Abstract
Propargylamines are versatile compounds for heterocyclic synthesis, some of which are current drugs prescribed to treat patients with Parkinson’s disease. There are different methods to synthesize propargylamines, however, modern chemistry has moved progressively to rely on new strategies that meet the principles of Green Chemistry. In this context, propargylamines are readily accessible by the cross-dehydrogenative coupling (CDC) of two C-H bonds (i.e., NCsp3-H and Csp-H bonds); surely, CDC can be considered the most atom-economic and efficient manner to form C-C bonds. The aim of this review is to provide a comprehensive survey on the synthesis of propargylamines by the CDC of amines and terminal alkynes from three fronts: (a) transition-metal homogeneous catalysis, (b) transition-metal heterogeneous catalysis and (c) photoredox catalysis. A section dealing with the asymmetric synthesis of chiral propargylamines is also included. Special attention is also devoted to the proposed reaction mechanisms.
Keywords: Asymmetric synthesis, cross-dehydrogenative coupling, green chemistry, homogeneous catalysis, heterogeneous catalysis, photoredox catalysis, propargylamines, tetrahydroisoquinolines.
Graphical Abstract
[http://dx.doi.org/10.1016/j.tet.2008.01.046]
(b) Shibata, D.; Okada, E.; Molette, J.; Médebielle, M. Facile synthesis of fluorine-containing 1,10-phenanthrolines by the pyridine-ring formation reaction of N-propargyl-5,7-bis(trifluoroacetyl)-8-quinolylamine with amines: Isolation of the intermediates 1,4-dihydro-1,10-phenanthrolin-4-ols. Tetrahedron Lett., 2008, 49(50), 7161-7164.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.172]
(c) Yamamoto, Y.; Hayashi, H.; Saigoku, T.; Nishiyama, H. Domino coupling relay approach to polycyclic pyrrole-2-carboxylates. J. Am. Chem. Soc., 2005, 127(31), 10804-10805.
[http://dx.doi.org/10.1021/ja053408a] [PMID: 16076166]
(d) Harvey, D.F.; Sigano, D.M. Synthesis of cyclopropylpyrrolidines via reaction of N-allyl-N-propargylamides with a molybdenum carbene complex. Effect of substituents and reaction conditions. J. Org. Chem., 1996, 61(7), 2268-2272.
[http://dx.doi.org/10.1021/jo9519930]
(e) Albaladejo, M.J.; Alonso, F.; González-Soria, M.J. Synthetic and mechanistic studies on the solvent-dependent copper-catalyzed formation of indolizines and chalcones. ACS Catal., 2015, 5(6), 3446-3456.
[http://dx.doi.org/10.1021/acscatal.5b00417]
(f) Lee, E-S.; Yeom, H-S.; Hwang, J-H.; Shin, S. A practical gold‐catalyzed route to 4‐substituted oxazolidin‐2‐ones from N‐Boc propargylamines. Eur. J. Org. Chem., 2007, (12), 3503-3507.
[http://dx.doi.org/10.1002/ejoc.200700210]
[http://dx.doi.org/10.1021/jo1006637] [PMID: 20491491]
(b) Fañanás, F.J.; Arto, T.; Mendoza, A.; Rodríguez, F. Synthesis of 2,5-dihydropyridine derivatives by gold-catalyzed reactions of β-ketoesters and propargylamines. Org. Lett., 2011, 13(16), 4184-4187.
[http://dx.doi.org/10.1021/ol201655u] [PMID: 21761882]
(c)Symeonidis, T.S.; Kallitsakis, M.G.; Litinas, K.E. Synthesis of [5,6]-fused pyridocoumarins through aza-Claisen rearrangement of 6-propargylaminocoumarins. Tetrahedron Lett., 2011, 52(42), 5452-5455.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.012]
(d) Zhao, Y.L.; Di, C-H.; Liu, S-D.; Meng, J.; Liu, Q. [3+2] Cycloaddition of propargylamines and α-acylketene dithioacetals: A synthetic strategy for highly substituted pyrroles. Adv. Synth. Catal., 2012, 354(18), 3545-3550.
[http://dx.doi.org/10.1002/adsc.201200375]
(e) Wachenfeldt, H.V.; Paulsen, F.; Sundin, A.; Strand, D. Synthesis of substituted oxazoles from N-benzyl propargyl amines and acid chlorides. Eur. J. Org. Chem., 2013, (21), 4578-3550.
(f) Alcaide, B.; Almendros, P.; Alonso, J.M.; Fernández, I.; Campillos, G.G.; Torres, M.R. A gold-catalysed imine-propargylamine cascade sequence: Synthesis of 3-substituted-2,5-dimethylpyrazines and the reaction mechanism. Chem. Commun. (Camb.),, 2014, 50(35), 4567-4567.
[http://dx.doi.org/10.1055/s-0034-1380462]
[http://dx.doi.org/10.1021/jm0001121] [PMID: 10821718]
(b) Jiang, B.; Xu, M. Highly enantioselective construction of fused pyrrolidine systems that contain a quaternary stereocenter: Concise formal synthesis of (+)-conessine. Angew. Chem. Int. Ed., 2004, 43(19), 2543-2546.
[http://dx.doi.org/10.1002/anie.200353583] [PMID: 15127448]
(c) Fleming, J.J.; Du Bois, J. A synthesis of (+)-saxitoxin. J. Am. Chem. Soc., 2006, 128(12), 3926-3927.
[http://dx.doi.org/10.1021/ja0608545] [PMID: 16551097]
[http://dx.doi.org/10.3233/JAD-2010-100150] [PMID: 20555137]
(b) Bolea, I.; Gella, A.; Unzeta, M. Propargylamine-derived multitarget-directed ligands: Fighting Alzheimer’s disease with monoamine oxidase inhibitors. J. Neural Transm. (Vienna), 2013, 120(6), 893-902.
[http://dx.doi.org/10.1007/s00702-012-0948-y] [PMID: 23238976]
(c) Louvel, J.; Carvalho, J.F.S.; Yu, Z.; Soethoudt, M.; Lenselink, E.B.; Klaasse, E.; Brussee, J.; Ijzerman, A.P. Removal of human ether-à-go-go related gene (hERG) K+ channel affinity through rigidity: a case of clofilium analogues. J. Med. Chem., 2013, 56(23), 9427-9440.
[http://dx.doi.org/10.1021/jm4010434] [PMID: 24224763]
[http://dx.doi.org/10.1212/WNL.66.10_suppl_4.S69] [PMID: 16717254]
(b) Naoi, M.; Maruyama, W.; Yi, H.; Akao, Y.; Yamaoka, Y.; Shamoto-Nagai, M. Neuroprotection by propargylamines in Parkinson’s disease: intracellular mechanism underlying the anti-apoptotic function and search for clinical markers. J. Neural Transm. Suppl., 2007, 72(72), 121-131.
[http://dx.doi.org/10.1007/978-3-211-73574-9_15] [PMID: 17982885]
(c) Review: Oldfield, V.; Keating, G.M.; Perry, C.M. Rasagiline: a review of its use in the management of Parkinson’s disease. Drugs, 2007, 67(12), 1725-1747.
[http://dx.doi.org/10.2165/00003495-200767120-00006] [PMID: 17683172]
(d) Murphy, D.L.; Karoum, F.; Pickar, D.; Cohen, R.M.; Lipper, S.; Mellow, A.M.; Tariot, P.N.; Sunderland, T. Differential trace amine alterations in individuals receiving acetylenic inhibitors of MAO-A (clorgyline) or MAO-B (selegiline and pargyline). J. Neural Transm. Suppl., 1998, 52, 39-48.
[http://dx.doi.org/10.1007/978-3-7091-6499-0_5] [PMID: 9564606]
(e) Baranyi, M.; Porceddu, P.F.; Gölöncsér, F.; Kulcsár, S.; Otrokocsi, L.; Kittel, A.; Pinna, A.; Frau, L.; Huleatt, P.B.; Khoo, M-L.; Chai, C.L.L.; Dunkel, P.; Mátyus, P.; Morelli, M.; Sperlágh, B. Novel (hetero)arylalkenyl propargylamine compounds are protective in toxin-induced models of Parkinson’s disease. Mol. Neurodegener., 2016, 11(6), 1-21.
[http://dx.doi.org/10.1186/s13024-015-0067-y]
[http://dx.doi.org/10.1021/jo01311a014]
(b) Czernecki, S.; Valery, J-M. A stereocontrolled synthesis of a lincosamine precursor. J. Carbohydr. Chem., 1990, 9(5), 767-770.
[http://dx.doi.org/10.1080/07328309008543871]
(c) Imada, I.; Yuasa, M.; Nakamura, I.; Murahashi, S-I. Copper(I)-catalyzed amination of propargyl esters. Selective synthesis of propargylamines, 1-alken-3-ylamines, and (Z)-allylamines. J. Org. Chem., 1994, 59(9), 2282-2284.
[http://dx.doi.org/10.1021/jo00088a004]
[http://dx.doi.org/10.1021/cr940474e] [PMID: 11848938]
(b) Kouznetsov, V.V.; Vargas Méndez, L.Y. Recent developments in three-component Grignard-Barbier-type reactions. Synthesis, 2008, (4), 491-506.
[http://dx.doi.org/10.1055/s-2008-1032148]
(c) Blay, G.; Monleón, A.; Pedro, J.R. Recent developments in asymmetric alkynylation of imines. Curr. Org. Chem., 2009, 13(15), 1498-1539. See also
[http://dx.doi.org/10.2174/138527209789177734]
(d) Fischer, C.; Carreira, E.M. Direct addition of TMS-acetylene to aldimines catalyzed by a simple, commercially available Ir(I) complex. Org. Lett., 2001, 3(26), 4319-4321.
[http://dx.doi.org/10.1021/ol017022q] [PMID: 11784207]
(e) Fischer, C.; Carreira, E.M. Zn-alkynylide additions to acyl iminiums. Org. Lett., 2004, 6(9), 1497-1499.
[http://dx.doi.org/10.1021/ol049578u] [PMID: 15101776]
(b) Zani, L.; Bolm, C. Direct addition of alkynes to imines and related C=N electrophiles: A convenient access to propargylamines. Chem. Commun. (Camb.), 2006, (41), 4263-4275.
[http://dx.doi.org/10.1039/B607986P] [PMID: 17047838]
(c) Li, C-J. The development of catalytic nucleophilic additions of terminal alkynes in water. Acc. Chem. Res., 2010, 43(4), 581-590.
[http://dx.doi.org/10.1021/ar9002587] [PMID: 20095650]
(d) Yoo, W-J.; Zhao, L.; Li, C-J. The A3-coupling (aldehyde–alkyne–amine) reaction: A versatile method for the preparation of propargylamines. Aldrichim Acta, 2011, 44(2), 43-51.
(e) Yoo, W-J.; Zhao, L.; Li, C-J. In: Science of Synthesis;; Mueller, T.J., Ed.; Thieme: Stuttgart, 2014; 1, pp. 189-217.
(f) Albaladejo, M.J.; Alonso, F.; Moglie, Y.; Yus, M. Three-component coupling of aldehydes, amines, and alkynes catalyzed by oxidized copper nanoparticles on titania. Eur. J. Org. Chem., 2012, (16), 3093-3104.
[http://dx.doi.org/10.1002/ejoc.201200090]
(g) Das, D.; Sun, A.X.; Seidel, D. Redox-neutral copper(II) carboxylate catalyzed α-alkynylation of amines. Angew. Chem. Int. Ed., 2013, 52(13), 3765-3769.
[http://dx.doi.org/10.1002/anie.201300021] [PMID: 23440869]
(h) Zheng, Q-H.; Meng, W.; Jiang, G-J.; Yu, Z-Y. CuI-catalyzed C1-alkynylation of tetrahydroisoquinolines (THIQs) by A3 reaction with tunable iminium ions. Org. Lett., 2013, 15(23), 5928-5931.
[http://dx.doi.org/10.1021/ol402517e] [PMID: 24237286]
(b) Chen, X.; Chen, T.; Zhou, Y.; Au, C-T.; Han, L-B.; Yin, S-F. Efficient synthesis of propargylamines from terminal alkynes, dichloromethane and tertiary amines over silver catalysts. Org. Biomol. Chem., 2014, 12(2), 247-250.
[http://dx.doi.org/10.1039/C3OB41878B] [PMID: 24264798]
[http://dx.doi.org/ 10.1002/cber.186900201183]
(b) Eglinton, G.; Galbraith, A.R. Cyclic diynes. Chem. Ind., 1956, 737-738.
(c) Hay, A.S. Oxidative coupling of acetylenes. J. Org. Chem., 1962, 27(9), 3320-3321.
[http://dx.doi.org/10.1021/jo01056a511]
[http://dx.doi.org/10.1021/ar800164n] [PMID: 19220064]
(b) Scheuermann, C.J. Beyond traditional cross couplings: the scope of the cross dehydrogenative coupling reaction. Chem. Asian J., 2010, 5(3), 436-451.
[http://dx.doi.org/10.1002/asia.200900487] [PMID: 20041458]
(c) Yeung, C.S.; Dong, V.M. Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chem. Rev., 2011, 111(3), 1215-1292.
[http://dx.doi.org/10.1021/cr100280d] [PMID: 21391561]
(d) Le Bras, J.; Muzart, J. Intermolecular dehydrogenative Heck reactions. Chem. Rev., 2011, 111(3), 1170-1214.
[http://dx.doi.org/10.1021/cr100209d] [PMID: 21391560]
(e) Patureau, F.W.; Wencel-Delord, J.; Glorius, F. Cp*Rh-catalyzed C-H activations: versatile dehydrogenative cross-couplings of Csp2 C-H positions with olefins, alkynes, and arenes. Aldrichim Acta, 2012, 45(2), 31-41.
(f) Girard, S.A.; Knauber, T.; Li, C-J. The cross-dehydrogenative coupling of C(sp3)-H bonds: A versatile strategy for C-C bond formations. Angew. Chem. Int. Ed., 2014, 53(1), 74-100.
[http://dx.doi.org/10.1002/anie.201304268] [PMID: 24214829]
(g) From C-H to C-C Bonds: Cross-Dehydrogenative-Coupling; Li, C.-J. Ed.; RSC: Cambridge (UK),. , 2015.
(h) Xia, J-B.; Lou, S-L. In: Catalytic Transformations via C-H Activation; Science of Synthesis;; Yu, J.-Q. Ed.; Thieme: Stuttgart, 2016; 2, pp. 115-136.
(i)Lv, L.; Li, Z. Fe-catalyzed cross-dehydrogenative coupling reactions. Top. Curr. Chem. (Cham), 2016, 374(4), 38.
[http://dx.doi.org/10.1007/s41061-016-0038-y] [PMID: 27573390]
(j)Varun, B.V.; Dhineshkumar, J.; Bettadapur, K.R.; Siddaraju, Y.; Alagiri, K.; Prabhu, K.R. Recent advancements in dehydrogenative cross coupling reactions for C-C bond formation. Tetrahedron Lett., 2017, 58(9), 803-824.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.035]
[http://dx.doi.org/10.1021/ja0460763] [PMID: 15382913]
(b) Li, Z.; Bohle, D.S.; Li, C-J. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds. Proc. Natl. Acad. Sci. USA, 2006, 103(24), 8928-8933.
[http://dx.doi.org/10.1073/pnas.0601687103] [PMID: 16754869]
[http://dx.doi.org/10.1021/jo800279j] [PMID: 18407687]
[http://dx.doi.org/10.1039/C9DT01766F] [PMID: 31180400]
[http://dx.doi.org/10.1021/ol802974b] [PMID: 19159324]
[http://dx.doi.org/10.1016/j.tetlet.2013.09.118]
[http://dx.doi.org/10.1021/jo201059h] [PMID: 21761905]
[http://dx.doi.org/10.1021/ol9002509] [PMID: 19296636]
[http://dx.doi.org/10.1021/ja211092q] [PMID: 22283631]
[http://dx.doi.org/10.1039/C4RA05105J]
[http://dx.doi.org/10.1002/anie.200801367] [PMID: 18671311]
[http://dx.doi.org/10.1002/ejoc.201101656]
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
(b)Yet, L. Priviledged Structures in Drug Discovery: Medicinal Chemistry and Synthesis, 1st ed; Wiley & Sons: Hoboken, NJ, 2018, pp. 356-410.
[http://dx.doi.org/10.1002/9781118686263.ch10]
[http://dx.doi.org/10.1002/cbic.201200711] [PMID: 23364933]
[http://dx.doi.org/10.1007/s00706-016-1877-5] [PMID: 28127095]
[http://dx.doi.org/10.1021/ja211697s] [PMID: 22338603]
[http://dx.doi.org/10.1021/acscatal.8b03169]
[http://dx.doi.org/10.1002/cctc.201200483]
[http://dx.doi.org/10.1039/c001209b] [PMID: 20369167]
[http://dx.doi.org/10.1055/s-0033-1339278]
[http://dx.doi.org/10.1016/j.molcata.2014.08.034]
[http://dx.doi.org/10.1016/j.jcat.2014.09.010]
[http://dx.doi.org/10.1039/C4CY00753K]
[http://dx.doi.org/10.1002/adsc.201500787]
[http://dx.doi.org/10.1016/j.molcata.2016.06.005]
[http://dx.doi.org/10.1002/adsc.201700535]
(c) Twilton, J.; Li, C. (Chip), Zhan, P.; Shaw, M.H.; Evans, R.W.; MacMillan, D.W.C. The merger of transition metal catalysis and photocatalysis. Nat. Rev. Chem, 2017, 1, 0052.
(d) McLean, E.B.; Lee, A. Dual copper- and photoredox-catalysed reactions. Tetrahedron, 2018, 74(38), 4881-4902.
(e) Merging transition-metal catalysis with photoredox catalysis: an environmentally friendly strategy for C-H functionalization. Synthesis, 2018, 50(17), 3359-3378. (f) Hossain, A.; Bhattacharyya, A.; Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science, 2019, 364(6439)eaav9713
[http://dx.doi.org/10.1021/ol202883v] [PMID: 22148974]
[http://dx.doi.org/10.1002/anie.201200961] [PMID: 22431004]
[http://dx.doi.org/10.1002/chem.201200050] [PMID: 22431393]
[http://dx.doi.org/10.3762/bjoc.11.290] [PMID: 26877791]
[http://dx.doi.org/10.1021/ol047814v] [PMID: 15606119]
(b) Li, Z.; MacLeod, P.D.; Li, C-J. Studies on Cu-catalyzed asymmetric alkynylation of tetrahydroisoquinoline derivatives. Tetrahedron Asymmetry, 2006, 17(4), 590-597.
[http://dx.doi.org/10.1016/j.tetasy.2006.02.007]
[http://dx.doi.org/10.1016/j.tetlet.2013.02.007]
[http://dx.doi.org/10.1021/acs.orglett.5b00447] [PMID: 25781505]
[http://dx.doi.org/10.1039/C4OB02138J] [PMID: 25372475]
[http://dx.doi.org/10.1016/j.catcom.2017.05.026]
[http://dx.doi.org/10.1021/acscatal.7b01912]
[http://dx.doi.org/10.1021/acs.orglett.6b01328] [PMID: 27269737]