Review Article

内皮在主动脉瘤疾病中的应用:新见解

卷 27, 期 7, 2020

页: [1081 - 1088] 页: 8

弟呕挨: 10.2174/0929867326666190923151959

价格: $65

摘要

炎症被认为是主动脉瘤发展和生长的基本要素。由于炎症,基质金属蛋白酶激活,氧化应激和血管平滑肌细胞凋亡,主动脉瘤与主动脉壁畸形和损伤相关。内皮壁在主动脉发炎中起关键作用,并且内皮异质性已被证明对于模拟动脉瘤形成具有重要意义。内皮剪切应力和血流通过阻碍内皮细胞分泌的细胞因子和粘附分子而影响主动脉壁,从而导致中膜和外膜的炎症过程减少。这种病理生理过程导致弹性纤维的破坏,胶原纤维的降解以及血管平滑肌细胞的破坏。因此,主动脉壁由于厚度减小,机械功能降低而受损,并且不能忍受导致主动脉扩张的血流冲击。外科手术仍被认为是大主动脉瘤的主要治疗手段。但是,预防主动脉扩张的基础是药物对内皮功能失调的阻碍,活性氧和氮物种的减少以及促炎分子和金属蛋白酶的减少。需要进一步的研究以启发内皮细胞在主动脉疾病中的新兴作用。

关键词: 内皮,内皮功能障碍,主动脉,心血管疾病,动脉瘤,病理生理过程

[1]
Piechota-Polanczyk, A.; Jozkowicz, A.; Nowak, W.; Eilenberg, W.; Neumayer, C.; Malinski, T.; Huk, I.; Brostjan, C. The abdominal aortic aneurysm and intraluminal thrombus: current concepts of development and treatment. Front. Cardiovasc. Med., 2015, 2, 19.
[http://dx.doi.org/10.3389/fcvm.2015.00019] [PMID: 26664891 ]
[2]
Bäck, M.; Gasser, T.C.; Michel, J.B.; Caligiuri, G. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc. Res., 2013, 99(2), 232-241.
[http://dx.doi.org/10.1093/cvr/cvt040] [PMID: 23459103 ]
[3]
Gomez, D.; Al Haj Zen, A.; Borges, L.F.; Philippe, M.; Gutierrez, P.S.; Jondeau, G.; Michel, J.B.; Vranckx, R. Syndromic and non-syndromic aneurysms of the human ascending aorta share activation of the Smad2 pathway. J. Pathol., 2009, 218(1), 131-142.
[http://dx.doi.org/10.1002/path.2516] [PMID: 19224541 ]
[4]
Touat, Z.; Lepage, L.; Ollivier, V.; Nataf, P.; Hvass, U.; Labreuche, J.; Jandrot-Perrus, M.; Michel, J.B.; Jondeau, G. Dilation-dependent activation of platelets and prothrombin in human thoracic ascending aortic aneurysm. Arterioscler. Thromb. Vasc. Biol., 2008, 28(5), 940-946.
[http://dx.doi.org/10.1161/ATVBAHA.107.158576] [PMID: 18292393 ]
[5]
Tsilimigras, D.I.; Sigala, F.; Karaolanis, G.; Ntanasis-Stathopoulos, I.; Spartalis, E.; Spartalis, M.; Patelis, N.; Papalampros, A.; Long, C.; Moris, D. Cytokines as biomarkers of inflammatory response after open versus endovascular repair of abdominal aortic aneurysms: a systematic review. Acta Pharmacol. Sin., 2018, 39(7), 1164-1175. >.
[http://dx.doi.org/10.1038/aps.2017.212] [PMID: 29770795 ]
[6]
Lederle, F.A.; Nelson, D.B.; Joseph, A.M. Smokers’ relative risk for aortic aneurysm compared with other smoking-related diseases: a systematic review. J. Vasc. Surg., 2003, 38(2), 329-334.
[http://dx.doi.org/10.1016/S0741-5214(03)00136-8] [PMID: 12891116 ]
[7]
Shantikumar, S.; Ajjan, R.; Porter, K.E.; Scott, D.J.A. Diabetes and the abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg., 2010, 39(2), 200-207.
[http://dx.doi.org/10.1016/j.ejvs.2009.10.014] [PMID: 19948418 ]
[8]
Choke, E.; Cockerill, G.; Wilson, W.R.; Sayed, S.; Dawson, J.; Loftus, I.; Thompson, M.M. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur. J. Vasc. Endovasc. Surg., 2005, 30(3), 227-244.
[http://dx.doi.org/10.1016/j.ejvs.2005.03.009] [PMID: 15893484 ]
[9]
Siasos, G.; Mourouzis, K.; Oikonomou, E.; Tsalamandris, S.; Tsigkou, V.; Vlasis, K.; Vavuranakis, M.; Zografos, T.; Dimitropoulos, S.; Papaioannou, T.G.; Kalampogias, A.; Stefanadis, C.; Papavassiliou, A.G.; Tousoulis, D. The role of endothelial dysfunction in aortic aneurysms. Curr. Pharm. Des., 2015, 21(28), 4016-4034.
[http://dx.doi.org/10.2174/1381612821666150826094156] [PMID: 26306838 ]
[10]
Sena, C.M.; Pereira, A.M.; Seiça, R. Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochim. Biophys. Acta, 2013, 1832(12), 2216-2231.
[http://dx.doi.org/10.1016/j.bbadis.2013.08.006] [PMID: 23994612 ]
[11]
Moris, D.; Spartalis, M.; Tzatzaki, E.; Spartalis, E.; Karachaliou, G.S.; Triantafyllis, A.S.; Karaolanis, G.I.; Tsilimigras, D.I.; Theocharis, S. The role of reactive oxygen species in myocardial redox signaling and regulation. Ann. Transl. Med., 2017, 5(16), 324.
[http://dx.doi.org/10.21037/atm.2017.06.17] [PMID: 28861421 ]
[12]
Malashicheva, A.; Kostina, D.; Kostina, A.; Irtyuga, O.; Voronkina, I.; Smagina, L.; Ignatieva, E.; Gavriliuk, N.; Uspensky, V.; Moiseeva, O.; Vaage, J.; Kostareva, A. Phenotypic and functional changes of endothelial and smooth muscle cells in thoracic aortic aneurysms. Int. J. Vasc. Med., 2016, 20163107879
[http://dx.doi.org/10.1155/2016/3107879]
[13]
Corcoran, M.L.; Stetler-Stevenson, W.G.; Brown, P.D.; Wahl, L.M. Interleukin 4 inhibition of prostaglandin E2 synthesis blocks interstitial collagenase and 92-kDa type IV collagenase/gelatinase production by human monocytes. J. Biol. Chem., 1992, 267(1), 515-519.
[PMID: 1309751]
[14]
Varga, J.; Diaz-Perez, A.; Rosenbloom, J.; Jimenez, S.A. PGE2 causes a coordinate decrease in the steady state levels of fibronectin and types I and III procollagen mRNAs in normal human dermal fibroblasts. Biochem. Biophys. Res. Commun., 1987, 147(3), 1282-1288.
[http://dx.doi.org/10.1016/S0006-291X(87)80209-7] [PMID: 3478047]
[15]
Salcedo, R.; Zhang, X.; Young, H.A.; Michael, N.; Wasserman, K.; Ma, W.H.; Martins-Green, M.; Murphy, W.J.; Oppenheim, J.J. Angiogenic effects of prostaglandin E2 are mediated by up-regulation of CXCR4 on human microvascular endothelial cells. Blood, 2003, 102(6), 1966-1977.
[http://dx.doi.org/10.1182/blood-2002-11-3400] [PMID: 12791666 ]
[16]
Wang, D.; Wang, H.; Brown, J.; Daikoku, T.; Ning, W.; Shi, Q.; Richmond, A.; Strieter, R.; Dey, S.K.; DuBois, R.N. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J. Exp. Med, 2006, 203(4), 941-951. >.
[http://dx.doi.org/10.1084/jem.20052124] [PMID: 16567391 ]
[17]
Nakayama, T.; Mutsuga, N.; Yao, L.; Tosato, G. Prostaglandin E2 promotes degranulation-independent release of MCP-1 from mast cells. J. Leukoc. Biol., 2006, 79(1), 95-104.
[http://dx.doi.org/10.1189/jlb.0405226] [PMID: 16275896 ]
[18]
Qian, R.Z.; Yue, F.; Zhang, G.P.; Hou, L.K.; Wang, X.H.; Jin, H.M. Roles of cyclooxygenase-2 in microvascular endothelial cell proliferation induced by basic fibroblast growth factor. Chin. Med. J. (Engl.), 2008, 121(24), 2599-2603.
[http://dx.doi.org/10.1097/00029330-200812020-00023] [PMID: 19187602 ]
[19]
Gitlin, J.M.; Trivedi, D.B.; Langenbach, R.; Loftin, C.D. Genetic deficiency of cyclooxygenase-2 attenuates abdominal aortic aneurysm formation in mice. Cardiovasc. Res., 2007, 73(1), 227-236.
[http://dx.doi.org/10.1016/j.cardiores.2006.10.015] [PMID: 17137566 ]
[20]
Walton, L.J.; Franklin, I.J.; Bayston, T.; Brown, L.C.; Greenhalgh, R.M.; Taylor, G.W.; Powell, J.T. Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms: implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms. Circulation, 1999, 100(1), 48-54.
[http://dx.doi.org/10.1161/01.CIR.100.1.48] [PMID: 10393680 ]
[21]
Bayston, T.; Ramessur, S.; Reise, J.; Jones, K.G.; Powell, J.T. Prostaglandin E2 receptors in abdominal aortic aneurysm and human aortic smooth muscle cells. J. Vasc. Surg., 2003, 38(2), 354-359.
[http://dx.doi.org/10.1016/S0741-5214(03)00339-2] [PMID: 12891120 ]
[22]
King, V.L.; Trivedi, D.B.; Gitlin, J.M.; Loftin, C.D. Selective cyclooxygenase-2 inhibition with celecoxib decreases angiotensin II-induced abdominal aortic aneurysm formation in mice. Arterioscler. Thromb. Vasc. Biol., 2006, 26(5), 1137-1143.
[http://dx.doi.org/10.1161/01.ATV.0000216119.79008.ac] [PMID: 16514081 ]
[23]
Wang, M.; Lee, E.; Song, W.; Ricciotti, E.; Rader, D.J.; Lawson, J.A.; Puré, E.; FitzGerald, G.A. Microsomal prostaglandin E synthase-1 deletion suppresses oxidative stress and angiotensin II-induced abdominal aortic aneurysm formation. Circulation, 2008, 117(10), 1302-1309.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.731398] [PMID: 18285567 ]
[24]
Moris, D.; Spartalis, M.; Spartalis, E.; Karachaliou, G.S.; Karaolanis, G.I.; Tsourouflis, G.; Tsilimigras, D.I.; Tzatzaki, E.; Theocharis, S. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann. Transl. Med., 2017, 5(16), 326.
[http://dx.doi.org/10.21037/atm.2017.06.27] [PMID: 28861423 ]
[25]
Soler, M.; Camacho, M.; Escudero, J.R.; Iñiguez, M.A.; Vila, L. Human vascular smooth muscle cells but not endothelial cells express prostaglandin E synthase. Circ. Res., 2000, 87(6), 504-507.
[http://dx.doi.org/10.1161/01.RES.87.6.504] [PMID: 10988243 ]
[26]
Camacho, M.; Gerbolés, E.; Escudero, J.R.; Antón, R.; García-Moll, X.; Vila, L. Microsomal prostaglandin E synthase-1, which is not coupled to a particular cyclooxygenase isoenzyme, is essential for prostaglandin E(2) biosynthesis in vascular smooth muscle cells. J. Thromb. Haemost., 2007, 5(7), 1411-1419.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02555.x] [PMID: 17403097 ]
[27]
Solà-Villà, D.; Camacho, M.; Solà, R.; Soler, M.; Diaz, J.M.; Vila, L. IL-1β induces VEGF, independently of PGE2 induction, mainly through the PI3-K/mTOR pathway in renal mesangial cells. Kidney Int., 2006, 70(11), 1935-1941.
[http://dx.doi.org/10.1038/sj.ki.5001948] [PMID: 17035941 ]
[28]
Blackburn, E.H. Structure and function of telomeres. Nature, 1991, 350(6319), 569-573.
[http://dx.doi.org/10.1038/350569a0] [PMID: 1708110 ]
[29]
Chan, S.R.; Blackburn, E.H. Telomeres and telomerase. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2004, 359(1441), 109-121.
[http://dx.doi.org/10.1098/rstb.2003.1370] [PMID: 15065663 ]
[30]
op den Buijs, J.; van den Bosch, P.P.; Musters, M.W.; van Riel, N.A. Mathematical modeling confirms the length-dependency of telomere shortening. Mech. Ageing Dev., 2004, 125(6), 437-444.
[http://dx.doi.org/10.1016/j.mad.2004.03.007] [PMID: 15178133 ]
[31]
Dimitroulis, D.; Katsargyris, A.; Klonaris, C.; Avgerinos, E.D.; Fragou-Plemenou, M.; Kouraklis, G.; Liapis, C.D. Telomerase expression on aortic wall endothelial cells is attenuated in abdominal aortic aneurysms compared to healthy nonaneurysmal aortas. J. Vasc. Surg., 2011, 54(6), 1778-1783.
[http://dx.doi.org/10.1016/j.jvs.2011.06.079] [PMID: 21917401 ]
[32]
Cafueri, G.; Parodi, F.; Pistorio, A.; Bertolotto, M.; Ventura, F.; Gambini, C.; Bianco, P.; Dallegri, F.; Pistoia, V.; Pezzolo, A.; Palombo, D. Endothelial and smooth muscle cells from abdominal aortic aneurysm have increased oxidative stress and telomere attrition. PLoS One, 2012, 7(4)e35312
[http://dx.doi.org/10.1371/journal.pone.0035312] [PMID: 22514726 ]
[33]
Wilson, W.R.; Herbert, K.E.; Mistry, Y.; Stevens, S.E.; Patel, H.R.; Hastings, R.A.; Thompson, M.M.; Williams, B. Blood leucocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease. Eur. Heart J., 2008, 29(21), 2689-2694.
[http://dx.doi.org/10.1093/eurheartj/ehn386] [PMID: 18762552 ]
[34]
Atturu, G.; Brouilette, S.; Samani, N.J.; London, N.J.; Sayers, R.D.; Bown, M.J. Short leukocyte telomere length is associated with abdominal aortic aneurysm (AAA). Eur. J. Vasc. Endovasc. Surg., 2010, 39(5), 559-564.
[http://dx.doi.org/10.1016/j.ejvs.2010.01.013] [PMID: 20172749 ]
[35]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med, 2010, 49(11), 1603-1616. 0.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865 ]
[36]
Golledge, J.; Muller, R.; Clancy, P.; McCann, M.; Norman, P.E. Evaluation of the diagnostic and prognostic value of plasma D-dimer for abdominal aortic aneurysm. Eur. Heart J., 2011, 32(3), 354-364.
[http://dx.doi.org/10.1093/eurheartj/ehq171] [PMID: 20530504 ]
[37]
Kanai, A.J.; Strauss, H.C.; Truskey, G.A.; Crews, A.L.; Grunfeld, S.; Malinski, T. Shear stress induces ATP-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor. Circ. Res., 1995, 77(2), 284-293.
[http://dx.doi.org/10.1161/01.RES.77.2.284] [PMID: 7614715 ]
[38]
Kawashima, S. The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis. Endothelium, 2004, 11(2), 99-107.
[http://dx.doi.org/10.1080/10623320490482637] [PMID: 15370069 ]
[39]
Khan, B.V.; Harrison, D.G.; Olbrych, M.T.; Alexander, R.W.; Medford, R.M. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc. Natl. Acad. Sci. USA, 1996, 93(17), 9114-9119.
[http://dx.doi.org/10.1073/pnas.93.17.9114] [PMID: 8799163 ]
[40]
van den Oever, I.A.; Raterman, H.G.; Nurmohamed, M.T.; Simsek, S. Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators Inflamm., 2010, 2010792393
[http://dx.doi.org/10.1155/2010/792393]
[41]
Johanning, J.M.; Armstrong, P.J.; Franklin, D.P.; Han, D.C.; Carey, D.J.; Elmore, J.R. Nitric oxide in experimental aneurysm formation: early events and consequences of nitric oxide inhibition. Ann. Vasc. Surg., 2002, 16(1), 65-72.
[http://dx.doi.org/10.1007/s10016-001-0139-z] [PMID: 11904807 ]
[42]
Gao, L.; Siu, K.L.; Chalupsky, K.; Nguyen, A.; Chen, P.; Weintraub, N.L.; Galis, Z.; Cai, H. Role of uncoupled endothelial nitric oxide synthase in abdominal aortic aneurysm formation: treatment with folic acid. Hypertension, 2012, 59(1), 158-166.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.181644] [PMID: 22083158 ]
[43]
Lizarbe, T.R.; Tarín, C.; Gómez, M.; Lavin, B.; Aracil, E.; Orte, L.M.; Zaragoza, C. Nitric oxide induces the progression of abdominal aortic aneurysms through the matrix metalloproteinase inducer EMMPRIN. Am. J. Pathol., 2009, 175(4), 1421-1430.
[http://dx.doi.org/10.2353/ajpath.2009.080845] [PMID: 19779140 ]
[44]
Mai, J.; Nanayakkara, G.; Lopez-Pastrana, J.; Li, X.; Li, Y.F.; Wang, X.; Song, A.; Virtue, A.; Shao, Y.; Shan, H.; Liu, F.; Autieri, M.V.; Kunapuli, S.P.; Iwakura, Y.; Jiang, X.; Wang, H.; Yang, X.F. Interleukin-17A promotes aortic endothelial cell activation via transcriptionally and post-translationally activating p38 mitogen-activated protein kinase (MAPK) pathway. J. Biol. Chem., 2016, 291(10), 4939-4954.
[http://dx.doi.org/10.1074/jbc.M115.690081] [PMID: 26733204 ]
[45]
Greene, J.A.; Portillo, J.A.; Lopez Corcino, Y.; Subauste, C.S. Lopez, Corcino, Y.; Subauste, C.S. CD40-TRAF signaling upregulates CX3CL1 and TNF-α in human aortic endothelial cells but not in retinal endothelial cells. PLoS One, 2015, 10(12)e0144133
[http://dx.doi.org/10.1371/journal.pone.0144133] [PMID: 26710229 ]
[46]
Adamopoulos, C.; Piperi, C.; Gargalionis, A.N.; Dalagiorgou, G.; Spilioti, E.; Korkolopoulou, P.; Diamanti-Kandarakis, E.; Papavassiliou, A.G. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2-NF-κB and JNK-AP-1 signaling pathways. Cell. Mol. Life Sci., 2016, 73(8), 1685-1698.
[http://dx.doi.org/10.1007/s00018-015-2091-z] [PMID: 26646068 ]
[47]
Ravi, S.; Chaikof, E.L. Biomaterials for vascular tissue engineering. Regen. Med., 2010, 5(1), 107-120.
[http://dx.doi.org/10.2217/rme.09.77] [PMID: 20017698 ]
[48]
Otsuka, F.; Finn, A.V.; Yazdani, S.K.; Nakano, M.; Kolodgie, F.D.; Virmani, R. The importance of the endothelium in atherothrombosis and coronary stenting. Nat. Rev. Cardiol., 2012, 9(8), 439-453.
[http://dx.doi.org/10.1038/nrcardio.2012.64] [PMID: 22614618 ]
[49]
Melchiorri, A.J.; Hibino, N.; Fisher, J.P. Strategies and techniques to enhance the in situ endothelialization of small-diameter biodegradable polymeric vascular grafts. Tissue Eng. Part B Rev., 2013, 19(4), 292-307.
[http://dx.doi.org/10.1089/ten.teb.2012.0577] [PMID: 23252992 ]
[50]
Hur, J.; Yoon, C.H.; Kim, H.S.; Choi, J.H.; Kang, H.J.; Hwang, K.K.; Oh, B.H.; Lee, M.M.; Park, Y.B. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol., 2004, 24(2), 288-293.
[http://dx.doi.org/10.1161/01.ATV.0000114236.77009.06] [PMID: 14699017 ]
[51]
Avci-Adali, M.; Ziemer, G.; Wendel, H.P. Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization--a review of current strategies. Biotechnol. Adv., 2010, 28(1), 119-129.
[http://dx.doi.org/10.1016/j.biotechadv.2009.10.005] [PMID: 19879347 ]
[52]
Schopka, S.; Schmid, T.; Schmid, C.; Lehle, K. Current strategies in cardiovascular biomaterial functionalization. Materials (Basel), 2010, 3(1), 638-655.
[http://dx.doi.org/10.3390/ma3010638]
[53]
Seifalian, A.M.; Tiwari, A.; Rashid, S.T.; Salacinski, H.; Hamilton, G. Impregnation of the the polymeric graft with adhesives molecules, typically oligopeptides or glycoprotein improves retention. Artif. Organs, 2002, 26(2), 209-210.
[http://dx.doi.org/10.1046/j.1525-1594.2002.00878.x] [PMID: 11879251 ]
[54]
Meinhart, J.G.; Deutsch, M.; Fischlein, T.; Howanietz, N.; Fröschl, A.; Zilla, P. Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. Ann. Thorac. Surg., 2001, 71(Suppl. 5), S327-S331.
[http://dx.doi.org/10.1016/S0003-4975(01)02555-3] [PMID: 11388216 ]
[55]
Thomas, A.C.; Campbell, G.R.; Campbell, J.H. Advances in vascular tissue engineering. Cardiovasc. Pathol., 2003, 12(5), 271-276.
[http://dx.doi.org/10.1016/S1054-8807(03)00086-3] [PMID: 14507577 ]
[56]
McGuigan, A.P.; Sefton, M.V. The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials, 2007, 28(16), 2547-2571.
[http://dx.doi.org/10.1016/j.biomaterials.2007.01.039] [PMID: 17316788 ]
[57]
Graham, L.M.; Burkel, W.E.; Ford, J.W.; Vinter, D.W.; Kahn, R.H.; Stanley, J.C. Immediate seeding of enzymatically derived endothelium in Dacron vascular grafts. Early experimental studies with autologous canine cells. Arch. Surg, 1980, 115(11), 1289-1294. 9.
[http://dx.doi.org/10.1001/archsurg.1980.01380110033005] [PMID: 6449186 ]
[58]
Melero-Martin, J.M.; Khan, Z.A.; Picard, A.; Wu, X.; Paruchuri, S.; Bischoff, J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood, 2007, 109(11), 4761-4768.
[http://dx.doi.org/10.1182/blood-2006-12-062471] [PMID: 17327403 ]
[59]
Urbich, C.; Dimmeler, S. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res., 2004, 95(4), 343-353.
[http://dx.doi.org/10.1161/01.RES.0000137877.89448.78] [PMID: 15321944 ]
[60]
Jevon, M.; Dorling, A.; Hornick, P.I. Progenitor cells and vascular disease. Cell Prolif., 2008, 41(Suppl. 1), 146-164.
[http://dx.doi.org/10.1111/j.1365-2184.2008.00488.x] [PMID: 18181954 ]
[61]
Krenning, G.; Moonen, J.R.; van Luyn, M.J.; Harmsen, M.C. Generating new blood flow: integrating developmental biology and tissue engineering. Trends Cardiovasc. Med., 2008, 18(8), 312-323.
[http://dx.doi.org/10.1016/j.tcm.2009.01.004] [PMID: 19345319 ]
[62]
Hsu, S.H.; Sun, S.H.; Chen, D.C. Improved retention of endothelial cells seeded on polyurethane small-diameter vascular grafts modified by a recombinant RGD-containing protein. Artif. Organs, 2003, 27(12), 1068-1078.
[http://dx.doi.org/10.1111/j.1525-1594.2003.07141.x] [PMID: 14678420 ]
[63]
Asahara, T.; Murohara, T.; Sullivan, A.; Silver, M.; van der Zee, R.; Li, T.; Witzenbichler, B.; Schatteman, G.; Isner, J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275(5302), 964-967.
[http://dx.doi.org/10.1126/science.275.5302.964] [PMID: 9020076 ]
[64]
Alobaid, N.; Salacinski, H.J.; Sales, K.M.; Ramesh, B.; Kannan, R.Y.; Hamilton, G.; Seifalian, A.M. Nanocomposite containing bioactive peptides promote endothelialisation by circulating progenitor cells: an in vitro evaluation. Eur. J. Vasc. Endovasc. Surg., 2006, 32(1), 76-83.
[http://dx.doi.org/10.1016/j.ejvs.2005.11.034] [PMID: 16466940 ]
[65]
de Mel, A.; Jell, G.; Stevens, M.M.; Seifalian, A.M. Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules, 2008, 9(11), 2969-2979.
[http://dx.doi.org/10.1021/bm800681k] [PMID: 18831592 ]
[66]
Alobaid, N.; Salacinski, H.J.; Sales, K.M.; Hamilton, G.; Seifalian, A.M. Single stage cell seeding of small diameter prosthetic cardiovascular grafts. Clin. Hemorheol. Microcirc., 2005, 33(3), 209-226.
[PMID: 16215287 ]
[67]
Wu, Y.F.; Zhang, J.; Gu, Y.Q.; Li, J.X.; Wang, L.C.; Wang, Z.G. Reendothelialization of tubular scaffolds by sedimentary and rotative forces: a first step toward tissue-engineered venous graft. Cardiovasc. Revasc. Med., 2008, 9(4), 238-247.
[http://dx.doi.org/10.1016/j.carrev.2008.01.005] [PMID: 18928949 ]
[68]
Teebken, O.E.; Puschmann, C.; Breitenbach, I.; Rohde, B.; Burgwitz, K.; Haverich, A. Preclinical development of tissue-engineered vein valves and venous substitutes using re-endothelialised human vein matrix. Eur. J. Vasc. Endovasc. Surg., 2009, 37(1), 92-102.
[http://dx.doi.org/10.1016/j.ejvs.2008.10.012] [PMID: 19008126 ]
[69]
Lehle, K.; Stock, M.; Schmid, T.; Schopka, S.; Straub, R.H.; Schmid, C. Cell-type specific evaluation of biocompatibility of commercially available polyurethanes. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 90(1), 312-318.
[http://dx.doi.org/10.1002/jbm.b.31287] [PMID: 19072978 ]
[70]
Gulbins, H.; Pritisanac, A.; Petzold, R.; Goldemund, A.; Doser, M.; Dauner, M.; Meiser, B.; Reichart, B.; Daebritz, S. A low-flow adaptation phase improves shear-stress resistance of artificially seeded endothelial cells. Thorac. Cardiovasc. Surg, 2005, 53(2), 96-102. t>.
[http://dx.doi.org/10.1055/s-2004-830325] [PMID: 15786008 ]
[71]
Zilla, P.; Bezuidenhout, D.; Human, P. Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials, 2007, 28(34), 5009-5027.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.017] [PMID: 17688939 ]
[72]
Rotmans, J.I.; Heyligers, J.M.; Stroes, E.S.; Pasterkamp, G. Endothelial progenitor cell-seeded grafts: rash and risky. Can. J. Cardiol., 2006, 22(11), 929-932.
[http://dx.doi.org/10.1016/S0828-282X(06)70311-7] [PMID: 16971977 ]
[73]
Knight, R.L.; Wilcox, H.E.; Korossis, S.A.; Fisher, J.; Ingham, E. The use of acellular matrices for the tissue engineering of cardiac valves. Proc. Inst. Mech. Eng. H, 2008, 222(1), 129-143.
[http://dx.doi.org/10.1243/09544119JEIM230] [PMID: 18335724 ]
[74]
Liu, T.; Liu, S.; Zhang, K.; Chen, J.; Huang, N. Endothelialization of implanted cardiovascular biomaterial surfaces: the development from in vitro to in vivo. J. Biomed. Mater. Res. A, 2014, 102(10), 3754-3772.
[http://dx.doi.org/10.1002/jbm.a.35025] [PMID: 24243819 ]
[75]
Zilla, P.P.; Greisler, H.P. Tissue engineering of vascular prosthetic grafts; RG Landes: Austin, TX, USA, 1999.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy