[1]
Collins, J.H.; Greaser, M.L.; Potter, J.D.; Horn, M.J. Determination of the amino acid sequence of troponin C from rabbit skeletal muscle. J. Biol. Chem., 1977, 252(18), 6356-6362.
[2]
Barbato, G.; Ikura, M.; Kay, L.E.; Pastor, R.W.; Bax, A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: The central helix is flexible. Biochemistry, 1992, 31(23), 5269-5278.
[3]
Zhang, M.; Tanaka, T.; Ikura, M. Calcium-induced conformational transition revealed by the solution structure of apo-calmodulin. Nat. Struct. Mol. Biol., 1995, 2, 758-767.
[4]
Babu, Y.S.; Bugg, C.E.; Cook, W.J. Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol., 1988, 204(1), 191-204.
[5]
Walsh, M.P. Calmodulin and the regulation of smooth muscle contraction. Mol. Cell. Biochem., 1994, 135(1), 21-41.
[6]
Rasmussen, C.D.; Means, A.R. Calmodulin, cell growth and gene expression. Trends Neurosci., 1989, 12(11), 433-438.
[7]
Rasmussen, C.D.; Means, A.R. Calmodulin is involved in regulation of cell proliferation. EMBO J., 1987, 6(13), 3961-3968.
[8]
Takuwa, N.; Zhou, W.; Takuwa, Y. Calcium, calmodulin and cell cycle progression. Cell. Signal., 1995, 7(2), 93-104.
[9]
Soderling, T.R. Calcium/calmodulin-dependent protein kinase II: Role in learning and memory. Mol. Cell. Biochem., 1993, 127-128, 93-101.
[10]
Swulius, M.T.; Waxham, M.N. Ca(2+)/calmodulin-dependent protein kinases. Cell. Mol. Life Sci., 2008, 65(17), 2637-2657.
[11]
Chin, D.; Means, A.R. Calmodulin: A prototypical calcium sensor. Trends Cell Biol., 2000, 10(8), 322-328.
[12]
Bähler, M.; Rhoads, A. Calmodulin signaling via the IQ motif. FEBS Lett., 2002, 513, 107-113.
[13]
Iacovelli, L.; Sallese, M.; Mariggiò, S.; de Blasi, A. Regulation of G-protein-coupled receptor kinase subtypes by calcium sensor proteins. FASEB J., 1999, 13(1), 1-8.
[14]
Picton, C.; Klee, C.B.; Cohen, P. The regulation of muscle phosphorylase kinase by calcium ions, calmodulin and troponin-C. Cell Calcium, 1981, 2(4), 281-294.
[15]
Roth, S.M.; Schneider, D.M.; Strobel, L.A.; VanBerkum, M.F.; Means, A.R.; Wand, A.J. Structure of the smooth muscle myosin light-chain kinase calmodulin-binding domain peptide bound to calmodulin. Biochemistry, 1991, 30(42), 10078-10084.
[16]
Chin, D.; Winkler, K.E.; Means, A.R. Characterization of substrate phosphorylation and use of calmodulin mutants to address implications from the enzyme crystal structure of calmodulin-dependent protein kinase I. J. Biol. Chem., 1997, 272(50), 31235-31240.
[17]
O’Neil, K.T.; DeGrado, W.F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem. Sci., 1990, 15(2), 59-64.
[18]
Mayur, Y.C.; Jagadeesh, S.; Thimmaiah, K.N. Targeting calmodulin in reversing multi drug resistance in cancer cells. Mini Rev. Med. Chem., 2006, 6(12), 1383-1389.
[19]
Nyegaard, M.; Overgaard, M.T.; Søndergaard, M.T.; Vranas, M.; Behr, E.R.; Hildebrandt, L.L.; Lund, J.; Hedley, P.L.; Camm, A.J.; Wettrell, G.; Fosdal, I.; Christiansen, M.; Børglum, A.D. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am. J. Hum. Genet., 2012, 91(4), 703-712.
[20]
Søndergaard, M.T.; Liu, Y.; Larsen, K.T.; Nani, A.; Tian, X.; Holt, C.; Wang, R.; Wimmer, R.; Van Petegem, F.; Fill, M.; Chen, S.R.W.; Overgaard, M.T. The arrhythmogenic calmodulin p.Phe142Leu mutation impairs C-domain Ca2+ binding but not calmodulin-dependent inhibition of the cardiac ryanodine receptor. J. Biol. Chem., 2017, 292(4), 1385-1395.
[21]
Pipilas, D.C.; Johnson, C.N.; Webster, G.; Schlaepfer, J.; Fellmann, F.; Sekarski, N.; Wren, L.M.; Ogorodnik, K.V.; Chazin, D.M.; Chazin, W.J.; Crotti, L.; Bhuiyan, Z.A.; George, A.L., Jr Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes. Heart Rhythm, 2016, 13(10), 2012-2019.
[22]
Rhoads, A.R.; Friedberg, F. Sequence motifs for calmodulin recognition. FASEB J., 1997, 11(5), 331-340.
[23]
Tidow, H.; Nissen, P. Structural diversity of calmodulin binding to its target sites. FEBS J., 2013, 280(21), 5551-5565.
[24]
Xu, Q.; Chang, A.; Tolia, A.; Minor, D.L. Structure of a Ca(2+)/CaM:Kv7.4 (KCNQ4) B-helix complex provides insight into M current modulation. J. Mol. Biol., 2013, 425(2), 378-394.
[25]
Houdusse, A.; Gaucher, J.F.; Krementsova, E.; Mui, S.; Trybus, K.M.; Cohen, C. Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features. Proc. Natl. Acad. Sci. USA, 2006, 103(51), 19326-19331.
[26]
Li, J.; Chen, Y.; Deng, Y.; Unarta, I.C.; Lu, Q.; Huang, X.; Zhang, M. Ca2+-induced rigidity change of the myosin VIIa IQ motif-single a helix lever arm extension. Structure, 2017, 25(4), 579-591.
[27]
Mori, M.; Konno, T.; Morii, T.; Nagayama, K.; Imoto, K. Regulatory interaction of sodium channel IQ-motif with calmodulin C-terminal lobe. Biochem. Biophys. Res. Commun., 2003, 307(2), 290-296.
[28]
Feldkamp, M.D.; Yu, L.; Shea, M.A. Structural and energetic determinants of Apo calmodulin binding to the IQ motif of the NaV1.2 voltage-dependent sodium channel. Structure, 2011, 19(5), 733-747.
[29]
Chagot, B.; Chazin, W.J. Solution NMR structure of apo-calmodulin in complex with the IQ motif of human cardiac sodium channel NaV1.5. J. Mol. Biol., 2012, 406(1), 106-119.
[30]
Chichili, V.P.R.; Xiao, Y.; Seetharaman, J.; Cummins, T.R.; Sivaraman, J. Structural basis for the modulation of the neuronal voltage-gated sodium channel NaV1.6 by calmodulin. Sci. Rep., 2013, 3, 2435.
[31]
Kumar, V.; Chichili, V.P.R.; Zhong, L.; Tang, X.; Velazquez-Campoy, A.; Sheu, F.S.; Seetharaman, J.; Gerges, N.Z.; Sivaraman, J. Structural basis for the interaction of unstructured neuron specific substrates neuromodulin and neurogranin with calmodulin. Sci. Rep., 2013, 3, 1392.
[32]
Hovey, L.; Fowler, C.A.; Mahling, R.; Lin, Z.; Miller, M.S.; Marx, D.C.; Yoder, J.B.; Kim, E.H.; Tefft, K.M.; Waite, B.C.; Feldkamp, M.D.; Yu, L.; Shea, M.A. Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel NaV1.2. Biophys. Chem., 2017, 224, 1-19.
[33]
Ikura, M.; Clore, G.M.; Gronenborn, A.M.; Zhu, G.; Klee, C.B.; Bax, A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science, 1992, 256(5057), 632-638.
[34]
Clore, G.M.; Bax, A.; Ikura, M.; Gronenborn, A.M. Structure of calmodulin-target peptide complexes. Curr. Opin. Struct. Biol., 1993, 3, 838-845.
[35]
Meador, W.E.; Means, A.R.; Quiocho, F.A. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science, 1992, 257(5074), 1251-1255.
[36]
Fallon, J.L.; Halling, D.B.; Hamilton, S.L.; Quiocho, F.A. Structure of calmodulin bound to the hydrophobic IQ domain of the cardiac Ca(v)1.2 calcium channel. Structure, 2005, 13(12), 1881-1886.
[37]
Van Petegem, F.; Chatelain, F.C.; Minor, D.L., Jr Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain–Ca2+/calmodulin complex. Nat. Struct. Mol. Biol., 2005, 12(12), 1108-1115.
[38]
Lau, S.Y.; Procko, E.; Gaudet, R. Distinct properties of Ca2+–calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. J. Gen. Physiol., 2012, 140(5), 541-555.
[39]
Aoyagi, M.; Arvai, A.S.; Tainer, J.A.; Getzoff, E.D. Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J., 2003, 22(5), 766-775.
[40]
Ikura, M.; Barbato, G.; Klee, C.B.; Bax, A. Solution structure of calmodulin and its complex with a myosin light chain kinase fragment. Cell Calcium, 1992, 13(6-7), 391-400.
[41]
Osawa, M.; Tokumitsu, H.; Swindells, M.B.; Kurihara, H.; Orita, M.; Shibanuma, T.; Furuya, T.; Ikura, M. A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase. Nat. Struct. Biol., 1998, 6(9), 819-824.
[42]
Juranic, N.; Atanasova, E.; Filoteo, A.G.; Macura, S.; Prendergast, F.G.; Penniston, J.T.; Strehler, E.E. Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif. J. Biol. Chem., 2010, 285(6), 4015-4024.
[43]
Maximciuc, A.A.; Putkey, J.A.; Shamoo, Y.; Mackenzie, K.R. Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode. Structure, 2006, 14(10), 1547-1556.
[44]
Cao, P.; Zhang, W.; Gui, W.; Dong, Y.; Jiang, T.; Gong, Y. Structural insights into the mechanism of calmodulin binding to death receptors. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(6), 1604-1613.
[45]
Kurokawa, H.; Osawa, M.; Kurihara, H.; Katayama, N.; Tokumitsu, H.; Swindells, M.B.; Kainosho, M.; Ikura, M. Target-induced conformational adaptation of calmodulin revealed by the crystal structure of a complex with nematode Ca(2+)/calmodulin-dependent kinase kinase peptide. J. Mol. Biol., 2001, 312(1), 59-68.
[46]
Bayley, P.M.; Findlay, W.A.; Martin, S.R. Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences. Protein Sci., 1996, 5(7), 1215-1228.
[47]
Lee, K.; Alphonse, S.; Piserchio, A.; Tavares, C.D.J.; Giles, D.H.; Wellmann, R.M.; Dalby, K.N.; Ghose, R. Structural basis for the recognition of eukaryotic elongation factor 2 kinase by calmodulin. Structure, 2016, 24(9), 1441-1451.
[48]
Patel, N.; Stengel, F.; Aebersold, R.; Gold, M.G. Molecular basis of AKAP79 regulation by calmodulin. Nat. Commun., 2017, 8(1), 1681.
[49]
Ye, Q.; Li, X.; Wong, A.; Wei, Q.; Jia, Z. Structure of calmodulin bound to a calcineurin peptide: A new way of making an old binding mode. Biochemistry, 2006, 45(3), 738-745.
[50]
Ye, Q.; Wang, H.; Zheng, J.; Wei, Q. JIa, Z. The complex structure of calmodulin bound to a calcineurin peptide. Proteins, 2008, 73(1), 19-27.
[51]
Majava, V.; Kursula, P. Domain swapping and different oligomeric States for the complex between calmodulin and the calmodulin-binding domain of calcineurin a. PLoS One, 2009, 4(4)e5402
[52]
Köster, S.; Pavkov-Keller, T.; Kühlbrandt, W.; Yildiz, Ö. Structure of human Na+/H+ exchanger NHE1 regulatory region in complex with calmodulin and Ca2+. J. Biol. Chem., 2011, 286(47), 40954-40961.
[53]
Vlach, J.; Samal, A.B.; Saad, J.S. Solution structure of calmodulin bound to the binding domain of the HIV-1 matrix protein. J. Biol. Chem., 2014, 289(12), 8697-8705.
[54]
Johnson, C.N.; Potet, F.; Thompson, M.K.; Knollmann, B.C.; George, A.L., Jr; Chazin, W.J. A mechanism of calmodulin modulation of the human cardiac sodium channel. Structure, 2018, 26(5), 683-694.
[55]
Sarhan, M.F.; Tung, C.C.; Van Petegem, F.; Ahem, C.A. Crystallographic basis for calcium regulation of sodium channels. Proc. Natl. Acad. Sci. USA, 2012, 109(9), 3558-3563.
[56]
Potet, F.; Chagot, B.; Anghelescu, M.; Viswanathan, P.C.; Stepanovic, S.Z.; Kupershmidt, S.; Chazin, W.J.; Balser, J.R. Functional interactions between distinct sodium channel cytoplasmic domains through the action of calmodulin. J. Biol. Chem., 2009, 284(13), 8846-8854.
[57]
Bernardo-Seisdedos, G.; Nuñez, E.; Gomis-Perez, C.; Malo, C.; Villarroel, Á.; Millet, O. Structural basis and energy landscape for the Ca2+ gating and calmodulation of the Kv7.2 K+ channel. Proc. Natl. Acad. Sci. USA, 2018, 115(10), 2395-2400.
[58]
Sachyani, D.; Dvir, M.; Strulovich, R.; Tria, G.; Tobelaim, W.; Peretz, A.; Pongs, O.; Svergun, D.; Attali, B.; Hirsch, J.A. Structural basis of a Kv7.1 potassium channel gating module: Studies of the intracellular c-terminal domain in complex with calmodulin. Structure, 2014, 22(11), 1582-1594.
[59]
Strulovich, R.; Tobelaim, W.S.; Attali, B.; Hirsch, J.A. Structural insights into the M-channel proximal C-terminus/calmodulin complex. Biochemistry, 2016, 55(38), 5353-5365.
[60]
Gifford, J.L.; Ishida, H.; Vogel, H.J. Structural insights into calmodulin-regulated L-selectin ectodomain shedding. J. Biol. Chem., 2012, 287(32), 26513-26527.
[61]
Schmidt, A.; Kalkhof, S.; Ihling, C.; Cooper, D.M.; Sinz, A. Mapping protein interfaces by chemical cross-linking and Fourier transform ion cyclotron resonance mass spectrometry: Application to a calmodulin / adenylyl cyclase 8 peptide complex. Eur. J. Mass Spectrom. (Chichester, Eng.), 2005, 11(5), 525-534.
[62]
Dimova, K.; Kalkhof, S.; Pottratz, I.; Ihling, C.; Rodriguez-Castaneda, F.; Liepold, T.; Griesinger, C.; Brose, N.; Sinz, A.; Jahn, O. Structural insights into the calmodulin-Munc13 interaction obtained by cross-linking and mass spectrometry. Biochemistry, 2009, 48(25), 5908-5921.
[63]
Chavez, J.D.; Liu, N.L.; Bruce, J.E. Quantification of protein–protein interactions with chemical cross-linking and mass spectrometry. J. Proteome Res., 2011, 10(4), 1528-1537.
[64]
Schulz, D.M.; Ihling, C.; Clore, G.M.; Sinz, A. Mapping the topology and determination of a low-resolution three-dimensional structure of the calmodulin-melittin complex by chemical cross-linking and high-resolution FTICRMS: Direct demonstration of multiple binding modes. Biochemistry, 2004, 43(16), 4703-4715.
[65]
Irene, D.; Huang, J.W.; Chung, T.Y.; Li, F.Y.; Tzen, J.T.; Lin, T.H.; Chyan, C-L. Binding orientation and specificity of calmodulin to rat olfactory cyclic nucleotide-gated ion channel. J. Biomol. Struct. Dyn., 2013, 31(4), 414-425.
[66]
Dunlap, T.B.; Guo, H.F.; Cook, E.C.; Holbrook, E.; Rumi-Masante, J.; Lester, T.E.; Colbert, C.L.; Vander Kooi, C.W.; Creamer, T.P. Stoichiometry of the calcineurin regulatory domain-calmodulin complex. Biochemistry, 2014, 53(36), 5779-5790.
[67]
Chyan, C-L.; Irene, D.; Lin, S-M. The Recognition of Calmodulin to the Target Sequence of Calcineurin—A Novel Binding Mode. Molecules, 2017, 22(10)e1584
[68]
Chen, L.T.; Liang, W.X.; Chen, S.; Li, R.K.; Tan, J.L.; Xu, P.F.; Luo, L.F.; Wang, L.; Yu, S.H.; Meng, G.; Li, K.K.; Liu, T.X.; Chen, Z.; Chen, S.J. Functional and molecular features of the calmodulin-interacting protein IQCG required for haematopoiesis in zebrafish. Nat. Commun., 2014, 5, 3811.
[69]
Chang, A.; Abderemane-Ali, F.; Hura, G.L.; Rossen, N.D.; Gate, R.E. Minor. D.L. Jr. A Calmodulin C-Lobe Ca2+-Dependent Switch Governs Kv7 Channel Function. Neuron, 2018, 97(4), 836-852.
[70]
Grishaev, A.; Anthis, N.J.; Clore, G.M. Contrast-matched small-angle x-ray scattering from a heavy-atom-labeled protein in structure determination: Application to a lead-substituted calmodulin–peptide complex. J. Am. Chem. Soc., 2012, 134(36), 14686-14689.
[71]
Piazza, M.; Taiakina, V.; Guillemette, S.R.; Guillemette, J.G.; Dieckmann, T. Solution structure of calmodulin bound to the target peptide of endothelial nitric oxide synthase phosphorylated at Thr495. Biochemistry, 2014, 53(8), 1241-1249.
[72]
Zhang, Y.; Matt, L.; Patriarchi, T.; Malik, Z.A.; Chowdhury, D.; Park, D.K.; Renieri, A.; Ames, J.B.; Hell, J.W. Capping of the N-terminus of PSD-95 by calmodulin triggers its postsynaptic release. EMBO J., 2014, 33(12), 1341-1353.
[73]
Keller, J.P. Solution of the structure of a calmodulin-peptide complex in a novel configuration from a variably twinned data set. Acta Crystallogr. D Biol. Crystallogr., 2017, 73, 22-31.
[74]
Chen, Y.; Clarke, O.B.; Kim, J.; Stowe, S.; Kim, Y.K.; Assur, Z.; Cavalier, M.; Godoy-Ruiz, R.; von Alpen, D.C.; Manzini, C.; Blaner, W.S.; Frank, J.; Quadro, L.; Weber, D.J.; Shapiro, L.; Hendrickson, W.A.; Mancia, F. Structure of the STRA6 receptor for retinol uptake. Science, 2016, 353(6302)aad8266
[75]
Piazza, M.; Dieckmann, T.; Guillemette, J.G. Structural studies of a complex between endothelial nitric oxide synthase and calmodulin at physiological calcium concentration. Biochemistry, 2016, 55(42), 5962-5971.
[76]
Marques-Carvalho, M.J.; Oppermann, J.; Munoz, E.; Fernandes, A.S.; Gabant, G.; Cadene, M.; Heinemann, S.H.; Schonherr, R.; Morais-Cabral, J.H. Molecular insights into the mechanism of calmodulin inhibition of the EAG1 potassium channel. Structure, 2016, 24(10), 1742-1754.
[77]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[78]
Chowdhury, D.; Turner, M.; Patriarchi, T.; Hergarden, A.C.; Anderson, D.; Zhang, Y.; Sun, J.; Chen, C.Y.; Ames, J.B.; Hell, J.W. Ca2+/calmodulin binding to PSD-95 mediates homeostatic synaptic scaling down. EMBO J., 2018, 37(1), 122-138.