Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Synthesis of Propargylamines by Cross-Dehydrogenative Coupling

Author(s): Francisco Alonso*, Irene Bosque, Rafael Chinchilla, José Carlos Gonzalez-Gomez and David Guijarro

Volume 6, Issue 2, 2019

Page: [105 - 126] Pages: 22

DOI: 10.2174/2213346106666190916104701

Abstract

Propargylamines are versatile compounds for heterocyclic synthesis, some of which are current drugs prescribed to treat patients with Parkinson’s disease. There are different methods to synthesize propargylamines, however, modern chemistry has moved progressively to rely on new strategies that meet the principles of Green Chemistry. In this context, propargylamines are readily accessible by the cross-dehydrogenative coupling (CDC) of two C-H bonds (i.e., NCsp3-H and Csp-H bonds); surely, CDC can be considered the most atom-economic and efficient manner to form C-C bonds. The aim of this review is to provide a comprehensive survey on the synthesis of propargylamines by the CDC of amines and terminal alkynes from three fronts: (a) transition-metal homogeneous catalysis, (b) transition-metal heterogeneous catalysis and (c) photoredox catalysis. A section dealing with the asymmetric synthesis of chiral propargylamines is also included. Special attention is also devoted to the proposed reaction mechanisms.

Keywords: Asymmetric synthesis, cross-dehydrogenative coupling, green chemistry, homogeneous catalysis, heterogeneous catalysis, photoredox catalysis, propargylamines, tetrahydroisoquinolines.

Next »
Graphical Abstract

[1]
(a) Xiao, F.; Chen, Y.; Liu, Y.; Whang, J. Sequential catalytic process: Synthesis of quinoline derivatives by AuCl3/CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes. Tetrahedron, 2008, 64(131), 2755-2761.
[http://dx.doi.org/10.1016/j.tet.2008.01.046]
(b) Shibata, D.; Okada, E.; Molette, J.; Médebielle, M. Facile synthesis of fluorine-containing 1,10-phenanthrolines by the pyridine-ring formation reaction of N-propargyl-5,7-bis(trifluoroacetyl)-8-quinolylamine with amines: Isolation of the intermediates 1,4-dihydro-1,10-phenanthrolin-4-ols. Tetrahedron Lett., 2008, 49(50), 7161-7164.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.172]
(c) Yamamoto, Y.; Hayashi, H.; Saigoku, T.; Nishiyama, H. Domino coupling relay approach to polycyclic pyrrole-2-carboxylates. J. Am. Chem. Soc., 2005, 127(31), 10804-10805.
[http://dx.doi.org/10.1021/ja053408a] [PMID: 16076166]
(d) Harvey, D.F.; Sigano, D.M. Synthesis of cyclopropylpyrrolidines via reaction of N-allyl-N-propargylamides with a molybdenum carbene complex. Effect of substituents and reaction conditions. J. Org. Chem., 1996, 61(7), 2268-2272.
[http://dx.doi.org/10.1021/jo9519930]
(e) Albaladejo, M.J.; Alonso, F.; González-Soria, M.J. Synthetic and mechanistic studies on the solvent-dependent copper-catalyzed formation of indolizines and chalcones. ACS Catal., 2015, 5(6), 3446-3456.
[http://dx.doi.org/10.1021/acscatal.5b00417]
(f) Lee, E-S.; Yeom, H-S.; Hwang, J-H.; Shin, S. A practical gold‐catalyzed route to 4‐substituted oxazolidin‐2‐ones from N‐Boc propargylamines. Eur. J. Org. Chem., 2007, (12), 3503-3507.
[http://dx.doi.org/10.1002/ejoc.200700210]
[2]
(a) Jiang, C.; Xu, M.; Wang, S.; Wang, H.; Yao, Z-J. Azaanthraquinone assembly from N-propargylamino quinone via a Au(I)-catalyzed 6-endo-dig cycloisomerization. J. Org. Chem., 2010, 75(12), 4323-4325.
[http://dx.doi.org/10.1021/jo1006637] [PMID: 20491491]
(b) Fañanás, F.J.; Arto, T.; Mendoza, A.; Rodríguez, F. Synthesis of 2,5-dihydropyridine derivatives by gold-catalyzed reactions of β-ketoesters and propargylamines. Org. Lett., 2011, 13(16), 4184-4187.
