Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

General Research Article

A Novel PCR-RFLP Method for Detection of POR*28 Polymorphism and its Genotype/Allele Frequencies in a Turkish Population

Author(s): Fezile Ozdemir, Merve Demirbugen Oz and Hilat S. Suzen*

Volume 20, Issue 10, 2019

Page: [845 - 851] Pages: 7

DOI: 10.2174/1389200220666190913121052

Price: $65

Abstract

Background: The Cytochrome P450 (CYP) enzymes are involved in the metabolism of many endogenous and exogenous substances. They need electrons for their activity. CYP mediated oxidation reactions require cytochrome oxidoreductase (POR) as an electron donor. A common genetic variation identified in the coding region of POR gene (POR*28) leads to an alteration in POR activity by causing amino acid change. The current study aimed to determine the allele and genotype frequencies of POR*28 in a healthy Turkish population by using a novel genotyping assay.

Methods: A novel PCR-RFLP assay was developed for the detection of POR*28 (rs1057868) polymorphism and the obtained frequencies were compared with the data established in various ethnic groups.

Results: Genotypic analysis revealed that of 209 healthy, unrelated individuals tested for POR*28 polymorphism, 55.5% of the studied subjects were homozygous for the CC genotype, 34.9% were heterozygous for the CT genotype and 9.6% were homozygous for the TT genotype. The allele frequencies were 0.73 (C) and 0.27 (T). The present results were in accordance with the Hardy- Weinberg equilibrium. The distribution of POR*28 allele varies between populations. The frequency of the T allele among members of the Turkish population was similar to frequencies in Caucasian populations but was lower than in Japanese and Chinese populations.

Conclusions: In this study, a novel method was developed, which could be applied easily in every laboratory for the genotyping of POR *28 polymorphism. The developed genotyping method and documented allele frequencies may have potential in understanding and predicting the variations in drug response/adverse reactions in pharmacotherapy and susceptibility to diseases in POR-mediated metabolism reactions.

Keywords: CYP oxidoreductase, POR*28, A503V, Turkish, PCR-RFLP, pharmacogenetics, metabolism.

« Previous
Graphical Abstract

[1]
Chang, G.W.M.; Kam, P.C.A. The physiological and pharmacological roles of cytochrome P450 isoenzymes. Anaesthesia, 1999, 54(1), 42-50.
[http://dx.doi.org/10.1046/j.1365-2044.1999.00602.x] [PMID: 10209369]
[2]
Elens, L.; Nieuweboer, A.J.M.; Clarke, S.J.; Charles, K.A.; De Graan, A.J.M.; Haufroid, V.; Van Gelder, T.; Mathijssen, R.H.J.; Van Schaik, R.H.N. Impact of POR*28 on the clinical pharmacokinetics of CYP3A phenotyping probes midazolam and erythromycin. Pharmacogenet. Genomics, 2013, 23(3), 148-155.
[http://dx.doi.org/10.1097/FPC.0b013e32835dc113] [PMID: 23324807]
[3]
Huang, N.; Agrawal, V.; Giacomini, K.M.; Miller, W.L. Genetics of P450 oxidoreductase: Sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutations. Proc. Natl. Acad. Sci. USA, 2008, 105(5), 1733-1738.
[http://dx.doi.org/10.1073/pnas.0711621105] [PMID: 18230729]
[4]
Sandee, D.; Morrissey, K.; Agrawal, V.; Tam, H.K.; Kramer, M.A.; Tracy, T.S.; Giacomini, K.M.; Miller, W.L. Effects of genetic variants of human P450 oxidoreductase on catalysis by CYP2D6 in vitro. Pharmacogenet. Genomics, 2010, 20(11), 677-686.
[http://dx.doi.org/10.1097/FPC.0b013e32833f4f9b] [PMID: 20940534]
[5]
Pandey, A.V.; Sproll, P. Pharmacogenomics of human P450 oxidoreductase. Front. Pharmacol., 2014, 5, 103.
[http://dx.doi.org/10.3389/fphar.2014.00103] [PMID: 24847272]
[6]
Zhang, H.F.; Li, Z.H.; Liu, J.Y.; Liu, T.T.; Wang, P.; Fang, Y.; Zhou, J.; Cui, M.Z.; Gao, N.; Tian, X.; Gao, J.; Wen, Q.; Jia, L.J.; Qiao, H.L. Correlation of cytochrome P450 oxidoreductase expression with the expression of 10 isoforms of cytochrome P450 in human liver. Drug Metab. Dispos., 2016, 44(8), 1193-1200.
[http://dx.doi.org/10.1124/dmd.116.069849] [PMID: 27271371]
[7]
Hubbard, P.A.; Shen, A.L.; Paschke, R.; Kasper, C.B.; Kim, J.J.P. NADPH-cytochrome P450 oxidoreductase. Structural basis for hydride and electron transfer. J. Biol. Chem., 2001, 276(31), 29163-29170.
[http://dx.doi.org/10.1074/jbc.M101731200] [PMID: 11371558]
[8]
Langman, L.; Van Gelder, T.; Van Schaik, R.N.H. Pharmacogenetics aspects of immunosuppressant threapy.In: Personalized Immunosuppression in Transplantation Role of BiomarkerMonitoring and Therapeutic Drug Monitoring; Oellerich, M.; Dasgupta, A., Eds.; Amsterdam, Netherlands Elsevier Inc., 2016.
[http://dx.doi.org/10.1016/B978-0-12-800885-0.00005-9]
[9]
Dobrinas, M.; Cornuz, J.; Pedrido, L.; Eap, C.B. Influence of cytochrome P450 oxidoreductase genetic polymorphisms on CYP1A2 activity and inducibility by smoking. Pharmacogenet. Genomics, 2012, 22(2), 143-151.
[http://dx.doi.org/10.1097/FPC.0b013e32834e9e1a] [PMID: 22246422]
[10]
Tomková, M.; Panda, S.P.; Šeda, O.; Baxová, A.; Hůlková, M.; Siler Masters, B.S.; Martásek, P. Genetic variations in NADPH-CYP450 oxidoreductase in a Czech Slavic cohort. Pharmacogenomics, 2015, 16(3), 205-215.
[http://dx.doi.org/10.2217/pgs.14.169] [PMID: 25712184]
[11]
Flück, C.E.; Mullis, P.E.; Pandey, A.V. Modeling of human P450 oxidoreductase structure by in silico mutagenesis and MD simulation. Mol. Cell. Endocrinol., 2009, 313(1-2), 17-22.
[http://dx.doi.org/10.1016/j.mce.2009.09.001] [PMID: 19744540]
[12]
Xiao, X.; Ma, G.; Li, S.; Wang, M.; Liu, N.; Ma, L.; Zhang, Z.; Chu, H.; Zhang, Z.; Wang, S.L. Functional POR A503V is associated with the risk of bladder cancer in a Chinese population. Sci. Rep., 2015, 5, 11751.
[http://dx.doi.org/10.1038/srep11751] [PMID: 26123203]
[13]
Tang, J.T.; Andrews, L.M.; van Gelder, T.; Shi, Y.Y.; van Schaik, R.H.; Wang, L.L.; Hesselink, D.A. Pharmacogenetic aspects of the use of tacrolimus in renal transplantation: Recent developments and ethnic considerations. Expert Opin. Drug Metab. Toxicol., 2016, 12(5), 555-565.
[http://dx.doi.org/10.1517/17425255.2016.1170808] [PMID: 27010623]
[14]
Lancia, P.; Adam de Beaumais, T.; Elie, V.; Garaix, F.; Fila, M.; Nobili, F.; Ranchin, B.; Testevuide, P.; Ulinski, T.; Zhao, W.; Deschênes, G.; Jacqz-Aigrain, E. Pharmacogenetics of post-transplant diabetes mellitus in children with renal transplantation treated with tacrolimus. Pediatr. Nephrol., 2018, 33(6), 1045-1055.
[http://dx.doi.org/10.1007/s00467-017-3881-3] [PMID: 29399716]
[15]
Elens, L.; Hesselink, D.A.; Bouamar, R.; Budde, K.; De Fijter, J.W.; De Meyer, M.; Mourad, M.; Kuypers, D.R.; Haufroid, V.; van Gelder, T.; Van Schaik, R.H. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients. Ther. Drug Monit., 2014, 36(1), 71-79.
[PMID: 24061445]
[16]
Lunde, I.; Bremer, S.; Midtvedt, K.; Mohebi, B.; Dahl, M.; Bergan, S.; Åsberg, A.; Christensen, H. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur. J. Clin. Pharmacol., 2014, 70(6), 685-693.
[http://dx.doi.org/10.1007/s00228-014-1656-3] [PMID: 24658827]
[17]
Agrawal, V.; Huang, N.; Miller, W.L. Pharmacogenetics of P450 oxidoreductase: Effect of sequence variants on activities of CYP1A2 and CYP2C19. Pharmacogenet. Genomics, 2008, 18(7), 569-576.
[http://dx.doi.org/10.1097/FPC.0b013e32830054ac] [PMID: 18551037]
[18]
Gomes, A.M.; Winter, S.; Klein, K.; Turpeinen, M.; Schaeffeler, E.; Schwab, M.; Zanger, U.M. Pharmacogenomics of human liver cytochrome P450 oxidoreductase: Multifactorial analysis and impact on microsomal drug oxidation. Pharmacogenomics, 2009, 10(4), 579-599.
[http://dx.doi.org/10.2217/pgs.09.7] [PMID: 19374516]
[19]
Lv, J.; Hu, L.; Zhuo, W.; Zhang, C.; Zhou, H.; Fan, L. Effects of the selected cytochrome P450 oxidoreductase genetic polymorphisms on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Pharmacogenet. Genomics, 2016, 26(2), 80-87.
[http://dx.doi.org/10.1097/FPC.0000000000000190] [PMID: 26580670]
[20]
Oneda, B.; Crettol, S.; Jaquenoud Sirot, E.; Bochud, M.; Ansermot, N.; Eap, C.B. The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet. Genomics, 2009, 19(11), 877-883.
[http://dx.doi.org/10.1097/FPC.0b013e32833225e7] [PMID: 19801957]
[21]
Yang, G.; Fu, Z.; Chen, X.; Yuan, H.; Yang, H.; Huang, Y.; Ouyang, D.; Tan, Z.; Tan, H.; Huang, Z.; Zhou, H. Effects of the CYP oxidoreductase Ala503Val polymorphism on CYP3A activity in vivo: A randomized, open-label, crossover study in healthy Chinese men. Clin. Ther., 2011, 33(12), 2060-2070.
[http://dx.doi.org/10.1016/j.clinthera.2011.11.004] [PMID: 22177374]
[22]
De Jonge, H.; Metalidis, C.; Naesens, M.; Lambrechts, D.; Kuypers, D.R. The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics, 2011, 12(9), 1281-1291.
[http://dx.doi.org/10.2217/pgs.11.77] [PMID: 21770725]
[23]
Süzen, H.S.; Yüce, N.; Güvenç, G.; Duydu, Y.; Erke, T. TYMS and DPYD polymorphisms in a Turkish population. Eur. J. Clin. Pharmacol., 2005, 61(12), 881-885.
[http://dx.doi.org/10.1007/s00228-005-0054-2] [PMID: 16328315]
[24]
Suzen, H.S.; Gucyener, E.; Sakalli, O.; Uckun, Z.; Kose, G.; Ustel, D.; Duydu, Y. CAT C-262T and GPX1 Pro198Leu polymorphisms in a Turkish population. Mol. Biol. Rep., 2010, 37(1), 87-92.
[http://dx.doi.org/10.1007/s11033-009-9540-4] [PMID: 19424819]
[25]
Yuce-Artun, N.; Kose, G.; Suzen, H.S. Allele and genotype frequencies of CYP2B6 in a Turkish population. Mol. Biol. Rep., 2014, 41(6), 3891-3896.
[http://dx.doi.org/10.1007/s11033-014-3256-9] [PMID: 24562623]
[26]
Veer akikosol, K.; Chariyavilaskul, P.; Townamcha, N.; Wittayalertpanya, S. Association of CYP3A5 and POR polymorphisms with the maintenance tacrolimus dosage requirement in Thai recipients of kidney transplants. Asian Biomed., 2016, 10(5), 483-490.
[http://dx.doi.org/10.5372/1905-7415.1005.512]
[27]
Saito, Y.; Yamamoto, N.; Katori, N.; Maekawa, K.; Fukushima-Uesaka, H.; Sugimoto, D.; Kurose, K.; Sai, K.; Kaniwa, N.; Sawada, J.; Kunitoh, H.; Ohe, Y.; Yoshida, T.; Matsumura, Y.; Saijo, N.; Okuda, H.; Tamura, T. Genetic polymorphisms and haplotypes of por, encoding cytochrome p450 oxidoreductase, in a Japanese population. Drug Metab. Pharmacokinet., 2011, 26(1), 107-116.
[http://dx.doi.org/10.2133/dmpk.DMPK-10-SC-096] [PMID: 21084761]
[28]
Mirunalini, R.; Pavithra, G.; Benet Bosco Dhas, D.; Adithan, C. Genotype and Allele Frequency of P450 Oxidoreductase *28 Gene Polymorphism in South Indian Population. J. Pharmacol. Pharmacother., 2019, 10(1), 7-10.
[http://dx.doi.org/10.4103/jpp.JPP_95_18]
[29]
Haiman, C.A.; Setiawan, V.W.; Xia, L.Y.; Le Marchand, L.; Ingles, S.A.; Ursin, G.; Press, M.F.; Bernstein, L.; John, E.M.; Henderson, B.E. A variant in the cytochrome p450 oxidoreductase gene is associated with breast cancer risk in African Americans. Cancer Res., 2007, 67(8), 3565-3568.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4801] [PMID: 17440066]
[30]
Zhou, S.F. Potential strategies for minimizing mechanism-based inhibition of cytochrome P450 3A4. Curr. Pharm. Des., 2008, 14(10), 990-1000.
[http://dx.doi.org/10.2174/138161208784139738] [PMID: 18473851]
[31]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[32]
Kharasch, E.D.; Francis, A.; London, A.; Frey, K.; Kim, T.; Blood, J. Sensitivity of intravenous and oral alfentanil and pupillary miosis as minimal and noninvasive probes for hepatic and first-pass CYP3A induction. Clin. Pharmacol. Ther., 2011, 90(1), 100-108.
[http://dx.doi.org/10.1038/clpt.2011.59] [PMID: 21562488]
[33]
Kellerman, D.; Kori, S.; Forst, A.; Chang, J.; Febbraro, S.; Wutann, L.; Thomas, T.; Taylor, G.; Dodick, D. Lack of drug interaction between the migraine drug MAP0004 (orally inhaled dihydroergotamine) and a CYP3A4 inhibitor in humans. Cephalalgia, 2012, 32(2), 150-158.
[http://dx.doi.org/10.1177/0333102411432299] [PMID: 22174351]
[34]
Takashina, Y.; Naito, T.; Mino, Y.; Yagi, T.; Ohnishi, K.; Kawakami, J. Impact of CYP3A5 and ABCB1 gene polymorphisms on fentanyl pharmacokinetics and clinical responses in cancer patients undergoing conversion to a transdermal system. Drug Metab. Pharmacokinet., 2012, 27(4), 414-421.
[PMID: 22277678]
[35]
Van Der Weide, K.; Van Der Weide, J. The influence of the CYP3A4*22 polymorphism and CYP2D6 polymorphisms on serum concentrations of aripiprazole, haloperidol, pimozide, and risperidone in psychiatric patients. J. Clin. Psychopharmacol., 2015, 35(3), 228-236.
[http://dx.doi.org/10.1097/JCP.0000000000000319] [PMID: 25868121]
[36]
Ngui, J.S.; Tang, W.; Stearns, R.A.; Shou, M.; Miller, R.R.; Zhang, Y.; Lin, J.H.; Baillie, T.A. Cytochrome P450 3A4-mediated interaction of diclofenac and quinidine. Drug Metab. Dispos., 2000, 28(9), 1043-1050.
[PMID: 10950847]
[37]
Woillard, J.B.; Kamar, N.; Coste, S.; Rostaing, L.; Marquet, P.; Picard, N. Effect of CYP3A4*22, POR*28, and PPARA rs4253728 on sirolimus in vitro metabolism and trough concentrations in kidney transplant recipients. Clin. Chem., 2013, 59(12), 1761-1769.
[http://dx.doi.org/10.1373/clinchem.2013.204990] [PMID: 23974086]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy