[1]
Bruno, A.; Costantino, G.; Sartori, L.; Radi, M. The in silico drug discovery toolbox: Applications in lead discovery and optimization. Curr. Med. Chem., 2019, 26(21), 3838-3873.
[http://dx.doi.org/10.2174/0929867324666171107101035]
[http://dx.doi.org/10.2174/0929867324666171107101035]
[2]
Vucicevic, J.; Nikolic, K.; Mitchell, J.B.O. Rational drug design of antineoplastic agents using 3D-QSAR, cheminformatic, and virtual screening approaches. Curr. Med. Chem., 2019, 26(21), 3874-3889.
[http://dx.doi.org/10.2174/0929867324666170712115411]
[http://dx.doi.org/10.2174/0929867324666170712115411]
[3]
Gemovic, B.; Sumonja, N.; Davidovic, R.; Perovic, V.; Veljkovic, N. Mapping of Protein-Protein Interactions: Web-Based Resources for Revealing Interactomes. Curr. Med. Chem., 2019, 26(21), 3890-3910.
[http://dx.doi.org/10.2174/0929867325666180214113704]
[http://dx.doi.org/10.2174/0929867325666180214113704]
[4]
Pallarès, I.; Ventura, S. Advances in the prediction of protein aggregation propensity. Curr. Med. Chem., 2019, 26(21), 3911-3920.
[http://dx.doi.org/10.2174/0929867324666170705121754]
[http://dx.doi.org/10.2174/0929867324666170705121754]
[5]
Chen, B.; Butte, A.J. Leveraging big data to transform target selection and drug discovery. Clin. Pharmacol. Ther., 2016, 99(3), 285-297.
[http://dx.doi.org/10.1002/cpt.318]
[http://dx.doi.org/10.1002/cpt.318]