Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Clinical Applications of Antimicrobial Peptides (AMPs): Where do we Stand Now?

Author(s): Mithoor Divyashree, Madhu K. Mani, Dhanasekhar Reddy, Ranjith Kumavath*, Preetam Ghosh, Vasco Azevedo and Debmalya Barh*

Volume 27, Issue 2, 2020

Page: [120 - 134] Pages: 15

DOI: 10.2174/0929866526666190925152957

Price: $65

Abstract

In this era of multi-drug resistance (MDR), antimicrobial peptides (AMPs) are one of the most promising classes of potential drug candidates to combat communicable as well as noncommunicable diseases such as cancers and diabetes. AMPs show a wide spectrum of biological activities which include antiviral, antifungal, anti-mitogenic, anticancer, and anti-inflammatory properties. Apart from these prospective therapeutic potentials, the AMPs can act as food preservatives and immune modulators. Therefore, AMPs have the potential to replace conventional drugs and may gain a significant global drug market share. Although several AMPs have shown therapeutic potential in vitro or in vivo, in most cases they have failed the clinical trial owing to various issues. In this review, we discuss in brief (i) molecular mechanisms of AMPs in various diseases, (ii) importance of AMPs in pharmaceutical industries, (iii) the challenges in using AMPs as therapeutics and how to overcome, (iv) available AMP therapeutics in market, and (v) AMPs under clinical trials. Here, we specifically focus on the therapeutic AMPs in the areas of dermatology, surgery, oncology and metabolic diseases.

Keywords: Antimicrobial peptides (AMPs), clinical trial, mechanism of action, drug development, pharmaceutical importance, immune modulators.

Graphical Abstract

[1]
Gordon, Y.J.; Romanowski, E.G.; McDermott, A.M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res., 2005, 30(7), 505-515.
[http://dx.doi.org/10.1080/02713680590968637] [PMID: 16020284]
[2]
Ganz, T. The role of antimicrobial peptides in innate immunity. Integr. Comp. Biol., 2003, 43(2), 300-304.
[http://dx.doi.org/10.1093/icb/43.2.300] [PMID: 21680437]
[3]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[4]
Hancock, R.E.; Chapple, D.S. Peptide antibiotics. Antimicrob. Agents Chemother., 1999, 43(6), 1317-1323.
[http://dx.doi.org/10.1128/AAC.43.6.1317] [PMID: 10348745]
[5]
Hancock, R.E. Cationic antimicrobial peptides: Towards clinical applications. Expert Opin. Investig. Drugs, 2000, 9(8), 1723-1729.
[http://dx.doi.org/10.1517/13543784.9.8.1723] [PMID: 11060771]
[6]
Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1), 27-55.
[http://dx.doi.org/10.1124/pr.55.1.2] [PMID: 12615953]
[7]
Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev., 2006, 19(3), 491-511.
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[8]
Hancock, R.E.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[9]
Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Antimicrobial peptides: Key components of the innate immune system. Crit. Rev. Biotechnol., 2012, 32(2), 143-171.
[http://dx.doi.org/10.3109/07388551.2011.594423] [PMID: 22074402]
[10]
Takahashi, D.; Shukla, S.K. Prakash. O; Zhang G. structural detrminants of the host defense peptides for antimicrobial activity. Biochimie, 2010, 92, 1236-1241.
[http://dx.doi.org/10.1016/j.biochi.2010.02.023] [PMID: 20188791]
[11]
Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol., 2011, 29(9), 464-472.
[http://dx.doi.org/10.1016/j.tibtech.2011.05.001] [PMID: 21680034]
[12]
Lee, T.H.N.; Hall, K.N.; Aguilar, M.I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr. Top. Med. Chem., 2016, 16(1), 25-39.
[http://dx.doi.org/10.2174/1568026615666150703121700] [PMID: 26139112]
[13]
de Oliveira Felipe, L.; da Silva Júnior, W.F.; de Araújo, K.C.; Fabrino, D.L. Lactoferrin, chitosan and Melaleuca alternifolia-natural products that show promise in candidiasis treatment. Braz. J. Microbiol., 2018, 49, 212-219.
[14]
Yeung, A.T.; Gellatly, S.L.; Hancock, R.E. Multifunctional cationic host defence peptides and their clinical applications. Cell. Mol. Life Sci., 2011, 68(13), 2161-2176.
[http://dx.doi.org/10.1007/s00018-011-0710-x] [PMID: 21573784]
[15]
Batoni, G.; Maisetta, G.; Esin, S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim. Biophys. Acta, 2016, 1858(5), 1044-1060.
[http://dx.doi.org/10.1016/j.bbamem.2015.10.013] [PMID: 26525663]
[16]
Choi, H.; Rangarajan, N.; Weisshaar, J.C. Lights, camera, action! Antimicrobial peptide mechanisms imaged in space and time. Trends Microbiol., 2016, 24(2), 111-122.
[http://dx.doi.org/10.1016/j.tim.2015.11.004] [PMID: 26691950]
[17]
Rashid, R.; Veleba, M.; Kline, K.A. Focal targeting of the bacterial envelope by antimicrobial peptides. Front. Cell Dev. Biol., 2016, 4, 55.
[http://dx.doi.org/10.3389/fcell.2016.00055] [PMID: 27376064]
[18]
Scocchi, M.; Mardirossian, M.; Runti, G.; Benincasa, M. Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria. Curr. Top. Med. Chem., 2016, 16(1), 76-88.
[http://dx.doi.org/10.2174/1568026615666150703121009] [PMID: 26139115]
[19]
Chung, E.M.C.; Dean, S.N.; Propst, C.N.; Bishop, B.M.; van Hoek, M.L. Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound. NPJ Biofilms Microbiomes, 2017, 3, 9.
[http://dx.doi.org/10.1038/s41522-017-0017-2] [PMID: 28649410]
[20]
Bechinger, B.; Gorr, S.U. Antimicrobial peptides: Mechanisms of action and resistance. J. Dent. Res., 2017, 96(3), 254-260.
[http://dx.doi.org/10.1177/0022034516679973] [PMID: 27872334]
[21]
Wang, Hong-yan.; Li, Lin.; Li-si, Tan.; Hui-Yuan, Yu.; Jya-Wei, Cheng.; Ya-ping, Pan. Molecular pathways underlying inhibitory effect of antimicrobial peptide Nal-P-113 on bacteria biofilms formation of Porphyromonas gingivalis W83 by DNA microarray. BMC Microbiol., 2017, 17, 1-7.
[22]
Gläser, R. Research in practice: Antimicrobial peptides of the skin. J. Dtsch. Dermatol. Ges., 2011, 9(9), 678-680.
[http://dx.doi.org/10.1111/j.1610-0387.2011.07708.x]
[23]
Yang, L.; Harroun, T.A.; Weiss, T.M.; Ding, L.; Huang, H.W. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J., 2001, 81(3), 1475-1485.
[http://dx.doi.org/10.1016/S0006-3495(01)75802-X] [PMID: 11509361]
[24]
Chang, W.K.; Wimley, W.C.; Searson, P.C.; Hristova, K.; Merzlyakov, M. Characterization of antimicrobial peptide activity by electrochemical impedance spectroscopy. Biochim. Biophys. Acta, 2008, 1778(10), 2430-2436.
[http://dx.doi.org/10.1016/j.bbamem.2008.06.016] [PMID: 18657512]
[25]
Ong, P.Y.; Ohtake, T.; Brandt, C.; Strickland, I.; Boguniewicz, M.; Ganz, T.; Gallo, R.L.; Leung, D.Y. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med., 2002, 347(15), 1151-1160.
[http://dx.doi.org/10.1056/NEJMoa021481] [PMID: 12374875]
[26]
Rivas-Santiago, B.; Serrano, C.J.; Enciso-Moreno, J.A. Susceptibility to infectious diseases based on antimicrobial peptide production. Infect. Immun., 2009, 77(11), 4690-4695.
[http://dx.doi.org/10.1128/IAI.01515-08] [PMID: 19703980]
[27]
Rehmani, S.; Dixon, J.E. Oral delivery of anti-diabetes therapeutics using cell penetrating and transcytosing peptide strategies. Peptides, 2018, 100, 24-35.
[http://dx.doi.org/10.1016/j.peptides.2017.12.014] [PMID: 29412825]
[28]
Conlon, J.M.; Mechkarska, M.; Lukic, M.L.; Flatt, P.R. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides, 2014, 57, 67-77.
[http://dx.doi.org/10.1016/j.peptides.2014.04.019] [PMID: 24793775]
[29]
Gault, V.A.; Bhat, V.K.; Irwin, N.; Flatt, P.R. A novel Glucagon-Like Peptide-1 (GLP-1)/glucagon hybrid peptide with triple-acting agonist activity at glucose-dependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice. J. Biol. Chem., 2013, 288(49), 35581-35591.
[http://dx.doi.org/10.1074/jbc.M113.512046] [PMID: 24165127]
[30]
Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[31]
Bobone, S.; Roversi, D.; Giordano, L.; De Zotti, M.; Formaggio, F.; Toniolo, C.; Park, Y.; Stella, L. The lipid dependence of antimicrobial peptide activity is an unreliable experimental test for different pore models. Biochemistry, 2012, 51(51), 10124-10126.
[http://dx.doi.org/10.1021/bi3015086] [PMID: 23228161]
[32]
Roversi, D.; Luca, V.; Aureli, S.; Park, Y.; Mangoni, M.L.; Stella, L. How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23. ACS Chem. Biol., 2014, 9(9), 2003-2007.
[http://dx.doi.org/10.1021/cb500426r] [PMID: 25058470]
[33]
Huang, H.W. Action of antimicrobial peptides: Two-state model. Biochemistry, 2000, 39(29), 8347-8352.
[http://dx.doi.org/10.1021/bi000946l] [PMID: 10913240]
[34]
Mojsoska, B.; Jenssen, H. Peptides and peptidomimetics for antimicrobial drug design. Pharmaceuticals (Basel), 2015, 8(3), 366-415.
[http://dx.doi.org/10.3390/ph8030366] [PMID: 26184232]
[35]
Brogden, K.A.; Ackermann, M.; Huttner, K.M. Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial. Antimicrob. Agents Chemother., 1997, 41(7), 1615-1617.
[http://dx.doi.org/10.1128/AAC.41.7.1615] [PMID: 9210699]
[36]
Subbalakshmi, C.; Sitaram, N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett., 1998, 160(1), 91-96.
[http://dx.doi.org/10.1111/j.1574-6968.1998.tb12896.x] [PMID: 9495018]
[37]
Sass, V.; Pag, U.; Tossi, A.; Bierbaum, G.; Sahl, H.G. Mode of action of human β-defensin 3 against Staphylococcus aureus and transcriptional analysis of responses to defensin challenge. Int. J. Med. Microbiol., 2008, 298(7-8), 619-633.
[http://dx.doi.org/10.1016/j.ijmm.2008.01.011] [PMID: 18455476]
[38]
Soehnlein, O.; Kai-Larsen, Y.; Frithiof, R.; Sorensen, O.E.; Kenne, E.; Scharffetter-Kochanek, K.; Eriksson, E.E.; Herwald, H.; Agerberth, B.; Lindbom, L. Neutrophil primary granule proteins HBP and HNP1-3 boost bacterial phagocytosis by human and murine macrophages. J. Clin. Invest., 2008, 118(10), 3491-3502.
[http://dx.doi.org/10.1172/JCI35740] [PMID: 18787642]
[39]
Funderburg, N.; Lederman, M.M.; Feng, Z.; Drage, M.G.; Jadlowsky, J.; Harding, C.V.; Weinberg, A.; Sieg, S.F. Human -defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc. Natl. Acad. Sci. USA, 2007, 104(47), 18631-18635.
[http://dx.doi.org/10.1073/pnas.0702130104] [PMID: 18006661]
[40]
Park, C.B.; Kim, M.S.; Kim, S.C. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun., 1996, 218(1), 408-413.
[http://dx.doi.org/10.1006/bbrc.1996.0071] [PMID: 8573171]
[41]
Park, C.B.; Kim, H.S.; Kim, S.C. Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun., 1998, 244(1), 253-257.
[http://dx.doi.org/10.1006/bbrc.1998.8159] [PMID: 9514864]
[42]
Ghosh, A.; Kar, R.K.; Jana, J.; Saha, A.; Jana, B.; Krishnamoorthy, J.; Kumar, D.; Ghosh, S.; Chatterjee, S.; Bhunia, A. Indolicidin targets duplex DNA: Structural and mechanistic insight through a combination of spectroscopy and microscopy. ChemMedChem, 2014, 9(9), 2052-2058.
[http://dx.doi.org/10.1002/cmdc.201402215] [PMID: 25044630]
[43]
Steinstraesser, L.; Kraneburg, U.; Jacobsen, F.; Al-Benna, S. Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiol, 2011, 216, 322-333.
[http://dx.doi.org/10.1016/j.imbio.2010.07.003]
[44]
Mansour, S.C.; Pena, O.M.; Hancock, R.E. Host defense peptides: Front-line immunomodulators. Trends Immunol., 2014, 35(9), 443-450.
[http://dx.doi.org/10.1016/j.it.2014.07.004] [PMID: 25113635]
[45]
Wang, G.; Xia, Li. Zhe, Wang. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44, 1087-1093.
[http://dx.doi.org/10.1093/nar/gkv1278]
[46]
Fan, L.; Sun, J.; Zhou, M.; Zhou, J.; Lao, X.; Zheng, H.; Xu, H. DRAMP: A comprehensive data repository of antimicrobial peptides. Sci. Rep., 2016, 6, 24482.
[http://dx.doi.org/10.1038/srep24482] [PMID: 27075512]
[47]
Bechinger, B. The SMART model: Soft membranes adapt and respond, also transiently, in the presence of antimicrobial peptides. J. Pept. Sci., 2015, 21(5), 346-355.
[http://dx.doi.org/10.1002/psc.2729] [PMID: 25522713]
[48]
Oppenheim, J.J.; Yang, D. Alarmins: Chemotactic activators of immune responses. Cur. Opin. inImmunol, 2005, 17, 359-365.
[http://dx.doi.org/1016/j.coi.2005.06.002]
[49]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov., 2011, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[50]
Fox, J.L. Antimicrobial peptides stage a comeback. Nat. Biotechnol., 2013, 31(5), 379-382.
[http://dx.doi.org/10.1038/nbt.2572] [PMID: 23657384]
[51]
Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA, 1987, 84(15), 5449-5453.
[http://dx.doi.org/10.1073/pnas.84.15.5449] [PMID: 3299384]
[52]
Rozek, A.; Powers, J.P.S.; Friedrich, C.L.; Hancock, R.E. Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry, 2003, 42(48), 14130-14138.
[http://dx.doi.org/10.1021/bi035643g] [PMID: 14640680]
[53]
Lee, I.H.; Cho, Y.; Lehrer, R.I. Effects of pH and salinity on the antimicrobial properties of clavanins. Infect. Immun., 1997, 65(7), 2898-2903.
[PMID: 9199465]
[54]
Johnson, S.M.; Saint John, B.E.; Dine, A.P. Local anesthetics as antimicrobial agents: A review. Surg. Infect. (Larchmt.), 2008, 9(2), 205-213.
[http://dx.doi.org/10.1089/sur.2007.036] [PMID: 18426354]
[55]
Seo, M.D.; Won, H.S.; Kim, J.H.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides for therapeutic applications: A review. Molecules, 2012, 17(10), 12276-12286.
[http://dx.doi.org/10.3390/molecules171012276] [PMID: 23079498]
[56]
Greber, K.E.; Dawgul, M. Antimicrobial peptides under clinical trials. Curr. Top. Med. Chem., 2017, 17(5), 620-628.
[http://dx.doi.org/10.2174/1568026616666160713143331] [PMID: 27411322]
[57]
Kang, H.K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J. Microbiol., 2017, 55(1), 1-12.
[http://dx.doi.org/10.1007/s12275-017-6452-1] [PMID: 28035594]
[58]
Gomes, B.; Augusto, M.T.; Felício, M.R.; Hollmann, A.; Franco, O.L.; Gonçalves, S.; Santos, N.C. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol. Adv., 2018, 36(2), 415-429.
[http://dx.doi.org/10.1016/j.biotechadv.2018.01.004] [PMID: 29330093]
[59]
DiMasi, J.A.; Hansen, R.W.; Grabowski, H.G. The price of innovation: New estimates of drug development costs. J. Health Econ., 2003, 22(2), 151-185.
[http://dx.doi.org/10.1016/S0167-6296(02)00126-1] [PMID: 12606142]
[60]
Divyashree, M. ShamaPrakash, K.; VeenaShetty, A.; Karunasagar, I. Antibiotic resistance in extended-spectrum beta-lactamase-producing Escherichia coli isolated from effluents of tertiary care hospitals. Int. J. Health Sci. Res., 2015, 5, 27-33.
[61]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today, 2010, 15(1-2), 40-56.
[http://dx.doi.org/10.1016/j.drudis.2009.10.009] [PMID: 19879957]
[62]
Björn, C.; Noppa, L.; Näslund Salomonsson, E.; Johansson, A.L.; Nilsson, E.; Mahlapuu, M.; Håkansson, J. Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds. Int. J. Antimicrob. Agents, 2015, 45(5), 519-524.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.12.015] [PMID: 25649371]
[63]
Falagas, M.E.; Kasiakou, S.K. Toxicity of polymyxins: A systematic review of the evidence from old and recent studies. Crit. Care, 2006, 10(1), R27.
[http://dx.doi.org/10.1186/cc3995] [PMID: 16507149]
[64]
Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat., 2016, 26, 43-57.
[http://dx.doi.org/10.1016/j.drup.2016.04.002] [PMID: 27180309]
[65]
Vaara, M. New approaches in peptide antibiotics. Curr. Opin. Pharmacol., 2009, 9(5), 571-576.
[http://dx.doi.org/10.1016/j.coph.2009.08.002] [PMID: 19734091]
[66]
Haney, E.F.; Hancock, R.E. Peptide design for antimicrobial and immunomodulatory applications. Peptide Sci., 2013, 100, 572-583.
[67]
Eckert, R. Road to clinical efficacy: Challenges and novel strategies for antimicrobial peptide development. Future Microbiol., 2011, 6(6), 635-651.
[http://dx.doi.org/10.2217/fmb.11.27] [PMID: 21707311]
[68]
Zhao, Y.; Zhang, M.; Qiu, S.; Wang, J.; Peng, J.; Zhao, P.; Zhu, R.; Wang, H.; Li, Y.; Wang, K.; Yan, W.; Wang, R. Antimicrobial activity and stability of the D-amino acid substituted derivatives of antimicrobial peptide polybia-MPI. AMB Express, 2016, 6(1), 122.
[http://dx.doi.org/10.1186/s13568-016-0295-8] [PMID: 27900727]
[69]
Nordström, R.; Malmsten, M. Delivery systems for antimicrobial peptides. Adv. Colloid Interface Sci., 2017, 242, 17-34.
[http://dx.doi.org/10.1016/j.cis.2017.01.005] [PMID: 28159168]
[70]
Gentilucci, L.; De Marco, R.; Cerisoli, L. Chemical modifications designed to improve peptide stability: Incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des., 2010, 16(28), 3185-3203.
[http://dx.doi.org/10.2174/138161210793292555] [PMID: 20687878]
[71]
Zhao, Y.; Zhang, M.; Qiu, S.; Wang, J.; Peng, J.; Zhao, P.; Zhu, R.; Wang, H.; Li, Y.; Wang, K.; Yan, W.; Wang, R. Antimicrobial activity and stability of the D-amino acid substituted derivatives of antimicrobial peptide polybia-MPI. AMB Expr, 2016, 6, 122.
[72]
Dong, P.; Zhou, Y.; He, W.; Hua, D. A strategy for enhanced antibacterial activity against Staphylococcus aureus by the assembly of alamethicin with a thermo-sensitive polymeric carrier. Chem. Commun. (Camb.), 2016, 52(5), 896-899.
[http://dx.doi.org/10.1039/C5CC07054F] [PMID: 26579549]
[73]
Sahariah, P.; Sørensen, K.K.; Hjálmarsdóttir, M.Á.; Sigurjónsson, O.E.; Jensen, K.J.; Másson, M.; Thygesen, M.B. Antimicrobial peptide shows enhanced activity and reduced toxicity upon grafting to chitosan polymers. Chem. Commun. (Camb.), 2015, 51(58), 11611-11614.
[http://dx.doi.org/10.1039/C5CC04010H] [PMID: 26096124]
[74]
Lequeux, I.; Ducasse, E.; Jouenne, T.; Thebault, P. Addition of antimicrobial properties to hyaluronic acid by grafting of antimicrobial peptide. Eur. Polym. J., 2014, 51, 182-190.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.11.012]
[75]
Reinhardt, A.; Neundorf, I. Design and application of antimicrobial peptide conjugates. Int. J. Mol. Sci., 2016, 17(5), 1-21.
[http://dx.doi.org/10.3390/ijms17050701] [PMID: 27187357]
[76]
Veronese, F.M.; Mero, A. The impact of PEGylation on biological therapies. BioDrugs, 2008, 22(5), 315-329.
[http://dx.doi.org/10.2165/00063030-200822050-00004] [PMID: 18778113]
[77]
Taylor, T.M.; Gaysinsky, S.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Characterization of antimicrobial-bearing liposomes by ζ-potential, vesicle size, and encapsulation efficiency. Food Biophys., 2007, 2, 1-9.
[http://dx.doi.org/10.1007/s11483-007-9023-x]
[78]
Syryamina, V.N.; Samoilova, R.I.; Tsvetkov, Y.D.; Ischenko, A.V.; De Zotti, M.; Gobbo, M.; Dzuba, S.A. Peptides on the surface: Spin-label EPR and PELDOR study of adsorption of the antimicrobial peptides Trichogin GA IV and Ampullosporin A on the silica nanoparticles. Appl. Magn. Reson., 2016, 47, 309-320.
[http://dx.doi.org/10.1007/s00723-015-0745-5]
[79]
Galdiero, E.; Siciliano, A.; Maselli, V.; Gesuele, R.; Guida, M.; Fulgione, D.; Galdiero, S.; Lombardi, L.; Falanga, A. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin. Int. J. Nanomedicine, 2016, 11, 4199-4211.
[http://dx.doi.org/10.2147/IJN.S107752] [PMID: 27616887]
[80]
Chen, W.Y.; Chang, H.Y.; Lu, J.K.; Huang, Y.C.; Harroun, S.G.; Tseng, Y.T.; Chang, H.T. Self-assembly of antimicrobial peptides on gold nanodots: Against multidrug-resistant bacteria and wound-healing application. Adv. Funct. Mater., 2015, 25, 7189-7199.
[http://dx.doi.org/10.1002/adfm.201503248]
[81]
Chaudhari, A.A.; Ashmore, D.; Nath, S.D.; Kate, K.; Dennis, V.; Singh, S.R.; Owen, D.R.; Palazzo, C.; Arnold, R.D.; Miller, M.E.; Pillai, S.R. A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide. J. Nanobiotechnol, 2016, 14(1), 58.
[http://dx.doi.org/10.1186/s12951-016-0211-z] [PMID: 27412259]
[82]
Godoy-Gallardo, M.; Mas-Moruno, C.; Yu, K.; Manero, J.M.; Gil, F.J.; Kizhakkedathu, J.N.; Rodriguez, D. Antibacterial properties of hLf1-11 peptide onto titanium surfaces: A comparison study between silanization and surface initiated polymerization. Biomacromolecules, 2015, 16(2), 483-496.
[http://dx.doi.org/10.1021/bm501528x] [PMID: 25545728]
[83]
Kanchanapally, R.; Viraka Nellore, B.P.; Sinha, S.S.; Pedraza, F.; Jones, S.J.; Pramanik, A.; Chavva, S.R.; Tchounwou, C.; Shi, Y.; Vangara, A.; Sardar, D.; Ray, P.C. Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Adv, 2015, 5(24), 18881-18887.
[http://dx.doi.org/10.1039/C5RA01321F] [PMID: 26294958]
[84]
Dostalova, S.; Moulick, A.; Milosavljevic, V.; Guran, R.; Kominkova, M.; Cihalova, K.; Vaculovicova, M. Antiviral activity of fullerene C 60 nanocrystals modified with derivatives of anionic antimicrobial peptide maximin H5. Monatshefte. Für. Chemie-Chemi. Monthly., 2016, 147, 905-918.
[http://dx.doi.org/10.1007/s00706-016-1675-0]
[85]
Vivero-Escoto, J.L.; Slowing, I.I.; Trewyn, B.G.; Lin, V.S.Y. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 2010, 6(18), 1952-1967.
[http://dx.doi.org/10.1002/smll.200901789] [PMID: 20690133]
[86]
Devocelle, M. Targeted antimicrobial peptides. Front. Immunol., 2012, 3, 309.
[http://dx.doi.org/10.3389/fimmu.2012.00309] [PMID: 23060887]
[87]
Mandal, S.M.; Roy, A.; Ghosh, A.K.; Hazra, T.K.; Basak, A.; Franco, O.L. Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front. Pharmacol., 2014, 5, 105.
[http://dx.doi.org/10.3389/fphar.2014.00105] [PMID: 24860506]
[88]
Marr, A.K.; Gooderham, W.J.; Hancock, R.E. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol., 2006, 6(5), 468-472.
[http://dx.doi.org/10.1016/j.coph.2006.04.006] [PMID: 16890021]
[89]
Won, H.S.; Jung, S.J.; Kim, H.E.; Seo, M.D.; Lee, B.J. Systematic peptide engineering and structural characterization to search for the shortest antimicrobial peptide analogue of gaegurin 5. J. Biol. Chem., 2004, 279(15), 14784-14791.
[http://dx.doi.org/10.1074/jbc.M309822200] [PMID: 14739294]
[90]
Won, H.S.; Seo, M.D.; Jung, S.J.; Lee, S.J.; Kang, S.J.; Son, W.S.; Kim, H.J.; Park, T.K.; Park, S.J.; Lee, B.J. Structural determinants for the membrane interaction of novel bioactive undecapeptides derived from gaegurin 5. J. Med. Chem., 2006, 49(16), 4886-4895.
[http://dx.doi.org/10.1021/jm050996u] [PMID: 16884301]
[91]
Tavares, L.S.; Silva, C.S.; de Souza, V.C.; da Silva, V.L.; Diniz, C.G.; Santos, M.O. Strategies and molecular tools to fight antimicrobial resistance: Resistome, transcriptome, and antimicrobial peptides. Front. Microbiol., 2013, 4, 412.
[http://dx.doi.org/10.3389/fmicb.2013.00412] [PMID: 24427156]
[92]
Moreira, R.; Balseiro, P.; Romero, A.; Dios, S.; Posada, D.; Novoa, B.; Figueras, A. Gene expression analysis of clams Ruditapes philippinarum and Ruditapes decussatus following bacterial infection yields molecular insights into pathogen resistance and immunity. Dev. Comp. Immunol., 2012, 36(1), 140-149.
[http://dx.doi.org/10.1016/j.dci.2011.06.012] [PMID: 21756933]
[93]
Namjoshi, S.; Benson, H.A. Cyclic peptides as potential therapeutic agents for skin disorders. Biopolymers, 2010, 94(5), 673-680.
[http://dx.doi.org/10.1002/bip.21476] [PMID: 20564043]
[94]
Gawande, P.V.; Clinton, A.P.; LoVetri, K.; Yakandawala, N.; Rumbaugh, K.P.; Madhyastha, S. Antibiofilm efficacy of DispersinB® wound spray used in combination with a silver wound dressing. Microbiol. Insights, 2014, 7, 9-13.
[http://dx.doi.org/10.4137/MBI.S13914] [PMID: 24826078]
[95]
Kazemzadeh-Narbat, M.; Kindrachuk, J.; Duan, K.; Jenssen, H.; Hancock, R.E.; Wang, R. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials, 2010, 31(36), 9519-9526.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.035] [PMID: 20970848]
[96]
Deslouches, B.; Steckbeck, J.D.; Craigo, J.K.; Doi, Y.; Burns, J.L.; Montelaro, R.C. Engineered cationic antimicrobial peptides to overcome multidrug resistance by ESKAPE pathogens. Antimicrob. Agents Chemother., 2015, 59(2), 1329-1333.
[http://dx.doi.org/10.1128/AAC.03937-14] [PMID: 25421473]
[97]
Kasetty, G.; Kalle, M.; Mörgelin, M.; Brune, J.C.; Schmidtchen, A. Anti-endotoxic and antibacterial effects of a dermal substitute coated with host defense peptides. Biomaterials, 2015, 53, 415-425.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.111] [PMID: 25890739]
[98]
Yazici, H.; O’Neill, M.B.; Kacar, T.; Wilson, B.R.; Oren, E.E.; Sarikaya, M.; Tamerler, C. Engineered chimeric peptides as antimicrobial surface coating agents toward infection-free implants. ACS Appl. Mater. Interfaces, 2016, 8(8), 5070-5081.
[http://dx.doi.org/10.1021/acsami.5b03697] [PMID: 26795060]
[99]
Chen, X.; Hirt, H.; Li, Y.; Gorr, S.U.; Aparicio, C. Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms. PLoS One, 2014, 9(11)e111579
[http://dx.doi.org/10.1371/journal.pone.0111579] [PMID: 25372402]
[100]
Xie, Z.; Aphale, N.V.; Kadapure, T.D.; Wadajkar, A.S.; Orr, S.; Gyawali, D.; Qian, G.; Nguyen, K.T.; Yang, J. Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing. J. Biomed. Mater. Res. A, 2015, 103(12), 3907-3918.
[http://dx.doi.org/10.1002/jbm.a.35512] [PMID: 26014899]
[101]
Meikle, T.G.; Zabara, A.; Waddington, L.J.; Separovic, F.; Drummond, C.J.; Conn, C.E. Incorporation of antimicrobial peptides in nanostructured lipid membrane mimetic bilayer cubosomes. Colloids Surf. B Biointerfaces, 2017, 152, 143-151.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.004] [PMID: 28107705]
[102]
Pfalzgraff, A.; Brandenburg, K.; Weindl, G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front. Pharmacol., 2018, 9, 281.
[http://dx.doi.org/10.3389/fphar.2018.00281] [PMID: 29643807]
[103]
Reddy, K.V.R.; Yedery, R.D.; Aranha, C. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents, 2004, 24(6), 536-547.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.09.005] [PMID: 15555874]
[104]
Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[105]
Smith, V.J.; Dyrynda, E.A. Antimicrobial proteins: From old proteins, new tricks. Mol. Immunol., 2015, 68(2 Pt B), 383-398.
[http://dx.doi.org/10.1016/j.molimm.2015.08.009] [PMID: 26320628]
[106]
Lüders, T.; Birkemo, G.A.; Fimland, G.; Nissen-Meyer, J.; Nes, I.F. Strong synergy between a eukaryotic antimicrobial peptide and bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol., 2003, 69(3), 1797-1799.
[http://dx.doi.org/10.1128/AEM.69.3.1797-1799.2003] [PMID: 12620872]
[107]
Sun, Y.; Shang, D. Inhibitory effects of antimicrobial peptides on lipopolysaccharide-induced inflammation. Mediators Inflamm., 2015.2015167572
[http://dx.doi.org/10.1155/2015/167572] [PMID: 26612970]
[108]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[109]
Oren, Z.; Shai, Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers, 1998, 47(6), 451-463.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1998)47:6<451:AID-BIP4>3.0.CO;2-F] [PMID: 10333737]
[110]
Cudic, M.; Otvos, L., Jr Intracellular targets of antibacterial peptides. Curr. Drug Targets, 2002, 3(2), 101-106.
[http://dx.doi.org/10.2174/1389450024605445] [PMID: 11958294]
[111]
Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta, 1999, 1462(1-2), 55-70.
[http://dx.doi.org/10.1016/S0005-2736(99)00200-X] [PMID: 10590302]
[112]
Kliger, Y.; Gallo, S.A.; Peisajovich, S.G.; Munoz-Barroso, I.; Avkin, S.; Blumenthal, R.; Shai, Y. Mode of action of an antiviral peptide from HIV-1. Inhibition at a post-lipid mixing stage. J. Biol. Chem., 2001, 276(2), 1391-1397.
[http://dx.doi.org/10.1074/jbc.M004113200] [PMID: 11027678]
[113]
Schittek, B.; Paulmann, M.; Senyürek, I.; Steffen, H. The role of antimicrobial peptides in human skin and in skin infectious diseases. Infect. Disord. Drug Targets, 2008, 8(3), 135-143.
[http://dx.doi.org/10.2174/1871526510808030135] [PMID: 18782030]
[114]
Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel), 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[115]
Cruz, J.; Ortiz, C.; Guzmán, F.; Fernández-Lafuente, R.; Torres, R. Antimicrobial peptides: Promising compounds against pathogenic microorganisms. Curr. Med. Chem., 2014, 21(20), 2299-2321.
[http://dx.doi.org/10.2174/0929867321666140217110155] [PMID: 24533812]
[116]
VanCompernolle, S.; Smith, P.B.; Bowie, J.H.; Tyler, M.J.; Unutmaz, D.; Rollins-Smith, L.A. Inhibition of HIV infection by caerin 1 antimicrobial peptides. Peptides, 2015, 71, 296-303.
[http://dx.doi.org/10.1016/j.peptides.2015.05.004] [PMID: 26026377]
[117]
Delattin, N.; Brucker, K.; Cremer, K.; Cammue, B.P.; Thevissen, K. Antimicrobial peptides as a strategy to combat fungal biofilms. Cur. Topics. Curr. Top. Med. Chem., 2017, 17(5), 604-612.
[http://dx.doi.org/10.2174/1568026616666160713142228] [PMID: 27411323]
[118]
Ongey, E.L.; Pflugmacher, S.; Neubauer, P. Bioinspired designs, molecular premise and tools for evaluating the ecological importance of antimicrobial peptides. Pharmaceuticals (Basel), 2018, 11(3), 2-28.
[http://dx.doi.org/10.3390/ph11030068] [PMID: 29996512]
[119]
Veltri, D.; Kamath, U.; Shehu, A. Deep learning improves antimicrobial peptide recognition. Bioinformatics, 2018, 34(16), 2740-2747.
[http://dx.doi.org/10.1093/bioinformatics/bty179] [PMID: 29590297]
[120]
Torrent, M.; Andreu, D.; Nogués, V.M.; Boix, E. Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS One, 2011, 6(2)e16968
[http://dx.doi.org/10.1371/journal.pone.0016968] [PMID: 21347392]
[121]
Xiao, X.; Wang, P.; Lin, W.Z.; Jia, J.H.; Chou, K.C. iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal. Biochem., 2013, 436(2), 168-177.
[http://dx.doi.org/10.1016/j.ab.2013.01.019] [PMID: 23395824]
[122]
Fjell, C.D.; Jenssen, H.; Hilpert, K.; Cheung, W.A.; Panté, N.; Hancock, R.E.; Cherkasov, A. Identification of novel antibacterial peptides by chemoinformatics and machine learning. J. Med. Chem., 2009, 52(7), 2006-2015.
[http://dx.doi.org/10.1021/jm8015365] [PMID: 19296598]
[123]
Thomas, S.; Karnik, S.; Barai, R.S.; Jayaraman, V.K. Idicula-Thomas, S. CAMP: A useful resource for research on antimicrobial peptides. Nucleic Acids Res., 2009, 38(1), D774-D780.
[124]
Veltri, D.; Kamath, U.; Shehu, A. Improving recognition of antimicrobial peptides and target selectivity through machine learning and genetic programming. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2017, 14(2), 300-313.
[http://dx.doi.org/10.1109/TCBB.2015.2462364] [PMID: 28368808]
[125]
Lata, S.; Mishra, N.K.; Raghava, G.P. AntiBP2: Improved version of antibacterial peptide prediction. BMC Bioinformatics, 2010, 11(1)(Suppl. 1), S19.
[http://dx.doi.org/10.1186/1471-2105-11-S1-S19] [PMID: 20122190]
[126]
Lee, E.Y.; Fulan, B.M.; Wong, G.C.; Ferguson, A.L. Mapping membrane activity in undiscovered peptide sequence space using machine learning. Proc. Natl. Acad. Sci. USA, 2016, 113(48), 13588-13593.
[http://dx.doi.org/10.1073/pnas.1609893113] [PMID: 27849600]
[127]
Meher, P.K.; Sahu, T.K.; Saini, V.; Rao, A.R. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci. Rep., 2017, 7, 42362.
[http://dx.doi.org/10.1038/srep42362] [PMID: 28205576]
[128]
Spencer, M.; Eickholt, J.; Cheng, J. A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM Trans. Comput. Biol. Bioinform.[TCBB], 2015, 12(1), 103-112.
[http://dx.doi.org/10.1109/TCBB.2014.2343960]
[129]
Jo, T.; Hou, J.; Eickholt, J.; Cheng, J. Improving protein fold recognition by deep learning networks. Sci. Rep., 2015, 5, 17573.
[http://dx.doi.org/10.1038/srep17573] [PMID: 26634993]
[130]
Liu, H.; Lei, M.; Du, X.; Cui, P.; Zhang, S. Identification of a novel antimicrobial peptide from amphioxus Branchiostoma japonicum by in silico and functional analyses. Sci. Rep., 2015, 5, 18355.
[http://dx.doi.org/10.1038/srep18355] [PMID: 26680226]
[131]
Langdon, W.B. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min., 2015, 8(1), 1.
[http://dx.doi.org/10.1186/s13040-014-0034-0] [PMID: 25621011]
[132]
Ren, S.X.; Cheng, A.S.; To, K.F.; Tong, J.H.; Li, M.S.; Shen, J.; Wong, C.C.; Zhang, L.; Chan, R.L.; Wang, X.J.; Ng, S.S. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res., 2012, 72, 6512-6523.
[133]
Melle, C.; Ernst, G.; Schimmel, B.; Bleul, A.; Thieme, H.; Kaufmann, R.; Mothes, H.; Settmacher, U.; Claussen, U.; Halbhuber, K.J.; von Eggeling, F. Discovery and identification of α-defensins as low abundant, tumor-derived serum markers in colorectal cancer. Gastroenterology, 2005, 129, 66-73.
[134]
Bukurova, I.; Nikitina, S.L.; Khankin, S.L.; Krasnov, G.S.; Lisitsin, N.A.; Karpov, V.L. Identification of protein markers for serum diagnosis of cancer based on microRNA expression profiling. Mol. Biol., 2001, 45, 376-381.
[135]
Ward, D.G.; Roberts, K.; Brookes, M.J.; Joy, H.; Martin, A.; Ismail, T.; Spychal, R.; Iqbal, T.; Tselepis, C. Increased hepcidin expression in colorectal carcinogenesis. World J. Gastroenterol., 2008, 14, 1339.
[136]
Radeva, M.Y.; Jahns, F.; Wilhelm, A.; Glei, M.; Settmacher, U.; Greulich, K.O.; Mothes, H. Defensin alpha 6 (DEFA 6) overexpression threshold of over 60 fold can distinguish between adenoma and fully blown colon carcinoma in individual patients. BMC Cancer, 2010, 10, 588.
[137]
Yuen, S.T.; Wong, M.P.; Chung, L.P.; Chan, S.Y.; Cheung, N.; Ho, J.; Leung, S.Y. Up-regulation of lysozyme production in colonic adenomas and adenocarcinomas. Histopathology, 1998, 32, 126-132.
[138]
Wehkamp, J.; Salzman, N.H.; Porter, E.; Nuding, S.; Weichenthal, M.; Petras, R.E.; Shen, B.; Schaeffeler, E.; Schwab, M.; Linzmeier, R.; Feathers, R.W. Reduced Paneth cell α-defensins in ileal Crohn’s disease. PNAS, 2005, 102, 18129-18134.
[139]
Zilbauer, M.; Jenke, A.; Wenzel, G.; Goedde, D.; Postberg, J.; Phillips, A.D.; Lucas, M.; Noble-Jamieson, G.; Torrente, F.; Salvestrini, C.; Heuschkel, R. Intestinal alpha-defensin expression in pediatric inflammatory bowel disease. Inflamm. Bowel Dis., 2010, 17, 2076-2086.
[140]
Wehkamp, J.; Harder, J.; von Meissner, B.; Herrlinger, K.R.; Stange, E.F.; Fellermann, K.; Schroeder, J.M. Human β-defessin 3: A novel antimicrobial peptide preferentially expressed in ulcerative celitis. Gastroenterology, 2001, 120, A182.
[141]
Monajemi, H.O.U.S.H.E.N.G.; Meenan, J.O.H.N.; Lamping, R.; Obradov, D.O.; Radema, S.A.; Trown, P.W.; Tytgat, G.N.; Van Deventer, S.J. Inflammatory bowel disease is associated with increased mucosal levels of bactericidal/permeability-increasing protein. Gastroenterology, 1996, 110, 733-739.
[142]
Wehkamp, J.; Schwind, B.; Herrlinger, K.R.; Baxmann, S.; Schmidt, K.; Duchrow, M.; Wohlschläger, C.; Feller, A.C.; Stange, E.F.; Fellermann, K. Innate immunity and colonic inflammation: Enhanced expression of epithelial α-defensins. Dig. Dis. Sci., 2002, 47, 1349-1355.
[143]
Oustamanolakis, P.; Koutroubakis, I.E.; Messaritakis, I.; Malliaraki, N.; Sfiridaki, A.; Kouroumalis, E.A. Serum hepcidin and prohepcidin concentrations in inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol., 2011, 23, 262-268.
[144]
Cunliffe, R.N.; Kamal, M.; Rose, F.R.A.J.; James, P.D.; Mahida, Y.R. Expression of antimicrobial neutrophil defensins in epithelial cells of active inflammatory bowel disease mucosa. J. Clin. Pathol., 2002, 55, 298-304.
[145]
Islam, D.; Bandholtz, L.; Nilsson, J.; Wigzell, H.; Christensson, B.; Agerberth, B.; Gudmundsson, G.H. Downregulation of bactericidal peptides in enteric infections: A novel immune escape mechanism with bacterial DNA as a potential regulator. Nat. Med., 2001, 7, 180.
[146]
Hamanaka, Y.; Nakashima, M.; Wada, A.; Ito, M.; Kurazono, H.; Hojo, H.; Nakahara, Y.; Kohno, S.; Hirayama, T.; Sekine, I. Expression of human β-defensin 2 (hBD-2) in Helicobacter pylori induced gastritis: Antibacterial effect of hBD-2 against Helicobacter pylori. Gut, 2001, 49, 481-487.
[147]
Bauer, B.; Wex, T.; Kuester, D.; Meyer, T.; Malfertheiner, P. Differential expression of human beta defensin 2 and 3 in gastric mucosa of Helicobacter pylori-infected individuals. Helicobacter, 2013, 18, 6-12.
[148]
Jenke, A.C.; Zilbauer, M.; Postberg, J.; Wirth, S. Human β-defensin 2 expression in ELBW infants with severe necrotizing enterocolitis. Pediatr. Res., 2002, 72, 513.
[149]
Harder, J.; Bartels, J.; Christophers, E.; Schroder, J.M. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem., 2001, 276, 5707-5713.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy