Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

General Research Article

The Binding and Viscometric Studies of Ni+2, Co+2 and Mn+2 Ions with Protein by Spectrometric and pH Metric Techniques

Author(s): Shveta Acharya and Arun Kumar Sharma *

Volume 9, Issue 2, 2019

Page: [151 - 162] Pages: 12

DOI: 10.2174/1877946809666190917144139

Abstract

Background: The metal ions play a vital role in a large number of widely differing biological processes. Some of these processes are quite specific in their metal ion requirements. In that only certain metal ions, in specific oxidation states, can full fill the necessary catalytic or structural requirement, while other processes are much less specific.

Objective: In this paper we report the binding of Mn (II), Ni (II) and Co (II) with albumin are reported employing spectrophotometric and pH metric method. In order to distinguish between ionic and colloidal linking, the binding of metal by using pH metric and viscometric methods and the result are discussed in terms of electrovalent and coordinate bonding.

Methods: The binding of Ni+2, Co+2 and Mn+2 ions have been studied with egg protein at different pH values and temperatures by the spectrometric technique.

Results: The binding data were found to be pH and temperature dependent. The intrinsic association constants (k) and the number of binding sites (n) were calculated from Scatchard plots and found to be at the maximum at lower pH and at lower temperatures. Therefore, a lower temperature and lower pH offered more sites in the protein molecule for interaction with these metal ions. Statistical effects seem to be more significant at lower Ni+2, Co+2 and Mn+2 ions concentrations, while at higher concentrations electrostatic effects and heterogeneity of sites are more significant.

Conclusion: The pH metric as well as viscometric data provided sufficient evidence about the linking of cobalt, nickel and manganese ions with the nitrogen groups of albumin. From the nature and height of curves in the three cases it may be concluded that nickel ions bound strongly while the cobalt ions bound weakly.

Keywords: Co+2, Mn+2, egg-protein, gibbs free energy, pH, Ni+2, polarographic.

Graphical Abstract

[1]
Haraguchi, H. Metallomics as integrated biometal science. J. Anal. At. Spectrom., 2004, 19, 5-14.
[http://dx.doi.org/10.1039/b308213j]
[2]
Kleywegt, G.J. Validation of protein crystal structures. Acta Crystallogr. D Biol. Crystallogr., 2000, 56(Pt 3), 249-265.
[http://dx.doi.org/10.1107/S0907444999016364] [PMID: 10713511]
[3]
Szpunar, J. Metallomics: A new frontier in analytical chemistry. Anal. Bioanal. Chem., 2004, 378(1), 54-56.
[http://dx.doi.org/10.1007/s00216-003-2333-z] [PMID: 14614587]
[4]
Paulsen, I.T.; Saier, M.H., Jr A novel family of ubiquitous heavy metal ion transport proteins. J. Membr. Biol., 1997, 156(2), 99-103.
[http://dx.doi.org/10.1007/s002329900192] [PMID: 9075641]
[5]
Huang, L.; Tepaamorndech, S. The SLC30 family of zinc transporters - A review of current understanding of their biological and pathophysiological roles. Mol. Aspects Med., 2013, 34(2-3), 548-560.
[http://dx.doi.org/10.1016/j.mam.2012.05.008] [PMID: 23506888]
[6]
Arora, J.P.S.; Singh, R.P.; Soam, S.; Singh, S.P.; Kumar, R. The interaction between bovine serum albumin and the molybdate ions. Bioelectrochem. Bioenerg., 1983, 10, 441-450.
[http://dx.doi.org/10.1016/0302-4598(83)80071-3]
[7]
Arora, J.P.S.; Singh, R.P.; Soam, S.; Singh, S.P.; Kumar, R. Binding of oxovanadium(V) anion to bovine serum albumin, human serum albumin and bovine pancreatic trypsin. Bioelectrochem. Bioenerg., 1983, 10, 289-300.
[http://dx.doi.org/10.1016/0302-4598(83)85087-9]
[8]
Harris, W.R.; Carrano, C.J. Binding of vanadate to human serum transferrin. J. Inorg. Biochem., 1984, 22(3), 201-218.
[http://dx.doi.org/10.1016/0162-0134(84)80029-X] [PMID: 6569067]
[9]
Dudev, T.; Lin, Y.L.; Dudev, M.; Lim, C. First-second shell interactions in metal binding sites in proteins: A PDB survey and DFT/CDM calculations. J. Am. Chem. Soc., 2003, 125(10), 3168-3180.
[http://dx.doi.org/10.1021/ja0209722] [PMID: 12617685]
[10]
Harding, M.M. The architecture of metal coordination groups in proteins. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 5), 849-859.
[http://dx.doi.org/10.1107/S0907444904004081] [PMID: 15103130]
[11]
Lyons, T.J.; Eide, D.J.; Introduction, V. Transport and storage of metal ions in biology in biological inorganic chemistry: Structure and reactivity; Bertini, I.; Gray, H.; Stiefel, E; Valentine, J.S., Ed.; , 2006, pp. 57-78.
[12]
Harding, M.M. Geometry of metal-ligand interactions in proteins. Acta Crystallogr. D Biol. Crystallogr., 2001, 57(Pt 3), 401-411.
[http://dx.doi.org/10.1107/S0907444900019168] [PMID: 11223517]
[13]
Acharya, S.; Sharma, A.K. Binding studies of metal ions and dyes with biopolymers; LAP LAMBERT Academic Publisher Germany, 2018.
[14]
Harding, M.M. The geometry of metal-ligand interactions relevant to proteins. Acta Crystallogr. D Biol. Crystallogr., 1999, 55(Pt 8), 1432-1443.
[http://dx.doi.org/10.1107/S0907444999007374] [PMID: 10417412]
[15]
Sharma, A.K.; Acharya, S. The Interaction and thermodynamic studies on the binding of congo red dye with collagen protein by polarographic and equilibrium dialysis techniques. Z. Phys. Chem., 2018, 233(5), 691-701.
[http://dx.doi.org/10.1515/zpch-2018-1181]
[16]
Harding, M.M. The geometry of metal-ligand interactions relevant to proteins. II. Angles at the metal atom, additional weak metal-donor interactions. Acta Crystallogr. D Biol. Crystallogr., 2000, 56(Pt 7), 857-867.
[http://dx.doi.org/10.1107/S0907444900005849] [PMID: 10930832]
[17]
Acharya, S.; Sharma, A.K. Interaction studies of metals and surfactant with protein; LAP LAMBERT Academic Publisher: Germany, 2018.
[18]
Drabovich, A.P.; Pavlou, M.P.; Batruch, I.; Diamandis, E.P. Proteomic and mass spectrometry technologies for biomarker discovery. Proteomic and metabolomicapproaches to biomarker discovery; Issaq, H.J; Veenstra, T.D., Ed.; Elsevier: London, UK, 2013, pp. 18-39.
[http://dx.doi.org/10.1016/B978-0-12-394446-7.00002-9]
[19]
Petitpas, I.; Petersen, C.E.; Ha, C.E.; Bhattacharya, A.A.; Zunszain, P.A.; Ghuman, J.; Bhagavan, N.V.; Curry, S. Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc. Natl. Acad. Sci. USA, 2003, 100(11), 6440-6445.
[http://dx.doi.org/10.1073/pnas.1137188100] [PMID: 12743361]
[20]
Bal, W.; Sokołowska, M.; Kurowska, E.; Faller, P. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochim. Biophys. Acta, 2013, 1830(12), 5444-5455.
[http://dx.doi.org/10.1016/j.bbagen.2013.06.018] [PMID: 23811338]
[21]
Stern, B.R.; Solioz, M.; Krewski, D.; Aggett, P.; Aw, T.C.; Baker, S.; Crump, K.; Dourson, M.; Haber, L.; Hertzberg, R.; Keen, C.; Meek, B.; Rudenko, L.; Schoeny, R.; Slob, W.; Starr, T. Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships. J. Toxicol. Environ. Health B Crit. Rev., 2007, 10(3), 157-222.
[http://dx.doi.org/10.1080/10937400600755911] [PMID: 17454552]
[22]
Stewart, A.J.; Blindauer, C.A.; Berezenko, S.; Sleep, D.; Sadler, P.J. Interdomain zinc site on human albumin. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3701-3706.
[http://dx.doi.org/10.1073/pnas.0436576100] [PMID: 12598656]
[23]
Blindauer, C.A.; Harvey, I.; Bunyan, K.E.; Stewart, A.J.; Sleep, D.; Harrison, D.J.; Berezenko, S.; Sadler, P.J. Structure, properties, and engineering of the major zinc binding site on human albumin. J. Biol. Chem., 2009, 284(34), 23116-23124.
[http://dx.doi.org/10.1074/jbc.M109.003459] [PMID: 19520864]
[24]
Van, Q.N. Current NMR strategies for biomarker discovery. Proteomic and metabolomic approaches to biomarker discovery; Issaq, H.J; Veenstra, T.D., Ed.; Elsevier: London, UK, 2013, pp. 88-119.
[http://dx.doi.org/10.1016/B978-0-12-394446-7.00006-6]
[25]
Lu, Y. Metalloprotein and metallo-DNA/RNAzyme design: Current approaches, success measures, and future challenges. Inorg. Chem., 2006, 45(25), 9930-9940.
[http://dx.doi.org/10.1021/ic052007t] [PMID: 17140190]
[26]
Acharya, S.; Sharma, A.K. The thermodynamic and binding studies of Hg+2 ions with egg protein by polarographic and pH metric techniques. Z. Phys. Chem., 2018, 233(8), 1073-1090.
[http://dx.doi.org/10.1515/zpch-2018-1158]
[27]
Acharya, S.; Sharma, A.K. The thermodynamic and pH metric binding studies of Cu+2 ions with egg protein by Spectrometric and diffusion current techniques Z. Phy. Chem, 2018.
[http://dx.doi.org/10.1515/zpch-2018-1320]
[28]
Lu, J.; Stewart, A.J.; Sadler, P.J.; Pinheiro, T.J.T.; Blindauer, C.A. Albumin as a zinc carrier: Properties of its high-affinity zinc-binding site. Biochem. Soc. Trans., 2008, 36(Pt 6), 1317-1321.
[http://dx.doi.org/10.1042/BST0361317] [PMID: 19021548]
[29]
Frassinetti, S.; Bronzetti, G.; Caltavuturo, L.; Cini, M.; Croce, C.D. The role of zinc in life: A review. J. Environ. Pathol. Toxicol. Oncol., 2006, 25(3), 597-610.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i3.40] [PMID: 17073562]
[30]
Keilin, D.; Mann, T. Carbonic anhydrase. Purification and nature of the enzyme. Biochem. J., 1940, 34(8-9), 1163-1176.
[http://dx.doi.org/10.1042/bj0341163] [PMID: 16747299]
[31]
Zheng, H.; Chruszcz, M.; Lasota, P.; Lebioda, L.; Minor, W. Data mining of metal ion environments present in protein structures. J. Inorg. Biochem., 2008, 102(9), 1765-1776.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.05.006] [PMID: 18614239]
[32]
Carter, D.C.; Ho, J.X. Structure of serum albumin. Adv. Protein Chem., 1994, 45, 153-203.
[http://dx.doi.org/10.1016/S0065-3233(08)60640-3] [PMID: 8154369]
[33]
He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(6383), 209-215.
[http://dx.doi.org/10.1038/358209a0] [PMID: 1630489]
[34]
Bhattacharya, A.A.; Grüne, T.; Curry, S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J. Mol. Biol., 2000, 303(5), 721-732.
[35]
Sudlow, G.; Birkett, D.J.; Wade, D.N. The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol., 1975, 11(6), 824-832.
[PMID: 1207674]
[36]
Fasano, M.; Curry, S.; Terreno, E.; Galliano, M.; Fanali, G.; Narciso, P.; Notari, S.; Ascenzi, P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life, 2005, 57(12), 787-796.
[http://dx.doi.org/10.1080/15216540500404093] [PMID: 16393781]
[37]
Laitaoja, M.; Valjakka, J.; Jänis, J. Zinc coordination spheres in protein structures. Inorg. Chem., 2013, 52(19), 10983-10991.
[http://dx.doi.org/10.1021/ic401072d] [PMID: 24059258]
[38]
Acharya, S.; Sharma, A.K. The thermodynamic and pH metric studies on the binding of Hg+2 and Mo+2 with RNA by polarographic and spectrometric techniques. Curr. Phys. Chem., 2018, 8(3), 186-193.
[http://dx.doi.org/10.2174/1877946808666181002102441]
[39]
Espósito, B.P.; Najjar, R. Interactions of antitumoral platinum-group metallodrugs with albumin. Coord. Chem. Rev., 2002, 232(1), 137-149.
[http://dx.doi.org/10.1016/S0010-8545(02)00049-8]
[40]
Barnett, J.P.; Blindauer, C.A.; Kassaar, O.; Khazaipoul, S.; Martin, E.M.; Sadler, P.J.; Stewart, A.J. Allosteric modulation of zinc speciation by fatty acids. Biochimica et Biophysica Acta (BBA) -. General Subjects, 2013, 1830(12), 5456-5464.
[http://dx.doi.org/10.1016/j.bbagen.2013.05.028]
[41]
Sendzik, M.; Pushie, M.J.; Stefaniak, E.; Haas, K.L. The structure and affinity of Cu. Structure and affinity of Cu(I) bound to human serum albumin. Inorg. Chem., 2017, 56(24), 15057-15065.
[http://dx.doi.org/10.1021/acs.inorgchem.7b02397] [PMID: 29166002]

© 2024 Bentham Science Publishers | Privacy Policy