[2]
Adegoke, A.A.; Faleye, A.C.; Singh, G.; Stenstrom, T.A. Antibiotic resistant superbugs: Assessment of the interrelationship of occurrence in clinical settings and environmental niches. Molecules, 2016, 22(1), pii:E29
[3]
Ravikumar, S.; Win, M.S.; Chai, L.Y. Optimizing outcomes in immunocompromised hosts: Understanding the role of immunotherapy in invasive fungal diseases. Front. Microbiol., 2015, 6, 1322.
[4]
Faruck, M.O.; Yusof, F.; Chowdhury, S. An overview of antifungal peptides derived from insect. Peptides, 2016, 80, 80-88.
[5]
De Lucca, A.J. Harmful fungi in both agriculture and medicine. Rev. Iberoam. Micol., 2007, 24(1), 3-13.
[6]
Polvi, E.J.; Averette, A.F.; Lee, S.C.; Kim, T.; Bahn, Y.S.; Veri, A.O.; Robbins, N.; Heitman, J.; Cowen, L.E. Metal chelation as a powerful strategy to probe cellular circuitry governing fungal drug resistance and morphogenesis. PLoS Genet., 2016, 12(10), e1006350
[7]
Gostincar, C.; Grube, M.; de Hoog, S.; Zalar, P.; Gunde-Cimerman, N. Extremotolerance in fungi: Evolution on the edge. FEMS Microbiol. Ecol., 2010, 71(1), 2-11.
[8]
Moran, G.P.; Coleman, D.C.; Sullivan, D.J. Comparative genomics and the evolution of pathogenicity in human pathogenic fungi. Eukaryot. Cell, 2011, 10(1), 34-42.
[9]
Zhao, X.; Guo, Y.; Jiang, C.; Chang, Q.; Zhang, S.; Luo, T.; Zhang, B.; Jia, X.; Hung, M.C.; Dong, C.; Lin, X. JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression. Nat. Med., 2017, 23(3), 337-346.
[10]
Nobile, C.J.; Johnson, A.D. Candida albicans biofilms and human disease. Annu. Rev. Microbiol., 2015, 69, 71-92.
[11]
Carpino, N.; Naseem, S.; Frank, D.M.; Konopka, J.B. Modulating host signaling pathways to promote resistance to infection by Candida albicans. Front. Cell. Infect. Microbiol., 2017, 7, 481.
[12]
Okinaka, K. Candidemia in cancer patients: Focus mainly on hematological malignancyand hematopoietic stem cell transplantation. Med. Mycol. J., 2016, 57(3), J117-J123.
[13]
Toyoshima, T.; Ishibashi, K.I.; Yamanaka, D.; Adachi, Y.; Ohno, N. Resistance of Aspergillus fumigatus to micafungin is increased by exogenous beta-glucan. Med. Mycol. J., 2017, 58(1), E39-E44.
[14]
Meis, J.F.; Chowdhary, A.; Rhodes, J.L.; Fisher, M.C.; Verweij, P.E. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1709), pii: 20150460
[15]
Hagiwara, D.; Watanabe, A.; Kamei, K.; Goldman, G.H. Epidemiological and genomic landscape of azole resistance mechanisms in Aspergillus Fungi. Front. Microbiol., 2016, 7, 1382.
[18]
Karkowska-Kuleta, J.; Kozik, A. Cell wall proteome of pathogenic fungi. Acta Biochim. Pol., 2015, 62(3), 339-351.
[20]
Sanglard, D. Emerging threats in antifungal-resistant fungal pathogens. Front. Med. (Lausanne), 2016, 3, 11.
[21]
Juvvadi, P.R.; Lee, S.C.; Heitman, J.; Steinbach, W.J. Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence, 2017, 8(2), 186-197.
[22]
Wang, S.; Zeng, X.; Yang, Q.; Qiao, S. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci., 2016, 17(5), pii: E603
[23]
Hancock, R.E.; Diamond, G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol., 2000, 8(9), 402-410.
[24]
Wang, G. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol. Biol., 2015, 1268, 43-66.
[25]
Soltani, S.; Keymanesh, K.; Sardari, S. In silico analysis of antifungal peptides. Expert Opin. Drug Discov., 2007, 2(6), 837-847.
[26]
Gogineni, V.; Hamann, M.T. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(1), 81-196.
[27]
Lazcano-Perez, F.; Roman-Gonzalez, S.A.; Sanchez-Puig, N.; Arreguin-Espinosa, R. Bioactive peptides from marine organisms: A short overview. Protein Pept. Lett., 2012, 19(7), 700-707.
[28]
Wang, L.; Dong, C.; Li, X.; Han, W.; Su, X. Anticancer potential of bioactive peptides from animal sources. (Review) Oncol. Rep., 2017, 38(2), 637-651.
[29]
Fratini, F.; Cilia, G.; Turchi, B.; Felicioli, A. Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon, 2017, 130, 91-103.
[30]
Dutta, P.; Das, S. Mammalian Antimicrobial Peptides: Promising therapeutic targets against infection and chronic inflammation. Curr. Top. Med. Chem., 2016, 16(1), 99-129.
[31]
Almeida, J.R.; Resende, L.M.; Watanabe, R.K.; Carregari, V.C.; Huancahuire-Vega, S. da, S.C.C.A.; Coutinho-Neto, A.; Soares, A.M.; Vale, N.; de, C.G.P.A.; Marangoni, S.; de, A.C.L.; Da Silva, S.L. Snake venom peptides and low mass proteins: Molecular tools and therapeutic agents. Curr. Med. Chem., 2017, 24(30), 3254-3282.
[32]
Montesinos, E. Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett., 2007, 270(1), 1-11.
[33]
Ciociola, T.; Giovati, L.; Conti, S.; Magliani, W.; Santinoli, C.; Polonelli, L. Natural and synthetic peptides with antifungal activity. Future Med. Chem., 2016, 8(12), 1413-1433.
[34]
Sable, R.; Parajuli, P.; Jois, S. Peptides, Peptidomimetics, and Polypeptides from marine sources: A wealth of natural sources for pharmaceutical applications. Mar. Drugs, 2017, 15(4), pii: E124
[35]
Fuse, S.; Otake, Y.; Nakamura, H. Peptide synthesis utilizing micro-flow technology. Chem. Asian J., 2018, 13(24), 3818-3832.
[36]
Munzker, L.; Oddo, A.; Hansen, P.R. Chemical synthesis of antimicrobial peptides. Methods Mol. Biol., 2017, 1548, 35-49.
[37]
Sabatino, G.; Papini, A.M. Advances in automatic, manual and microwave-assisted solid-phase peptide synthesis. Curr. Opin. Drug Discov. Devel., 2008, 11(6), 762-770.
[38]
Pereira, H.A.; Tsyshevskaya-Hoover, I.; Hinsley, H.; Logan, S.; Nguyen, M.; Nguyen, T.T.; Pohl, J.; Wozniak, K.; Fidel, P.L. Candidacidal activity of synthetic peptides based on the antimicrobial domain of the neutrophil-derived protein, CAP37. Med. Mycol., 2010, 48(2), 263-772.
[39]
Rautenbach, M.; Troskie, A.M.; Vosloo, J.A. Antifungal peptides: To be or not to be membrane active. Biochimie, 2016, 130, 132-145.
[40]
Menzel, L.P.; Chowdhury, H.M.; Masso-Silva, J.A.; Ruddick, W.; Falkovsky, K.; Vorona, R.; Malsbary, A.; Cherabuddi, K.; Ryan, L.K.; DiFranco, K.M.; Brice, D.C.; Costanzo, M.J.; Weaver, D.; Freeman, K.B.; Scott, R.W.; Diamond, G. Potent in vitro and in vivo antifungal activity of a small molecule host defense peptide mimic through a membrane-active mechanism. Sci. Rep., 2017, 7(1), 4353.
[41]
Goncalves, S.; Silva, P.M.; Felicio, M.R.; de Medeiros, L.N.; Kurtenbach, E.; Santos, N.C. Psd1 Effects on candida albicans planktonic cells and biofilms. Front. Cell. Infect. Microbiol., 2017, 7, 249.
[42]
Mahindra, A.; Bagra, N.; Wangoo, N.; Jain, R.; Khan, S.I.; Jacob, M.R.; Jain, R. Synthetically modified L-histidine-rich peptidomimetics exhibit potent activity against Cryptococcus neoformans. Bioorg. Med. Chem. Lett., 2014, 24(14), 3150-3154.
[43]
Datta, A.; Yadav, V.; Ghosh, A.; Choi, J.; Bhattacharyya, D.; Kar, R.K.; Ilyas, H.; Dutta, A.; An, E.; Mukhopadhyay, J.; Lee, D.; Sanyal, K.; Ramamoorthy, A.; Bhunia, A. Mode of action of a designed antimicrobial peptide: High potency against cryptococcus neoformans. Biophys. J., 2016, 111(8), 1724-1737.
[44]
Singh, K.; Shekhar, S.; Yadav, Y.; Xess, I.; Dey, S. DS6: Anticandidal, antibiofilm peptide against Candida tropicalis and exhibit synergy with commercial drug. J. Pept. Sci., 2017, 23(3), 228-235.
[45]
Tene, N.; Bonnafe, E.; Berger, F.; Rifflet, A.; Guilhaudis, L.; Segalas-Milazzo, I.; Pipy, B.; Coste, A.; Leprince, J.; Treilhou, M. Biochemical and biophysical combined study of bicarinalin, an ant venom antimicrobial peptide. Peptides, 2016, 79, 103-113.
[46]
Lohan, S.; Monga, J.; Chauhan, C.S.; Bisht, G.S. In vitro and in vivo evaluation of small cationic abiotic lipopeptides as novel antifungal agents. Chem. Biol. Drug Des., 2015, 86(4), 829-836.
[47]
Helmerhorst, E.J.; Troxler, R.F.; Oppenheim, F.G. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc. Natl. Acad. Sci. USA, 2001, 98, 14637-14642.
[48]
Ordonez, S.R.; Veldhuizen, E.J.A.; van Eijk, M.; Haagsman, H.P. Role of soluble innate effector molecules in pulmonary defense against fungal pathogens. Front. Microbiol., 2017, 8, 2098.
[49]
Lee, H.; Hwang, J.S.; Lee, D.G. Scolopendin 2 leads to cellular stress response in Candida albicans. Apoptosis, 2016, 21(7), 856-865.
[50]
Yun, J.; Lee, D.G. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans. IUBMB Life, 2016, 68(8), 652-662.
[51]
Espiritu, R.A.; Cornelio, K.; Kinoshita, M.; Matsumori, N.; Murata, M.; Nishimura, S.; Kakeya, H.; Yoshida, M.; Matsunaga, S. Marine sponge cyclic peptide theonellamide A disrupts lipid bilayer integrity without forming distinct membrane pores. Biochim. Biophys. Acta, 2016, 1858(6), 1373-1379.
[52]
Li, L.; Song, F.; Sun, J.; Tian, X.; Xia, S.; Le, G. Membrane damage as first and DNA as the secondary target for anti-candidal activity of antimicrobial peptide P7 derived from cell-penetrating peptide ppTG20 against Candida albicans. J. Pept. Sci., 2016, 22(6), 427-433.
[53]
Gao, Y.; Wu, D.; Xi, X.; Wu, Y.; Ma, C.; Zhou, M.; Wang, L.; Yang, M.; Chen, T.; Shaw, C. Identification and Characterisation of the Antimicrobial Peptide, Phylloseptin-PT, from the Skin Secretion of Phyllomedusa tarsius, and comparison of activity with designed, cationicity-enhanced analogues and diastereomers. Molecules, 2016, 21(12), E1667
[54]
Shin, S.Y.; Kang, S.W.; Lee, D.G.; Eom, S.H.; Song, W.K.; Kim, J.I. CRAMP analogues having potent antibiotic activity against bacterial, fungal, and tumor cells without hemolytic activity. Biochem. Biophys. Res. Commun., 2000, 275(3), 904-909.
[55]
Guilhelmelli, F.; Vilela, N.; Smidt, K.S.; de Oliveira, M.A.; da Cunha Morales Alvares, A.; Rigonatto, M.C.; da Silva Costa, P.H.; Tavares, A.H.; de Freitas, S.M.; Nicola, A.M.; Franco, O.L.; Derengowski, L.D.; Schwartz, E.F.; Mortari, M.R.; Bocca, A.L.; Albuquerque, P.; Silva-Pereira, I. Activity of scorpion venom-derived antifungal peptides against planktonic cells of Candida spp. and Cryptococcus neoformans and Candida albicans Biofilms. Front. Microbiol., 2016, 7, 1844.
[56]
Machado, R.J.; Estrela, A.B.; Nascimento, A.K.; Melo, M.M.; Torres-Rego, M.; Lima, E.O.; Rocha, H.A.; Carvalho, E.; Silva-Junior, A.A.; Fernandes-Pedrosa, M.F. Characterization of TistH, a multifunctional peptide from the scorpion Tityus stigmurus: Structure, cytotoxicity and antimicrobial activity. Toxicon, 2016, 119, 362-370.
[57]
Prasad, R.; Shah, A.H.; Rawal, M.K. Antifungals: Mechanism of action and drug resistance. Adv. Exp. Med. Biol., 2016, 892, 327-349.
[58]
Chang, C.C.; Slavin, M.A.; Chen, S.C. New developments and directions in the clinical application of the echinocandins. Arch. Toxicol., 2017, 91(4), 1613-1621.
[62]
Benjamin, D.K., Jr; Deville, J.G.; Azie, N.; Kovanda, L.; Roy, M.; Wu, C.; Arrieta, A. Safety and pharmacokinetic profiles of repeated-dose micafungin in children and adolescents treated for invasive candidiasis. Pediatr. Infect. Dis. J., 2013, 32(11), e419-e425.
[63]
Huang, X.; Chen, H.; Han, M.; Zou, P.; Wu, D.; Lai, Y.; Huang, H.; Chen, X.; Liu, T.; Zhu, H.; Wang, J.; Hu, J. Multicenter, randomized, open-label study comparing the efficacy and safety of micafungin versus itraconazole for prophylaxis of invasive fungal infections in patients undergoing hematopoietic stem cell transplant. Biol. Blood Marrow Transplant., 2012, 18(10), 1509-1516.
[64]
Goto, N.; Hara, T.; Tsurumi, H.; Ogawa, K.; Kitagawa, J.; Kanemura, N.; Kasahara, S.; Yamada, T.; Shimizu, M.; Nakamura, M.; Matsuura, K.; Moriwaki, H. Efficacy and safety of micafungin for treating febrile neutropenia in hematological malignancies. Am. J. Hematol., 2010, 85(11), 872-876.
[65]
Azanza Perea, J.R. Echinocandins: Applied pharmacology. Rev. Iberoam. Micol., 2016, 33(3), 140-144.
[67]
Zelinska, P.; Staniszewska, M.; Bondaryk, M.; Koronkiewicz, M. Urbańczyk- Lipkowska, Z. Design and studies of multiple mechanism of anti-Candida activity of a new potent Trp-rich peptide dendrimers. Eur. J. Med. Chem., 2015, 13, 106-119.
[68]
Wang, C.K.; Craik, D.J. Cyclic peptide oral bioavailability: Lessons from the past. Biopolymers, 2016, 106(6), 901-909.
[69]
Fukuda, T.; Arai, M.; Tomoda, H.; Omura, S. New beauvericins, potentiators of antifungal miconazole activity, Produced by Beauveria sp. FKI-1366. II. Structure elucidation. J. Antibiot. (Tokyo), 2004, 57(2), 117-124.
[71]
Menegatti, S.; Zakrewsky, M.; Kumar, S.; De Oliveira, J.S.; Muraski, J.A.; Mitragotri, S. De Novo design of skin-penetrating peptides for enhanced transdermal delivery of peptide drugs. Adv. Healthc. Mater., 2016, 5(5), 602-609.
[72]
Krishnan, B.R.; James, K.D.; Polowy, K.; Bryant, B.J.; Vaidya, A.; Smith, S.; Laudeman, C.P. CD101, a novel echinocandin with exceptional stability properties and enhanced aqueous solubility. J. Antibiot. (Tokyo), 2017, 70(2), 130-135.
[75]
Santussi, W.M.; Bordon, K.C.F.; Rodrigues Alves, A.P.N.; Cologna, C.T.; Said, S.; Arantes, E.C. Antifungal activity against filamentous fungi of ts1, a multifunctional toxin from Tityus serrulatus scorpion venom. Front. Microbiol., 2017, 8, 984.
[76]
Li, R.F.; Lu, Z.F.; Sun, Y.N.; Chen, S.H.; Yi, Y.J.; Zhang, H.R.; Yang, S.Y.; Yu, G.H.; Huang, L.; Li, C.N. Molecular design, structural analysis and antifungal activity of derivatives of peptide CGA-N46. Interdiscip. Sci., 2016, 8(3), 319-326.
[77]
El Chamy Maluf, S.; Dal Mas, C.; Oliveira, E.B.; Melo, P.M.; Carmona, A.K.; Gazarini, M.L.; Hayashi, M.A. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides, 2016, 78, 11-16.
[78]
Scaloni, A.; Dalla Serra, M.; Amodeo, P.; Mannina, L.; Vitale, R.M.; Segre, A.L.; Cruciani, O.; Lodovichetti, F.; Greco, M.L.; Fiore, A.; Gallo, M.; D’Ambrosio, C.; Coraiola, M.; Menestrina, G.; Graniti, A.; Fogliano, V. Structure, conformation and biological activity of a novel lipodepsipeptide from Pseudomonas corrugata: Cormycin A. Biochem. J., 2004, 384(Pt 1), 25-36.
[79]
Moyne, A.L.; Cleveland, T.E.; Tuzun, S. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol. Lett., 2004, 234(1), 43-49.
[80]
Cujova, S.; Slaninova, J.; Monincova, L.; Fucik, V.; Bednarova, L.; Stokrova, J.; Hovorka, O.; Voburka, Z.; Straka, J.; Cerovsky, V. Panurgines, novel antimicrobial peptides from the venom of communal bee Panurgus calcaratus(Hymenoptera: Andrenidae). Amino Acids, 2013, 45(1), 143-157.
[81]
Lopez-Abarrategui, C.; Alba, A.; Silva, O.N.; Reyes-Acosta, O.; Vasconcelos, I.M.; Oliveira, J.T.; Migliolo, L.; Costa, M.P.; Costa, C.R.; Silva, M.R.; Garay, H.E.; Dias, S.C.; Franco, O.L.; Otero-Gonzalez, A.J. Functional characterization of a synthetic hydrophilic antifungal peptide derived from the marine snail Cenchritis muricatus. Biochimie, 2012, 94(4), 968-974.
[82]
Monincova, L.; Veverka, V.; Slaninova, J.; Budesinsky, M.; Fucik, V.; Bednarova, L.; Straka, J.; Cerovsky, V. Structure-activity study of macropin, a novel antimicrobial peptide from the venom of solitary bee Macropis fulvipes(Hymenoptera: Melittidae). J. Pept. Sci., 2014, 20(6), 375-384.
[83]
Villegas-Escobar, V.; Ceballos, I.; Mira, J.J.; Argel, L.E.; Orduz Peralta, S.; Romero-Tabarez, M. Fengycin C produced by Bacillus subtilis EA-CB0015. J. Nat. Prod., 2013, 76(4), 503-509.
[84]
Zhang, B.; Xie, C.; Yang, X. A novel small antifungal peptide from Bacillus strain B-TL2 isolated from tobacco stems. Peptides, 2008, 29(3), 350-355.
[85]
Yang, S.T.; Yub Shin, S.Y.; Kim, Y.C.; Kim, Y.; Hahm, K.S.; Kim, J.I. Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem. Biophys. Res. Commun., 2002, 296(5), 1044-1050.
[86]
Riciluca, K.C.; Sayegh, R.S.; Melo, R.L.; Silva, P.I., Jr Rondonin an antifungal peptide from spider(Acanthoscurria rondoniae) haemolymph. Results Immunol., 2012, 2, 66-71.
[87]
Abbassi, F.; Oury, B.; Blasco, T.; Sereno, D.; Bolbach, G.; Nicolas, P.; Hani, K.; Amiche, M.; Ladram, A. Isolation, characterization and molecular cloning of new temporins from the skin of the North African ranid Pelophylax saharica. Peptides, 2008, 29(9), 1526-1533.