42(2), 111-125.
[40]
Pasiuk-Bronikowska, W.; Bronikowska, T.; Ulejczyk, M. Synergy in the autoxidation of S(IV) inhibited by phenolic compounds. J. Phys. Chem. A, 2003, 107, 1742-1748.
[http://dx.doi.org/10.1021/jp0208790]
[41]
Pasiuk-Bronikowska, W.; Bronikowska, T.; Ulejczyk, M. Inhibition of the S(IV) autoxidation in the atmosphere by secondary terpeinic compounds. J. Atmos. Chem., 2003, 44, 97-111.
[http://dx.doi.org/10.1023/A:1022164702310]
[42]
Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.N. Sources of fine organic aerosol. 3. Road dust, tire debris and organometallic brake lining dust: roads as sources and sinks. Environ. Sci. Technol., 1993, 27, 1892-1904.
[http://dx.doi.org/10.1021/es00046a019]
[43]
Ziajka, P.; Pasiuk-Bronikowska, W. Autoxidation of sulfur dioxide in the presence of alcohols under conditions related to tropospheric aqueous phase. Atmos. Environ., 2003, 37, 3913-3922.
[http://dx.doi.org/10.1016/S1352-2310(03)00503-X]
[44]
Ziajka, J.; Pasiuk-Bronikowska, W. Rate constants for atmospheric trace organics scavenging SO4- in the Fe-catalysed autoxidation of S(IV). Atmos. Environ., 2005, 39, 1431-1438.
[http://dx.doi.org/10.1016/j.atmosenv.2004.11.024]
[45]
Schindelka, J.; Iinuma, Y.; Hoffmann, D.; Herrmann, H. Sulfate radical-initiated formation of isoprene-derived organosulfates in atmospheric aerosols. Faraday Discuss., 2013, 165, 237-259.
[http://dx.doi.org/10.1039/c3fd00042g] [PMID: 24601005]
[46]
Sharma, A.K.; Acharya, S.; Sharma, R.; Saxena, M. Air Pollution - Monitoring, Modelling, Health and Control; In Tech Open access publisher Croatia, 2012.
[http://dx.doi.org/10.5772/32390]
[47]
Dhayal, Y.; Meena, V.K.; Bugalia, S.; Chandel, C.P.S.; Gupta, K.S. The inhibition of atmospheric aqueous phase autoxidation of sulfur dioxide by volatile organic compounds: Benzene, toluene, o-xylene, m-xylene, p-xylene, n-hexane and dichloromethane. J. Indian Chem. Soc., 2017, 94, 551-557.
[48]
Sharma, A.K.; Sharma, R.; Prasad, D.S.N. Acid rain chemistry, Catalysis and Inhibition of SO2 in environment” ISBN 978-3-659-91204-7” LAP Lambert;; Academic Publishing Germany, 2017.
[49]
Sharma, A.K.; Sharma, R.; Prasad, D.S.N. Kinetics and mechanism of uncatalysed and Ag (I) catalysed autoxidation of S(IV) and its inhibition by isoamyl alcohol in acidic aqueous solutions. Int. J. Mod. Sci. Eng. Technol., 2015, 2(12), 31-40.
[50]
Sharma, A.K.; Sharma, R.; Prasad, D.S.N.; Parashar, P.; Gupta, A.K. Methanoic acid inhibited Ag (I) catalysed autoxidation of S(IV) in acidic medium. J. Chem. Chem. Sci., 2015, 5(12), 760-771.
[51]
Sharma, A.K.; Sharma, R.; Prasad, D.S.N.; Parashar, P.; Gupta, A.K. Ag (I) catalysed autoxidation of S (IV) and its inhibition by isopropyl alcohol in acidic medium. Chem. Sci. Rev. Lett., 2016, 17(5), 14-23.
[52]
Sharma, A.K.; Sharma, R.; Prasad, D.S.N.; Parashar, P. The inhibitive action of aniline on the autoxidation of sodium sulfite in acidic medium. J. Anal. Phar. Res., 2017, 17(5), 14-23.
[http://dx.doi.org/10.15406/japlr.2017.04.00091]
[53]
Sharma, A.K.; Sharma, R.; Prasad, D.S.N. The effect of atmospheric aromatic amides on the Ag (I) catalyzed S(IV) autoxidation in aqueous solution. Experiment., 2017, 40(1), 2354-2363.
[54]
Sharma, A.K.; Sharma, R.; Parashar, P.; Prasad, D.S.N. Ag (I) catalyzed oxidation of S(IV) in aqueous solution differing effect of benzoate ions in acidic medium. Curr. Phys. Chem., 2017, 7(4), 338-347.
[http://dx.doi.org/10.2174/1877946807666170607143955]
[55]
Manoj, S.V.; Mudgal, P.K.; Gupta, K.S. Kinetics of iron (III) catalysed autoxidation of S(IV) in acetate buffered medium. Transit. Metal Chem., 2008, 33, 311-316.
[http://dx.doi.org/10.1007/s11243-007-9045-8]
[56]
Sharma, A.K.; Sharma, R.; Prasad, D.S.N. Kinetics of isoamyl alcohol and aniline inhibited uncatalysed and Ag (I) catalysed autoxidation of S (IV) in acidic Medium. Asian J. Res. Chem, 2017, 10(3), 251-258.
[http://dx.doi.org/10.5958/0974-4150.2017.00040.2]
[57]
Begam, S.; Husain, F.; Prasad, D.S.N. Kinetics of methanoic acid inhibited uncatalysed and Co2O3 catalysed autoxidation of S(IV) in alkaline medium. DerChemicasinica., 2013, 4(1), 122-133.
[58]
Hussain, F.; Begam, S.; Singh, J.; Sharma, A.K.; Prasad, D.S.N. Kinetics of aniline inhibited uncatalysed and Co2O3 catalysed autoxidation of S (IV) in atmospheric environment. Asian J. Chem. Environ. Res., 2018, 11, 60-67.
[59]
Hussain, F.; Begam, S.; Sharma, A.K.; Prasad, D.S.N. Effect of isopropyl alcohol on autoxidation of S(IV) catalyzed by Co2O3 in alkaline medium. Bull. Pure appl. Sc, 2018, 37(1), 9-18.
[60]
Hussain, F.; Begam, S.; Sharma, A.K.; Prasad, D.S.N. Kinetics and mechanism of Co2O3 catalysed autoxidation of sulphite and inhibition by sodium benzoate. J. Inst. Chemists (India), 2018, 90(4), 104-119.
[61]
Hussain, F.; Begam, S.; Sharma, A.K.; Prasad, D.S.N. Co2O3 catalyzed oxidation of SO2 in aqueous solution differing effect of benzamide in alkaline medium. Chem. Sci. Trans., 2018, 7(4), 600-609.
[62]
Begam, S.; Hussain, F.; Singh, J.; Sharma, A.K.; Prasad, D.S.N. Kinetics of sodium sulphite oxidation catalyzed by Co2O3 and inhibited by ethylene glycol. Asian J. Res. Chem, 2018, 11(3), 610-616.
[http://dx.doi.org/10.5958/0974-4150.2018.00110.4]
[63]
Sharma, A.K.; Sharma, R.; Prasad, D.S.N. Effect of aliphatic mono carboxylic acids and alcohols on Ag (I) catalyzed oxidation of SO2 in aqueous solution. J. Mat. Env. Sci., 2018, 9(6), 1829-1837.
[64]
Sharma, H.; Sharma, A.K.; Prasad, D.S.N. Kinetics and mechanism of oxalic acid inhibited and heterogenous Co2O3 catalysed autoxidation of S(IV) in atmospheric water. J. App. Chem., 2018, 7(5), 1442-1449.
[65]
Sharma, H.; Sharma, A.K.; Parasher, P.; Prasad, D.S.N. Effect of acetic acid on Co2O3 catalyzed autoxidation of aqueous sulphur dioxide in alkaline medium Sch. Acad. J. Biosci., 2019, 7(3), 117-124.
[66]
Sharma, H.; Sharma, A.K.; Kumar, M.; Prasad, D.S.N. The influence of succinic acid on the kinetics of the atmospheric oxidation of dissolved SO2 catalysed by Co2O3. Int. J. Emerg. Technol., 2019, 10(3), 82-86.

© 2024 Bentham Science Publishers | Privacy Policy