[http://dx.doi.org/10.1021/ol201655u] [PMID: 21761882]
(c)Symeonidis, T.S.; Kallitsakis, M.G.; Litinas, K.E. Synthesis of [5,6]-fused pyridocoumarins through aza-Claisen rearrangement of 6-propargylaminocoumarins. Tetrahedron Lett., 2011, 52(42), 5452-5455.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.012]
(d) Zhao, Y.L.; Di, C-H.; Liu, S-D.; Meng, J.; Liu, Q. [3+2] Cycloaddition of propargylamines and α-acylketene dithioacetals: A synthetic strategy for highly substituted pyrroles. Adv. Synth. Catal., 2012, 354(18), 3545-3550.
[http://dx.doi.org/10.1002/adsc.201200375]
(e) Wachenfeldt, H.V.; Paulsen, F.; Sundin, A.; Strand, D. Synthesis of substituted oxazoles from N-benzyl propargyl amines and acid chlorides. Eur. J. Org. Chem., 2013, (21), 4578-3550.
(f) Alcaide, B.; Almendros, P.; Alonso, J.M.; Fernández, I.; Campillos, G.G.; Torres, M.R. A gold-catalysed imine-propargylamine cascade sequence: Synthesis of 3-substituted-2,5-dimethylpyrazines and the reaction mechanism. Chem. Commun. (Camb.),, 2014, 50(35), 4567-4567.
[3]
Account: Nakamura, H. (sp3)-H versus C(sp3)-C(sp) in activation of propargyl amines under transition-metal catalysis. Synlett, 2015, 26(12), 1649-1664.
[http://dx.doi.org/10.1055/s-0034-1380462]
[4]
(a) Hoepping, A.; Johnson, K.M.; George, C.; Flippen-Anderson, J.; Kozikowski, A.P. Novel conformationally constrained tropane analogues by 6-endo-trig radical cyclization and stille coupling - switch of activity toward the serotonin and/or norepinephrine transporter. J. Med. Chem., 2000, 43(10), 2064-2071.
[http://dx.doi.org/10.1021/jm0001121] [PMID: 10821718]
(b) Jiang, B.; Xu, M. Highly enantioselective construction of fused pyrrolidine systems that contain a quaternary stereocenter: Concise formal synthesis of (+)-conessine. Angew. Chem. Int. Ed., 2004, 43(19), 2543-2546.
[http://dx.doi.org/10.1002/anie.200353583] [PMID: 15127448]
(c) Fleming, J.J.; Du Bois, J. A synthesis of (+)-saxitoxin. J. Am. Chem. Soc., 2006, 128(12), 3926-3927.
[http://dx.doi.org/10.1021/ja0608545] [PMID: 16551097]
[5]
(a) Review: Bar-Am, O.; Amit, T.; Weinreb, O.; Youdim, M.B.H.; Mandel, S. Propargylamine containing compounds as modulators of proteolytic cleavage of amyloid protein precursor: Involvement of MAPK and PKC activation. J. Alzheimers Dis., 2010, 21(2), 361-371.
[http://dx.doi.org/10.3233/JAD-2010-100150] [PMID: 20555137]
(b) Bolea, I.; Gella, A.; Unzeta, M. Propargylamine-derived multitarget-directed ligands: Fighting Alzheimer’s disease with monoamine oxidase inhibitors. J. Neural Transm. (Vienna), 2013, 120(6), 893-902.
[http://dx.doi.org/10.1007/s00702-012-0948-y] [PMID: 23238976]
(c) Louvel, J.; Carvalho, J.F.S.; Yu, Z.; Soethoudt, M.; Lenselink, E.B.; Klaasse, E.; Brussee, J.; Ijzerman, A.P. Removal of human ether-à-go-go related gene (hERG) K+ channel affinity through rigidity: a case of clofilium analogues. J. Med. Chem., 2013, 56(23), 9427-9440.
[http://dx.doi.org/10.1021/jm4010434] [PMID: 24224763]
[6]
(a) Olanow, C.W. Rationale for considering that propargylamines might be neuroprotective in Parkinson’s disease. Neurology, 2006, 66(10)(Suppl. 4), S69-S79.
[http://dx.doi.org/10.1212/WNL.66.10_suppl_4.S69] [PMID: 16717254]
(b) Naoi, M.; Maruyama, W.; Yi, H.; Akao, Y.; Yamaoka, Y.; Shamoto-Nagai, M. Neuroprotection by propargylamines in Parkinson’s disease: intracellular mechanism underlying the anti-apoptotic function and search for clinical markers. J. Neural Transm. Suppl., 2007, 72(72), 121-131.
[http://dx.doi.org/10.1007/978-3-211-73574-9_15] [PMID: 17982885]
(c) Review: Oldfield, V.; Keating, G.M.; Perry, C.M. Rasagiline: a review of its use in the management of Parkinson’s disease. Drugs, 2007, 67(12), 1725-1747.
[http://dx.doi.org/10.2165/00003495-200767120-00006] [PMID: 17683172]
(d) Murphy, D.L.; Karoum, F.; Pickar, D.; Cohen, R.M.; Lipper, S.; Mellow, A.M.; Tariot, P.N.; Sunderland, T. Differential trace amine alterations in individuals receiving acetylenic inhibitors of MAO-A (clorgyline) or MAO-B (selegiline and pargyline). J. Neural Transm. Suppl., 1998, 52, 39-48.
[http://dx.doi.org/10.1007/978-3-7091-6499-0_5] [PMID: 9564606]
(e) Baranyi, M.; Porceddu, P.F.; Gölöncsér, F.; Kulcsár, S.; Otrokocsi, L.; Kittel, A.; Pinna, A.; Frau, L.; Huleatt, P.B.; Khoo, M-L.; Chai, C.L.L.; Dunkel, P.; Mátyus, P.; Morelli, M.; Sperlágh, B. Novel (hetero)arylalkenyl propargylamine compounds are protective in toxin-induced models of Parkinson’s disease. Mol. Neurodegener., 2016, 11(6), 1-21.
[http://dx.doi.org/10.1186/s13024-015-0067-y]
[7]
(a) Kopka, I.E.; Fataftah, Z.A.; Rathke, M.W. Preparation of a series of highly hindered secondary amines, including bis(triethylcarbinyl)amine. J. Org. Chem., 1980, 45(23), 4616-4622.
[http://dx.doi.org/10.1021/jo01311a014]
(b) Czernecki, S.; Valery, J-M. A stereocontrolled synthesis of a lincosamine precursor. J. Carbohydr. Chem., 1990, 9(5), 767-770.
[http://dx.doi.org/10.1080/07328309008543871]
(c) Imada, I.; Yuasa, M.; Nakamura, I.; Murahashi, S-I. Copper(I)-catalyzed amination of propargyl esters. Selective synthesis of propargylamines, 1-alken-3-ylamines, and (Z)-allylamines. J. Org. Chem., 1994, 59(9), 2282-2284.
[http://dx.doi.org/10.1021/jo00088a004]
[8]
(a) For reviews, Bloch, R. Additions of organometallic reagents to C=N bonds: reactivity and selectivity. Chem. Rev., 1998, 98(4), 1407-1438.
[http://dx.doi.org/10.1021/cr940474e] [PMID: 11848938]
(b) Kouznetsov, V.V.; Vargas Méndez, L.Y. Recent developments in three-component Grignard-Barbier-type reactions. Synthesis, 2008, (4), 491-506.
[http://dx.doi.org/10.1055/s-2008-1032148]
(c) Blay, G.; Monleón, A.; Pedro, J.R. Recent developments in asymmetric alkynylation of imines. Curr. Org. Chem., 2009, 13(15), 1498-1539. See also
[http://dx.doi.org/10.2174/138527209789177734]
(d) Fischer, C.; Carreira, E.M. Direct addition of TMS-acetylene to aldimines catalyzed by a simple, commercially available Ir(I) complex. Org. Lett., 2001, 3(26), 4319-4321.
[http://dx.doi.org/10.1021/ol017022q] [PMID: 11784207]
(e) Fischer, C.; Carreira, E.M. Zn-alkynylide additions to acyl iminiums. Org. Lett., 2004, 6(9), 1497-1499.
[http://dx.doi.org/10.1021/ol049578u] [PMID: 15101776]
[9]
(a) For reviews, see: Wei, C.; Li, Z.; Li, C.-J. The development of A3-coupling (aldehyde-alkyne-amine) and AA3-coupling (asymmetric aldehyde-alkyne-amine). Synlett, 2004, (9), 1472-1483.
(b) Zani, L.; Bolm, C. Direct addition of alkynes to imines and related C=N electrophiles: A convenient access to propargylamines. Chem. Commun. (Camb.), 2006, (41), 4263-4275.
[http://dx.doi.org/10.1039/B607986P] [PMID: 17047838]
(c) Li, C-J. The development of catalytic nucleophilic additions of terminal alkynes in water. Acc. Chem. Res., 2010, 43(4), 581-590.
[http://dx.doi.org/10.1021/ar9002587] [PMID: 20095650]
(d) Yoo, W-J.; Zhao, L.; Li, C-J. The A3-coupling (aldehyde–alkyne–amine) reaction: A versatile method for the preparation of propargylamines. Aldrichim Acta, 2011, 44(2), 43-51.
(e) Yoo, W-J.; Zhao, L.; Li, C-J. In: Science of Synthesis;; Mueller, T.J., Ed.; Thieme: Stuttgart, 2014; 1, pp. 189-217.
(f) Albaladejo, M.J.; Alonso, F.; Moglie, Y.; Yus, M. Three-component coupling of aldehydes, amines, and alkynes catalyzed by oxidized copper nanoparticles on titania. Eur. J. Org. Chem., 2012, (16), 3093-3104.
[http://dx.doi.org/10.1002/ejoc.201200090]
(g) Das, D.; Sun, A.X.; Seidel, D. Redox-neutral copper(II) carboxylate catalyzed α-alkynylation of amines. Angew. Chem. Int. Ed., 2013, 52(13), 3765-3769.
[http://dx.doi.org/10.1002/anie.201300021] [PMID: 23440869]
(h) Zheng, Q-H.; Meng, W.; Jiang, G-J.; Yu, Z-Y. CuI-catalyzed C1-alkynylation of tetrahydroisoquinolines (THIQs) by A3 reaction with tunable iminium ions. Org. Lett., 2013, 15(23), 5928-5931.
[http://dx.doi.org/10.1021/ol402517e] [PMID: 24237286]
[10]
(a) Xu, X.; Ge, Z.; Cheng, D.; Li, X. Functionalization of aliphatic tertiary amines mediated by hexachloroethane/cat. copper: synthesis of propargylic amines and methylene-bridged bis-1,3-dicarbonyl derivatives. ARKIVOC, 2012, viii, 107-118.
(b) Chen, X.; Chen, T.; Zhou, Y.; Au, C-T.; Han, L-B.; Yin, S-F. Efficient synthesis of propargylamines from terminal alkynes, dichloromethane and tertiary amines over silver catalysts. Org. Biomol. Chem., 2014, 12(2), 247-250.
[http://dx.doi.org/10.1039/C3OB41878B] [PMID: 24264798]
[11]
(a) Glaser, C. Beiträge zur kenntniss des acetenylbenzols. Ber. Dtsch. Chem. Ges., 1869, 2(1), 422-424.
[http://dx.doi.org/ 10.1002/cber.186900201183]
(b) Eglinton, G.; Galbraith, A.R. Cyclic diynes. Chem. Ind., 1956, 737-738.
(c) Hay, A.S. Oxidative coupling of acetylenes. J. Org. Chem., 1962, 27(9), 3320-3321.
[http://dx.doi.org/10.1021/jo01056a511]
[12]
(a) Li, C-J. Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations. Acc. Chem. Res., 2009, 42(2), 335-344.
[http://dx.doi.org/10.1021/ar800164n] [PMID: 19220064]
(b) Scheuermann, C.J. Beyond traditional cross couplings: the scope of the cross dehydrogenative coupling reaction. Chem. Asian J., 2010, 5(3), 436-451.
[http://dx.doi.org/10.1002/asia.200900487] [PMID: 20041458]
(c) Yeung, C.S.; Dong, V.M. Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chem. Rev., 2011, 111(3), 1215-1292.
[http://dx.doi.org/10.1021/cr100280d] [PMID: 21391561]
(d) Le Bras, J.; Muzart, J. Intermolecular dehydrogenative Heck reactions. Chem. Rev., 2011, 111(3), 1170-1214.
[http://dx.doi.org/10.1021/cr100209d] [PMID: 21391560]
(e) Patureau, F.W.; Wencel-Delord, J.; Glorius, F. Cp*Rh-catalyzed C-H activations: versatile dehydrogenative cross-couplings of Csp2 C-H positions with olefins, alkynes, and arenes. Aldrichim Acta, 2012, 45(2), 31-41.
(f) Girard, S.A.; Knauber, T.; Li, C-J. The cross-dehydrogenative coupling of C(sp3)-H bonds: A versatile strategy for C-C bond formations. Angew. Chem. Int. Ed., 2014, 53(1), 74-100.
[http://dx.doi.org/10.1002/anie.201304268] [PMID: 24214829]
(g) From C-H to C-C Bonds: Cross-Dehydrogenative-Coupling; Li, C.-J. Ed.; RSC: Cambridge (UK),. , 2015.
(h) Xia, J-B.; Lou, S-L. In: Catalytic Transformations via C-H Activation; Science of Synthesis;; Yu, J.-Q. Ed.; Thieme: Stuttgart, 2016; 2, pp. 115-136.
(i)Lv, L.; Li, Z. Fe-catalyzed cross-dehydrogenative coupling reactions. Top. Curr. Chem. (Cham), 2016, 374(4), 38.
[http://dx.doi.org/10.1007/s41061-016-0038-y] [PMID: 27573390]
(j)Varun, B.V.; Dhineshkumar, J.; Bettadapur, K.R.; Siddaraju, Y.; Alagiri, K.; Prabhu, K.R. Recent advancements in dehydrogenative cross coupling reactions for C-C bond formation. Tetrahedron Lett., 2017, 58(9), 803-824.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.035]
[13]
Murata, S.; Teramoto, K.; Miura, M.; Nomura, M. Copper-catalysed oxidative coupling of 4-substituted N,N-dimethylanilines with terminal alkynes under molecular oxygen. J. Chem. Res., 1993, (M), 2828-2836.
[14]
(a) Li, Z.; Li, C-J. CuBr-catalyzed efficient alkynylation of sp3 C-H bonds adjacent to a nitrogen atom. J. Am. Chem. Soc., 2004, 126(38), 11810-11811.
[http://dx.doi.org/10.1021/ja0460763] [PMID: 15382913]
(b) Li, Z.; Bohle, D.S.; Li, C-J. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds. Proc. Natl. Acad. Sci. USA, 2006, 103(24), 8928-8933.
[http://dx.doi.org/10.1073/pnas.0601687103] [PMID: 16754869]
[15]
Niu, M.; Yin, Z.; Fu, H.; Jiang, Y.; Zhao, Y. Copper-catalyzed coupling of tertiary aliphatic amines with terminal alkynes to propargylamines via C-H activation. J. Org. Chem., 2008, 73(10), 3961-3963.
[http://dx.doi.org/10.1021/jo800279j] [PMID: 18407687]
[16]
Gupta, S.; Dubey, P.; Singh, A.K.; Jain, N. Oxidative C-C bond formation and C-N bond cleavage catalyzed by complexes of copper(I) with acridine based (E N E) pincers (E = S/Se), recyclable as a catalyst. Dalton Trans., 2019, 48(27), 10129-10137.
[http://dx.doi.org/10.1039/C9DT01766F] [PMID: 31180400]
[17]
Xu, X.; Li, X. Copper/diethyl azodicarboxylate mediated regioselective alkynylation of unactivated aliphatic tertiary methylamine with terminal alkyne. Org. Lett., 2009, 11(4), 1027-1029.
[http://dx.doi.org/10.1021/ol802974b] [PMID: 19159324]
[18]
Shen, Q.; Zhang, L.; Zhou, Y-R.; Li, J-X. Oxidant-dependent Cu-catalyzed alkynylation and aminomethylation: C-H versus C-C cleavage in TMEDA. Tetrahedron Lett., 2013, 54(49), 6725-6728.
[http://dx.doi.org/10.1016/j.tetlet.2013.09.118]
[19]
Xu, Z.; Yu, X.; Feng, X.; Bao, M. Propargylamine synthesis by copper-catalyzed oxidative coupling of alkynes and tertiary amine N-oxides. J. Org. Chem., 2011, 76(16), 6901-6905.
[http://dx.doi.org/10.1021/jo201059h] [PMID: 21761905]
[20]
Volla, C.M.; Vogel, P. Chemoselective C-H bond activation: ligand and solvent free iron-catalyzed oxidative C-C cross-coupling of tertiary amines with terminal alkynes. Reaction scope and mechanism. Org. Lett., 2009, 11(8), 1701-1704.
[http://dx.doi.org/10.1021/ol9002509] [PMID: 19296636]
[21]
Sugiishi, T.; Nakamura, H. Zinc(II)-catalyzed redox cross-dehydrogenative coupling of propargylic amines and terminal alkynes for synthesis of N-tethered 1,6-enynes. J. Am. Chem. Soc., 2012, 134(5), 2504-2507.
[http://dx.doi.org/10.1021/ja211092q] [PMID: 22283631]
[22]
Jin, X.; Yamaguchi, K.; Mizuno, N. Aerobic cross-dehydrogenative coupling of terminal alkynes and tertiary amines by a combined catalyst of Zn2+ and OMS-2. RSC Advances, 2014, 4(65), 34712-34715.
[http://dx.doi.org/10.1039/C4RA05105J]
[23]
Short review: San Segundo, M.; Correa, A. Cross-dehydrogenative coupling reactions for the functionalization of α-amino acid derivatives and peptides. Synlett, 2018, 50(15), 2853-2866.
[24]
Zhao, L.; Li, C-J. Functionalizing glycine derivatives by direct C-C bond formation. Angew. Chem. Int. Ed., 2008, 47(37), 7075-7078.
[http://dx.doi.org/10.1002/anie.200801367] [PMID: 18671311]
[25]
Liu, P.; Wang, Z.; Lin, J.; Hu, X. An efficient route to quinolines and other compounds by iron-catalyzed cross-dehydrogenative coupling reactions of glycine derivatives. Eur. J. Org. Chem., 2012, (18), 1583-1589.
[http://dx.doi.org/10.1002/ejoc.201101656]
[26]
(a) Miniperspective: Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
(b)Yet, L. Priviledged Structures in Drug Discovery: Medicinal Chemistry and Synthesis, 1st ed; Wiley & Sons: Hoboken, NJ, 2018, pp. 356-410.
[http://dx.doi.org/10.1002/9781118686263.ch10]
[27]
Zimmermann, T.J.; Roy, S.; Martinez, N.E.; Ziegler, S.; Hedberg, C.; Waldmann, H. Biology-oriented synthesis of a tetrahydroisoquinoline-based compound collection targeting microtubule polymerization. ChemBioChem, 2013, 14(3), 295-300.
[http://dx.doi.org/10.1002/cbic.201200711] [PMID: 23364933]
[28]
Gröll, B.; Schaaf, P.; Schnürch, M. Improved simplicity and practicability in copper-catalyzed alkynylation of tetrahydroisoquinoline. Monatsh. Chem., 2017, 148(1), 91-104.
[http://dx.doi.org/10.1007/s00706-016-1877-5] [PMID: 28127095]
[29]
Boess, E.; Schmitz, C.; Klussmann, M. A comparative mechanistic study of Cu-catalyzed oxidative coupling reactions with N-phenyltetrahydroisoquinoline. J. Am. Chem. Soc., 2012, 134(11), 5317-5325.
[http://dx.doi.org/10.1021/ja211697s] [PMID: 22338603]
[30]
Odachowski, M.; Greaney, M.F.; Turner, N.J. Concurrent biocatalytic oxidation and C-C bond formation via gold catalysis: one-pot alkynylation of N-alkyl tetrahydroisoquinolines. ACS Catal., 2018, 8(11), 10032-10035.
[http://dx.doi.org/10.1021/acscatal.8b03169]
[31]
Review: Descorme, C.; Gallezot, P.; Geantet, C.; George, C. Heterogeneous catalysis: a key tool toward sustainability. ChemCatChem, 2012, 4(12), 1897-1906.
[http://dx.doi.org/10.1002/cctc.201200483]
[32]
Liu, P.; Zhou, C-Y.; Xiang, S.; Che, C-M. Highly efficient oxidative carbon-carbon coupling with SBA-15-support iron terpyridine catalyst. Chem. Commun. (Camb.), 2010, 46(16), 2739-2741.
[http://dx.doi.org/10.1039/c001209b] [PMID: 20369167]
[33]
Hudson, R.; Ishikawa, S.; Moores, A. Magnetically recoverable CuFe2O4 nanoparticles as highly active catalysts for Csp3-Csp and Csp3-Csp3 oxidative cross-dehydrogenative coupling. Synlett, 2013, 24(13), 1637-1642.
[http://dx.doi.org/10.1055/s-0033-1339278]
[34]
Dang, G.H.; Nguyen, D.T.; Le, D.T.; Phan, N.T.S. Propargylamine synthesis via direct oxidative C-C coupling reaction between N,N-dimethylanilines and terminal alkynes under metal-organic framework catalysis. J. Mol. Catal. A: Chem., 2014, 395, 300-306.
[http://dx.doi.org/10.1016/j.molcata.2014.08.034]
[35]
Dang, G.H.; Dang, T.T.; Le, D.T.; Truong, T.; Phan, N.T.S. Propargylamine synthesis via sequential methylation and C-H functionalization of N-methylanilines and terminal alkynes under metal-organic framework Cu2(BDC)2(DABCO) catalysis. J. Catal., 2014, 319, 258-264.
[http://dx.doi.org/10.1016/j.jcat.2014.09.010]
[36]
Nguyen, A.; Pham, L.T.; Truong, T. Efficient and robust superparamagnetic copper ferrite nanoparticle-catalyzed sequential methylation and C-H activation: Aldehyde-free propargylamine synthesis. Catal. Sci. Technol., 2014, 4(12), 4281-4288.
[http://dx.doi.org/10.1039/C4CY00753K]
[37]
Alonso, F.; Arroyo, A.; Martín-García, I.; Moglie, Y. Cross-dehydrogenative coupling of tertiary amines and terminal alkynes catalyzed by copper nanoparticles on zeolite. Adv. Synth. Catal., 2015, 357(16-17), 3549-3561.
[http://dx.doi.org/10.1002/adsc.201500787]
[38]
Gupta, S.; Joshi, H.; Jain, N.; Singh, A.K. Cu6Se4.5 nanoparticles from a single source precursor: Recyclable and efficient catalyst for cross-dehydrogenative coupling of tertiary amines with terminal alkynes. J. Mol. Catal. Chem., 2016, 423, 135-142.
[http://dx.doi.org/10.1016/j.molcata.2016.06.005]
[39]
Dang-Bao, T.; Pradel, C.; Favier, I.; Gómez, M. Making Cu(0) nanoparticles in glycerol: A straightforward synthesis for a multipurpose catalyst. Adv. Synth. Catal., 2017, 359(16), 2832-2846.
[http://dx.doi.org/10.1002/adsc.201700535]
[40]
Selected recent reviews: (a) Staveness, D.; Bosque, I.; Stephenson, C. Free radical chemistry enabled by visible light-induced electron transfer. Acc. Chem. Res., 2016, 49(10), 2295-2306. (b) Xie, J.; Jin, H.; Hashmi, A.S.K. The recent achievements in redox-neutral radical C-C cross-coupling enabled by visible light. Chem. Soc. Rev., 2017, 46(17), 5193-5203.
(c) Twilton, J.; Li, C. (Chip), Zhan, P.; Shaw, M.H.; Evans, R.W.; MacMillan, D.W.C. The merger of transition metal catalysis and photocatalysis. Nat. Rev. Chem, 2017, 1, 0052.
(d) McLean, E.B.; Lee, A. Dual copper- and photoredox-catalysed reactions. Tetrahedron, 2018, 74(38), 4881-4902.
(e) Merging transition-metal catalysis with photoredox catalysis: an environmentally friendly strategy for C-H functionalization. Synthesis, 2018, 50(17), 3359-3378. (f) Hossain, A.; Bhattacharyya, A.; Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science, 2019, 364(6439)eaav9713
[41]
Freeman, D.B.; Furst, L.; Condie, A.G.; Stephenson, C.R.J. Functionally diverse nucleophilic trapping of iminium intermediates generated utilizing visible light. Org. Lett., 2012, 14(1), 94-97.
[http://dx.doi.org/10.1021/ol202883v] [PMID: 22148974]
[42]
Tucker, J.W.; Zhang, Y.; Jamison, T.F.; Stephenson, C.R.J. Visible-light photoredox catalysis in flow. Angew. Chem. Int. Ed., 2012, 51(17), 4144-4147.
[http://dx.doi.org/10.1002/anie.201200961] [PMID: 22431004]
[43]
Rueping, M.; Koenigs, R.M.; Poscharny, K.; Fabry, D.C.; Leonori, D.; Vila, C. Dual catalysis: combination of photocatalytic aerobic oxidation and metal catalyzed alkynylation reactions–C-C bond formation using visible light. Chem. Eur. J., 2012, 18(17), 5170-5174.
[http://dx.doi.org/10.1002/chem.201200050] [PMID: 22431393]
[44]
Review: Liu, J.; Dasgupta, S.; Watson, M.P Enantioselective additions of copper acetylides to cyclic iminium and oxocarbenium ions. Beilstein J. Org. Chem., 2015, 11, 2696-2706.
[http://dx.doi.org/10.3762/bjoc.11.290] [PMID: 26877791]
[45]
(a) Li, Z.; Li, C-J. Catalytic enantioselective alkynylation of prochiral sp3 C-H bonds adjacent to a nitrogen atom. Org. Lett., 2004, 6(26), 4997-4999.
[http://dx.doi.org/10.1021/ol047814v] [PMID: 15606119]
(b) Li, Z.; MacLeod, P.D.; Li, C-J. Studies on Cu-catalyzed asymmetric alkynylation of tetrahydroisoquinoline derivatives. Tetrahedron Asymmetry, 2006, 17(4), 590-597.
[http://dx.doi.org/10.1016/j.tetasy.2006.02.007]
[46]
Yu, J.; Li, Z.; Jia, K.; Jiang, Z.; Liu, M.; Su, W. Fast, solvent-free asymmetric alkynylation of prochiral sp3 C-H bonds in a ball mill for the preparation of optically active tetrahydroisoquinoline derivatives. Tetrahedron Lett., 2013, 54(15), 2006-2009.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.007]
[47]
Sun, S.; Li, C.; Floreancig, P.E.; Lou, H.; Liu, L. Highly enantioselective catalytic cross-dehydrogenative coupling of N-carbamoyl tetrahydroisoquinolines and terminal alkynes. Org. Lett., 2015, 17(7), 1684-1687.
[http://dx.doi.org/10.1021/acs.orglett.5b00447] [PMID: 25781505]
[48]
Perepichka, I.; Kundu, S.; Hearne, Z.; Li, C-J. Efficient merging of copper and photoredox catalysis for the asymmetric cross-dehydrogenative-coupling of alkynes and tetrahydroisoquinolines. Org. Biomol. Chem., 2015, 13(2), 447-451.
[http://dx.doi.org/10.1039/C4OB02138J] [PMID: 25372475]
[49]
Kumar, G.; Verma, S.; Ansari, A.; Khan, N.H.; Kureshy, R.I. Enantioselective cross dehydrogenative coupling reaction catalyzed by Rose Bengal incorporated-Cu(I)-dimeric chiral complexes. Catal. Commun., 2017, 99, 94-99.
[http://dx.doi.org/10.1016/j.catcom.2017.05.026]
[50]
Huang, T.; Liu, X.; Lang, J.; Xu, J.; Lin, L.; Feng, X. Asymmetric aerobic oxidative cross-coupling of tetrahydroisoquinolines with alkynes. ACS Catal., 2017, 7(9), 5654-5660.
[http://dx.doi.org/10.1021/acscatal.7b01912]
[51]
Xie, Z.; Liu, X.; Liu, L. Copper-catalyzed aerobic enantioselective cross-dehydrogenative cooupling of N-aryl glycine esters with terminal alkynes. Org. Lett., 2016, 18(12), 2982-2985.
[http://dx.doi.org/10.1021/acs.orglett.6b01328] [PMID: 27269737]

© 2024 Bentham Science Publishers | Privacy Policy