Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nanoparticles Toxicity in Fish Models

Author(s): Jimena Cazenave*, Analía Ale, Carla Bacchetta and Andrea Silvana Rossi

Volume 25, Issue 37, 2019

Page: [3927 - 3942] Pages: 16

DOI: 10.2174/1381612825666190912165413

Price: $65

Abstract

The increasing production and use of nanoparticles (NP) have raised concerns regarding the potential toxicity to human and environmental health. In this review, we address the up to date information on nanotoxicity using fish as models. Firstly, we carried out a systematic literature search (articles published up to February 2019 in the Scopus database) in order to quantitatively assess the scientific research on nanoparticles, nanotoxicity and fish. Next, we carried out a narrative synthesis on the main factors and mechanisms involved in NP toxicity in fish. According to the bibliometric analysis, there is a low contribution of scientific research on nanotoxicity compared with the general nanoparticles scientific production. The literature search also showed that silver and titanium NP are the most studied nanomaterials and Danio rerio is the fish species most used. In comparison with freshwater fish, the effects of nanomaterials on marine fish have been little studied. After a non-systematic literature analysis, we identified several factors involved in nanotoxicity, as well as the effects and main toxicity mechanisms of NP on fish. Finally, we highlighted the knowledge gaps and the need for future research.

Keywords: Nanoecotoxicology, engineered nanomaterials, animal model, bibliometric analysis, physicochemical properties, toxic mechanisms, oxidative stress.

[1]
USEPA. Technical Fact Sheet-Nanomaterials Office of Land and Emergency Management 5106P EPA 505-F-17-002. United States Environmental Protection Agency 2017.
[2]
Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA. Nanotoxicology. Occup Environ Med 2004; 61(9): 727-8.
[http://dx.doi.org/10.1136/oem.2004.013243] [PMID: 15317911]
[3]
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113(7): 823-39.
[http://dx.doi.org/10.1289/ehp.7339] [PMID: 16002369]
[4]
Kahru A, Dubourguier HC. From ecotoxicology to nanoecotoxicology. Toxicology 2010; 269(2-3): 105-19.
[http://dx.doi.org/10.1016/j.tox.2009.08.016] [PMID: 19732804]
[5]
Di Giulio RT, Hinton DE. The Toxicology of Fishes. Boca Raton: CRC Press 2008; p. 1096.
[http://dx.doi.org/10.1201/9780203647295]
[6]
OECD. Test No 203: Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals. OECD Publishing Paris 1992.
[7]
USEPA. OPPTS 8501075 - Fish Acute Toxicity Test, Freshwater and Marine EPA 712-C-96-118. Washington, DC: United States Environmental Protection Agency 1996.
[8]
ASTM. Conducting acute toxicity tests with fishes, macroinvertebrates and amphibians Standard E729-96. In: Am Soc Test Mat. 100 Barr Harbor Drive, West Conshohocken, Pennsylvania 2002.
[9]
OECD. Test No 210: Fish, Early-Life Stage Toxicity Test. Paris: OECD Publishing 1992.
[10]
Hahn ME, Hestermann EV. Receptor-mediated mechanisms of toxicity The toxicology of fishes. Boca Raton: CRC Press 2008; pp. 235-72.
[http://dx.doi.org/10.1201/9780203647295.ch5]
[11]
Aparicio S, Chapman J, Stupka E, et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 2002; 297(5585): 1301-10.
[http://dx.doi.org/10.1126/science.1072104] [PMID: 12142439]
[12]
Jaillon O, Aury JM, Brunet F, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 2004; 431(7011): 946-57.
[http://dx.doi.org/10.1038/nature03025] [PMID: 15496914]
[13]
Bols NC, Dayeh VR, Lee LEJ, Schirmer K. Use of fish cell lines in the toxicology and ecotoxicology of fish Piscine cell lines in environmental toxicology Biochemistry and Molecular Biology of Fishes. Elsevier 2005; pp. 43-84.
[14]
Baker TJ, Tyler CR, Galloway TS. Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 2014; 186: 257-71.
[http://dx.doi.org/10.1016/j.envpol.2013.11.014] [PMID: 24359692]
[15]
He X, Aker WG, Leszczynski J, Hwang H-M. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems. Yao Wu Shi Pin Fen Xi 2014; 22(1): 128-46.
[http://dx.doi.org/10.1016/j.jfda.2014.01.011] [PMID: 24673910]
[16]
Callaghan NI, MacCormack TJ. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193: 30-41.
[http://dx.doi.org/10.1016/j.cbpc.2016.12.007] [PMID: 28017784]
[17]
Freixa A, Acuña V, Sanchís J, Farré M, Barceló D, Sabater S. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci Total Environ 2018; 619-620: 328-37.
[http://dx.doi.org/10.1016/j.scitotenv.2017.11.095] [PMID: 29154051]
[18]
Henry TB, Petersen EJ, Compton RN. Aqueous fullerene aggregates (nC60) generate minimal reactive oxygen species and are of low toxicity in fish: a revision of previous reports. Curr Opin Biotechnol 2011; 22(4): 533-7.
[http://dx.doi.org/10.1016/j.copbio.2011.05.511] [PMID: 21719272]
[19]
Shaw BJ, Handy RD. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 2011; 37(6): 1083-97.
[http://dx.doi.org/10.1016/j.envint.2011.03.009] [PMID: 21474182]
[20]
Lapresta-Fernandez A, Fernandez J, Blasco J. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends Analyt Chem 2012; 32: 40-59.
[http://dx.doi.org/10.1016/j.trac.2011.09.007]
[21]
Fruijtier-Pölloth C. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology 2012; 294(2-3): 61-79.
[http://dx.doi.org/10.1016/j.tox.2012.02.001] [PMID: 22349641]
[22]
Rocha TL, Mestre NC, Sabóia-Morais SM, Bebianno MJ. Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: a review. Environ Int 2017; 98: 1-17.
[http://dx.doi.org/10.1016/j.envint.2016.09.021] [PMID: 27745949]
[23]
Kahlon SK, Sharma G, Julka JM, Kumar A, Sharma S, Stadler F. Impact of heavy metals and nanoparticles on aquatic biota. Environ Chem Lett 2018; 16(3): 919-46.
[http://dx.doi.org/10.1007/s10311-018-0737-4]
[24]
Yousefian M, Payam B. Effects of nanochemical particles on some histological parameters of fish. (Review) Adv Environ Biol 2012; 6(3): 1209-15.
[25]
Torrealba D, More-Bayona JA, Wakaruk J, Barreda DR. Innate immunity provides biomarkers of health for teleosts exposed to nanoparticles. Front Immunol 2019; 9: 3074.
[http://dx.doi.org/10.3389/fimmu.2018.03074] [PMID: 30687312]
[26]
Vance ME, Kuiken T, Vejerano EP, et al. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 2015; 6: 1769-80.
[http://dx.doi.org/10.3762/bjnano.6.181] [PMID: 26425429]
[27]
Pulit-Prociak J, Banach M. Silver nanoparticles - a material of the future…? Open Chem 2016; 14: 76-91.
[http://dx.doi.org/10.1515/chem-2016-0005]
[28]
Piccinno F, Gottschalk F, Seeger S, Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 2012; 14: 1109.
[http://dx.doi.org/10.1007/s11051-012-1109-9]
[29]
Fent K. Ecotoxicology of Engineered NanoparticlesNanoparticles in the Water Cycle. Berlin, Heidelberg: Springer-Verlag 2010; pp. 183-205.
[http://dx.doi.org/10.1007/978-3-642-10318-6_11]
[30]
Duan J, Yu Y, Shi H, et al. Toxic effects of silica nanoparticles on zebrafish embryos and larvae. PLoS One 2013; 8(9)e74606
[http://dx.doi.org/10.1371/journal.pone.0074606] [PMID: 24058598]
[31]
Ramesh R, Kavitha P, Kanipandian N, Arun S, Thirumurugan R, Subramanian P. Alteration of antioxidant enzymes and impairment of DNA in the SiO2 nanoparticles exposed zebra fish (Danio rerio). Environ Monit Assess 2013; 185(7): 5873-81.
[http://dx.doi.org/10.1007/s10661-012-2991-4] [PMID: 23196406]
[32]
Vo NTK, Bufalino MR, Hartlen KD, Kitaev V, Lee LEJ. Cytotoxicity evaluation of silica nanoparticles using fish cell lines. In Vitro Cell Dev Biol Anim 2014; 50(5): 427-38.
[http://dx.doi.org/10.1007/s11626-013-9720-3] [PMID: 24357037]
[33]
Krishna Priya K, Ramesh M, Saravanan M, Ponpandian N. Ecological risk assessment of silicon dioxide nanoparticles in a freshwater fish Labeo rohita: hematology, ionoregulation and gill Na(+)/K(+) ATPase activity. Ecotoxicol Environ Saf 2015; 120: 295-302.
[http://dx.doi.org/10.1016/j.ecoenv.2015.05.032] [PMID: 26094035]
[34]
Duan J, Yu Y, Li Y, et al. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos. Nanotoxicology 2016; 10(5): 575-85.
[http://dx.doi.org/10.3109/17435390.2015.1102981] [PMID: 26551753]
[35]
Fako VE, Furgeson DY. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv Drug Deliv Rev 2009; 61(6): 478-86.
[http://dx.doi.org/10.1016/j.addr.2009.03.008] [PMID: 19389433]
[36]
Martinez CS, Igartúa DE, Calienni MN, et al. Relation between biophysical properties of nanostructures and their toxicity on zebrafish. Biophys Rev 2017; 9(5): 775-91.
[http://dx.doi.org/10.1007/s12551-017-0294-2] [PMID: 28884420]
[37]
Chakraborty C, Sharma AR, Sharma G, Lee SS. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnology 2016; 14(1): 65.
[http://dx.doi.org/10.1186/s12951-016-0217-6] [PMID: 27544212]
[38]
Sieber S, Grossen P, Bussmann J, et al. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019 In Press
[http://dx.doi.org/10.1016/j.addr.2019.01.001] [PMID: 30615917]
[39]
Farkas J, Christian P, Urrea JA, et al. Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 2010; 96(1): 44-52.
[http://dx.doi.org/10.1016/j.aquatox.2009.09.016] [PMID: 19853932]
[40]
Scown TM, Santos EM, Johnston BD, et al. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 2010; 115(2): 521-34.
[http://dx.doi.org/10.1093/toxsci/kfq076] [PMID: 20219766]
[41]
Wang J, Wang A, Wang W-X. Evaluation of nano-ZnOs as a novel Zn source for marine fish: importance of digestive physiology. Nanotoxicology 2017; 11(8): 1026-39.
[http://dx.doi.org/10.1080/17435390.2017.1388865] [PMID: 29050525]
[42]
Hernández-Moreno D, Li L, Connolly M, et al. Mechanisms underlying the enhancement of toxicity caused by the coincubation of zinc oxide and copper nanoparticles in a fish hepatoma cell line. Environ Toxicol Chem 2016; 35(10): 2562-70.
[http://dx.doi.org/10.1002/etc.3425] [PMID: 26970269]
[43]
Galbis-Martínez L, Fernández-Cruz ML, Alte L, Valdehita A, Rucandio I, Navas JM. Development of a new tool for the long term in vitro ecotoxicity testing of nanomaterials using a rainbow-trout cell line (RTL-W1). Toxicol In Vitro 2018; 50: 305-17.
[http://dx.doi.org/10.1016/j.tiv.2018.04.007] [PMID: 29660445]
[44]
Bermejo-Nogales A, Fernández-Cruz ML, Navas JM. Fish cell lines as a tool for the ecotoxicity assessment and ranking of engineered nanomaterials. Regul Toxicol Pharmacol 2017; 90: 297-307.
[http://dx.doi.org/10.1016/j.yrtph.2017.09.029] [PMID: 28966106]
[45]
Kühnel D, Busch W, Meissner T, et al. Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. Aquat Toxicol 2009; 93(2-3): 91-9.
[http://dx.doi.org/10.1016/j.aquatox.2009.04.003] [PMID: 19439373]
[46]
George S, Lin S, Ji Z, et al. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 2012; 6(5): 3745-59.
[http://dx.doi.org/10.1021/nn204671v] [PMID: 22482460]
[47]
Yue Y, Behra R, Sigg L, Fernández Freire P, Pillai S, Schirmer K. Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition. Nanotoxicology 2015; 9(1): 54-63.
[http://dx.doi.org/10.3109/17435390.2014.889236] [PMID: 24621324]
[48]
Yue Y, Li X, Sigg L, et al. Interaction of silver nanoparticles with algae and fish cells: a side by side comparison. J Nanobiotechnology 2017; 15(1): 16.
[http://dx.doi.org/10.1186/s12951-017-0254-9] [PMID: 28245850]
[49]
Vevers WF, Jha AN. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 2008; 17(5): 410-20.
[http://dx.doi.org/10.1007/s10646-008-0226-9] [PMID: 18491228]
[50]
Rosenkranz P, Fernández-Cruz ML, Conde E, et al. Effects of cerium oxide nanoparticles to fish and mammalian cell lines: an assessment of cytotoxicity and methodology. Toxicol In Vitro 2012; 26(6): 888-96.
[http://dx.doi.org/10.1016/j.tiv.2012.04.019] [PMID: 22554435]
[51]
Degger N, Tse ACK, Wu RSS. Silver nanoparticles disrupt regulation of steroidogenesis in fish ovarian cells. Aquat Toxicol 2015; 169: 143-51.
[http://dx.doi.org/10.1016/j.aquatox.2015.10.015] [PMID: 26546908]
[52]
Sumi N, Chitra KC. Fullerene C60 nanomaterial induced oxidative imbalance in gonads of the freshwater fish, Anabas testudineus (Bloch, 1792). Aquat Toxicol 2019; 210: 196-206.
[http://dx.doi.org/10.1016/j.aquatox.2019.03.003] [PMID: 30870666]
[53]
Minghetti M, Schirmer K. Effect of media composition on bioavailability and toxicity of silver and silver nanoparticles in fish intestinal cells (RTgutGC). Nanotoxicology 2016; 10(10): 1526-34.
[http://dx.doi.org/10.1080/17435390.2016.1241908] [PMID: 27689691]
[54]
Wise JP Sr, Goodale BC, Wise SS, et al. Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 2010; 97(1): 34-41.
[http://dx.doi.org/10.1016/j.aquatox.2009.11.016] [PMID: 20060603]
[55]
Reeves JF, Davies SJ, Dodd NJF, Jha AN. Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO(2)) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res 2008; 640(1-2): 113-22.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.12.010] [PMID: 18258270]
[56]
Chen LQ, Kang B, Ling J. Cytotoxicity of cuprous oxide nanoparticles to fish blood cells: hemolysis and internalization. J Nanopart Res 2013; 15(3): 1507.
[http://dx.doi.org/10.1007/s11051-013-1507-7]
[57]
Sekar D, Falcioni ML, Barucca G, Falcioni G. DNA damage and repair following in vitro exposure to two different forms of titanium dioxide nanoparticles on trout erythrocyte. Environ Toxicol 2014; 29(1): 117-27.
[http://dx.doi.org/10.1002/tox.20778] [PMID: 22012887]
[58]
Chen SF, Zhang H. Aggregation kinetics of nanosilver in different water conditions. Adv Nat Sci: Nanosci Nanotechnol 2012; 3035006
[59]
Prajitha N, Athira SS, Mohanan PV. Bio-interactions and risks of engineered nanoparticles. Environ Res 2019; 172: 98-108.
[http://dx.doi.org/10.1016/j.envres.2019.02.003] [PMID: 30782540]
[60]
Liu H, Wang X, Wu Y, et al. Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings. Environ Pollut 2019; 246: 414-22.
[http://dx.doi.org/10.1016/j.envpol.2018.12.034] [PMID: 30579210]
[61]
Osborne OJ, Lin S, Chang CH, et al. Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano 2015; 9(10): 9573-84.
[http://dx.doi.org/10.1021/acsnano.5b04583] [PMID: 26327297]
[62]
Osborne OJ, Johnston BD, Moger J, et al. Effects of particle size and coating on nanoscale Ag and TiO2 exposure in zebrafish (Danio rerio) embryos. Nanotoxicology 2013; 7(8): 1315-24.
[http://dx.doi.org/10.3109/17435390.2012.737484] [PMID: 23035978]
[63]
Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 2009; 5(16): 1897-910.
[http://dx.doi.org/10.1002/smll.200801716] [PMID: 19437466]
[64]
Hua J, Vijver MG, Richardson MK, Ahmad F, Peijnenburg WJGM. Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio). Environ Toxicol Chem 2014; 33(12): 2859-68.
[http://dx.doi.org/10.1002/etc.2758] [PMID: 25244315]
[65]
Kim MS, Louis KM, Pedersen JA, Hamers RJ, Peterson RE, Heideman W. Using citrate-functionalized TiO2 nanoparticles to study the effect of particle size on zebrafish embryo toxicity. Analyst (Lond) 2014; 139(5): 964-72.
[http://dx.doi.org/10.1039/c3an01966g] [PMID: 24384696]
[66]
Yeo MK, Kang M. The biological toxicities of two crystalline phases and differential sizes of TiO2 nanoparticles during zebrafish embryogenesis development. Mol Cell Toxicol 2012; 8: 317-26.
[http://dx.doi.org/10.1007/s13273-012-0039-z]
[67]
Kaya H, Aydın F, Gürkan M, et al. A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere 2016; 144: 571-82.
[http://dx.doi.org/10.1016/j.chemosphere.2015.09.024] [PMID: 26398925]
[68]
Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN. Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol 2009; 43(16): 6349-56.
[http://dx.doi.org/10.1021/es9010543] [PMID: 19746736]
[69]
Xue JY, Li X, Sun MZ, et al. An assessment of the impact of SiO2 nanoparticles of different sizes on the rest/wake behavior and the developmental profile of zebrafish larvae. Small 2013; 9(18): 3161-8.
[http://dx.doi.org/10.1002/smll.201300430] [PMID: 23468419]
[70]
Bruneau A, Fortier M, Gagne F, et al. Size distribution effects of cadmium tellurium quantum dots (CdS/CdTe) immunotoxicity on aquatic organisms. Environ Sci Process Impacts 2013; 15(3): 596-607.
[http://dx.doi.org/10.1039/c2em30896g] [PMID: 23738358]
[71]
Abramenko NB, Demidova TB, Abkhalimov EV, Ershov BG, Krysanov EY, Kustov LM. Ecotoxicity of different-shaped silver nanoparticles: case of zebrafish embryos. J Hazard Mater 2018; 347: 89-94.
[http://dx.doi.org/10.1016/j.jhazmat.2017.12.060] [PMID: 29291521]
[72]
Nelson SM, Mahmoud T, Beaux MII, Shapiro P, McIlroy DN, Stenkamp DL. Toxic and teratogenic silica nanowires in developing vertebrate embryos. Nanomedicine (Lond) 2010; 6(1): 93-102.
[http://dx.doi.org/10.1016/j.nano.2009.05.003] [PMID: 19447201]
[73]
Sangabathuni S, Murthy RV, Chaudhary PM, Subramani B, Toraskar S, Kikkeri R. Mapping the glyco-gold nanoparticles of different shapes toxicity, biodistribution and sequestration in adult ebrafish. Sci Rep 2017; 7(1): 4239.
[http://dx.doi.org/10.1038/s41598-017-03350-3] [PMID: 28652584]
[74]
de Oliveira GMT, de Oliveira EMN, Pereira TCB, Papaléo RM, Bogo MR. Implications of exposure to dextran-coated and uncoated iron oxide nanoparticles to developmental toxicity in zebrafish. J Nanopart Res 2017; 19(12): 389.
[http://dx.doi.org/10.1007/s11051-017-4074-5]
[75]
Zheng M, Lu J, Zhao D. Effects of starch-coating of magnetite nanoparticles on cellular uptake, toxicity and gene expression profiles in adult zebrafish. Sci Total Environ 2018; 622-623: 930-41.
[http://dx.doi.org/10.1016/j.scitotenv.2017.12.018] [PMID: 29227944]
[76]
Kwok KWH, Auffan M, Badireddy AR, et al. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Aquat Toxicol 2012; 120-121: 59-66.
[http://dx.doi.org/10.1016/j.aquatox.2012.04.012] [PMID: 22634717]
[77]
Yu S, Liu J, Yin Y, Shen M. Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects. J Environ Sci (China) 2018; 63: 198-217.
[http://dx.doi.org/10.1016/j.jes.2017.06.021] [PMID: 29406103]
[78]
Amde M, Liu JF, Tan ZQ, Bekana D. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. Environ Pollut 2017; 230: 250-67.
[http://dx.doi.org/10.1016/j.envpol.2017.06.064] [PMID: 28662490]
[79]
Kteeba SM, El-Adawi HI, El-Rayis OA, et al. Zinc oxide nanoparticle toxicity in embryonic zebrafish: mitigation with different natural organic matter. Environ Pollut 2017; 230: 1125-40.
[http://dx.doi.org/10.1016/j.envpol.2017.07.042] [PMID: 28841783]
[80]
Ong KJ, Felix LC, Boyle D, et al. Humic acid ameliorates nanoparticle-induced developmental toxicity in zebrafish. Environ Sci Nano 2017; 4: 127-37.
[http://dx.doi.org/10.1039/C6EN00408C]
[81]
Cáceres-Vélez PR, Fascineli ML, Sousa MH, et al. Humic acid attenuation of silver nanoparticle toxicity by ion complexation and the formation of a Ag3+ coating. J Hazard Mater 2018; 353: 173-81.
[http://dx.doi.org/10.1016/j.jhazmat.2018.04.019] [PMID: 29674092]
[82]
Wang Z, Quik JTK, Song L, Van Den Brandhof EJ, Wouterse M, Peijnenburg WJ. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. Environ Toxicol Chem 2015; 34(6): 1239-45.
[http://dx.doi.org/10.1002/etc.2936] [PMID: 25683234]
[83]
Kim JY, Kim K-T, Lee BG, Lim BJ, Kim SD. Developmental toxicity of Japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid. Ecotoxicol Environ Saf 2013; 92: 57-63.
[http://dx.doi.org/10.1016/j.ecoenv.2013.02.004] [PMID: 23473953]
[84]
Zhang W, Huang J, Liang L, Yao L, Fang T. Dual impact of dissolved organic matter on cytotoxicity of PVP-Ag NPs to Escherichia coli: mitigation and intensification. Chemosphere 2019; 214: 754-63.
[http://dx.doi.org/10.1016/j.chemosphere.2018.09.179] [PMID: 30296763]
[85]
Fang T, Yu LP, Zhang WC, Bao SP. Effects of humic acid and ionic strength on TiO2 nanoparticles sublethal toxicity to zebrafish. Ecotoxicology 2015; 24(10): 2054-66.
[http://dx.doi.org/10.1007/s10646-015-1541-6] [PMID: 26410372]
[86]
Yang SP, Bar-Ilan O, Peterson RE, Heideman W, Hamers RJ, Pedersen JA. Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish. Environ Sci Technol 2013; 47(9): 4718-25.
[http://dx.doi.org/10.1021/es3047334] [PMID: 23347333]
[87]
Gaiser BK, Fernandes TF, Jepson M, Lead JR, Tyler CR, Stone V. Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ Health 2009; 8(Suppl. 1): S2.
[http://dx.doi.org/10.1186/1476-069X-8-S1-S2] [PMID: 20102587]
[88]
Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR. Manufactured nanoparticles: their uptake and effects on fish--a mechanistic analysis. Ecotoxicology 2008; 17(5): 396-409.
[http://dx.doi.org/10.1007/s10646-008-0205-1] [PMID: 18408995]
[89]
Smith CJ, Shaw BJ, Handy RD. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 2007; 82(2): 94-109.
[http://dx.doi.org/10.1016/j.aquatox.2007.02.003] [PMID: 17343929]
[90]
Pirsaheb M, Azadi NA, Miglietta ML, et al. Toxicological effects of transition metal-doped titanium dioxide nanoparticles on goldfish (Carassius auratus) and common carp (Cyprinus carpio). Chemosphere 2019; 215: 904-15.
[http://dx.doi.org/10.1016/j.chemosphere.2018.10.111] [PMID: 30408886]
[91]
Lee B, Duong CN, Cho J, et al. Toxicity of citrate-capped silver nanoparticles in common carp (Cyprinus carpio). J Biomed Biotechnol 2012; 2012262670
[http://dx.doi.org/10.1155/2012/262670] [PMID: 23093839]
[92]
Ale A, Bacchetta C, Rossi AS, et al. Nanosilver toxicity in gills of a neotropical fish: metal accumulation, oxidative stress, histopathology and other physiological effects. Ecotoxicol Environ Saf 2018; 148: 976-84.
[http://dx.doi.org/10.1016/j.ecoenv.2017.11.072]
[93]
Braz-Mota S, Campos DF, MacCormack TJ, Duarte RM, Val AL, Almeida-Val VMF. Mechanisms of toxic action of copper and copper nanoparticles in two amazon fish species: Dwarf cichlid (Apistogramma agassizii) and cardinal tetra (Paracheirodon axelrodi). Sci Total Environ 2018; 630: 1168-80.
[http://dx.doi.org/10.1016/j.scitotenv.2018.02.216] [PMID: 29554738]
[94]
Correia AT, Rebelo D, Marques J, Nunes B. Effects of the chronic exposure to cerium dioxide nanoparticles in Oncorhynchus mykiss: Assessment of oxidative stress, neurotoxicity and histological alterations. Environ Toxicol Pharmacol 2019; 68: 27-36.
[http://dx.doi.org/10.1016/j.etap.2019.02.012] [PMID: 30870693]
[95]
Wilson B, Danilowicz BS, Meijer WG. The diversity of bacterial communities associated with Atlantic cod Gadus morhua. Microb Ecol 2008; 55(3): 425-34.
[http://dx.doi.org/10.1007/s00248-007-9288-0] [PMID: 17624487]
[96]
Benhamed S, Guardiola FA, Mars M, Esteban MA. Pathogen bacteria adhesion to skin mucus of fishes. Vet Microbiol 2014; 171(1-2): 1-12.
[http://dx.doi.org/10.1016/j.vetmic.2014.03.008] [PMID: 24709124]
[97]
Merrifield DL, Shaw BJ, Harper GM, et al. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio). Environ Pollut 2013; 174: 157-63.
[http://dx.doi.org/10.1016/j.envpol.2012.11.017] [PMID: 23262071]
[98]
Bacchetta C, López G, Pagano G, Muratt DT, de Carvalho LM, Monserrat JM. Toxicological effects induced by silver nanoparticles in zebra fish (Danio rerio) and in the bacteria communities living at their surface. Bull Environ Contam Toxicol 2016; 97(4): 456-62.
[http://dx.doi.org/10.1007/s00128-016-1883-7] [PMID: 27393328]
[99]
Ale A, Rossi AS, Bacchetta C, Gervasio S, de la Torre FR, Cazenave J. Integrative assessment of silver nanoparticles toxicity in Prochilodus lineatus fish. Ecol Indic 2018; 93: 1190-8.
[http://dx.doi.org/10.1016/j.ecolind.2018.06.023]
[100]
Letts RE, Pereira TCB, Bogo MR, Monserrat JM. Biologic responses of bacteria communities living at the mucus secretion of common carp (Cyprinus carpio) after exposure to the carbon nanomaterial fullerene (C60). Arch Environ Contam Toxicol 2011; 61(2): 311-7.
[http://dx.doi.org/10.1007/s00244-010-9618-y] [PMID: 21072630]
[101]
Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 2006; 32(8): 967-76.
[http://dx.doi.org/10.1016/j.envint.2006.06.014] [PMID: 16859745]
[102]
Abdolahpur Monikh F, Chupani L, Vijver MG, Vancová M, Peijnenburg WJGM. Analytical approaches for characterizing and quantifying engineered nanoparticles in biological matrices from an (eco) toxicological perspective: old challenges, new methods and techniques. Sci Total Environ 2019; 660: 1283-93.
[http://dx.doi.org/10.1016/j.scitotenv.2019.01.105] [PMID: 30743923]
[103]
Zhu B, He W, Hu S, Kong R, Yang L. The fate and oxidative stress of different sized SiO2 nanoparticles in zebrafish (Danio rerio) larvae. Chemosphere 2019; 225: 705-12.
[http://dx.doi.org/10.1016/j.chemosphere.2019.03.091] [PMID: 30904758]
[104]
Fent K, Weisbrod CJ, Wirth-Heller A, Pieles U. Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquat Toxicol 2010; 100(2): 218-28.
[http://dx.doi.org/10.1016/j.aquatox.2010.02.019] [PMID: 20303188]
[105]
Cheng J, Flahaut E, Cheng SH. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 2007; 26(4): 708-16.
[http://dx.doi.org/10.1897/06-272R.1] [PMID: 17447555]
[106]
Maes HM, Stibany F, Giefers S, et al. Accumulation and distribution of multiwalled carbon nanotubes in zebrafish (Danio rerio). Environ Sci Technol 2014; 48(20): 12256-64.
[http://dx.doi.org/10.1021/es503006v] [PMID: 25299126]
[107]
Chen PJ, Tan SW, Wu WL. Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish. Environ Sci Technol 2012; 46(15): 8431-9.
[http://dx.doi.org/10.1021/es3006783] [PMID: 22747062]
[108]
Zhang Y, Zhu L, Zhou Y, Chen J. Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure. J Environ Sci (China) 2015; 30: 223-30.
[http://dx.doi.org/10.1016/j.jes.2014.08.024] [PMID: 25872731]
[109]
Zhu Z-J, Carboni R, Quercio MJ Jr, et al. Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small 2010; 6(20): 2261-5.
[http://dx.doi.org/10.1002/smll.201000989] [PMID: 20842664]
[110]
Murali M, Suganthi P, Athif P, et al. Histological alterations in the hepatic tissues of Al2O3 nanoparticles exposed freshwater fish Oreochromis mossambicus. J Trace Elem Med Biol 2017; 44: 125-31.
[http://dx.doi.org/10.1016/j.jtemb.2017.07.001] [PMID: 28965567]
[111]
Jung YJ, Kim KT, Kim JY, Yang SY, Lee BG, Kim SD. Bioconcentration and distribution of silver nanoparticles in Japanese medaka (Oryzias latipes). J Hazard Mater 2014; 267: 206-13.
[http://dx.doi.org/10.1016/j.jhazmat.2013.12.061] [PMID: 24457612]
[112]
Hao L, Chen L, Hao J, Zhong N. Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol Environ Saf 2013; 91: 52-60.
[http://dx.doi.org/10.1016/j.ecoenv.2013.01.007] [PMID: 23375439]
[113]
Chupani L, Niksirat H, Velíšek J, et al. Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): tissue accumulation and physiological responses. Ecotoxicol Environ Saf 2018; 147: 110-6.
[http://dx.doi.org/10.1016/j.ecoenv.2017.08.024] [PMID: 28841525]
[114]
Shaw BJ, Al-Bairuty G, Handy RD. Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol 2012; 116-117: 90-101.
[http://dx.doi.org/10.1016/j.aquatox.2012.02.032] [PMID: 22480992]
[115]
Jayaseelan C, Abdul Rahuman A, Ramkumar R, et al. Effect of sub-acute exposure to nickel nanoparticles on oxidative stress and histopathological changes in Mozambique tilapia, Oreochromis mossambicus. Ecotoxicol Environ Saf 2014; 107: 220-8.
[http://dx.doi.org/10.1016/j.ecoenv.2014.06.012] [PMID: 25011118]
[116]
Kaya H, Aydın F, Gürkan M, et al. Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia (Oreochromis niloticus). Environ Toxicol Pharmacol 2015; 40(3): 936-47.
[http://dx.doi.org/10.1016/j.etap.2015.10.001] [PMID: 26513690]
[117]
Federici G, Shaw BJ, Handy RD. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 2007; 84(4): 415-30.
[http://dx.doi.org/10.1016/j.aquatox.2007.07.009] [PMID: 17727975]
[118]
Jovanović B, Whitley EM, Kimura K, Crumpton A, Palić D. Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens. Environ Pollut 2015; 203: 153-64.
[http://dx.doi.org/10.1016/j.envpol.2015.04.003] [PMID: 25884347]
[119]
Ates M, Demir V, Adiguzel R, Arslan Z. Bioaccumulation, subacute toxicity, and tissue distribution of engineered titanium dioxide nanoparticles in goldfish (Carassius auratus). J Nanomater 2013; 6.
[120]
Bacchetta C, Ale A, Simoniello MF, et al. Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecol Indic 2017; 76: 230-9.
[http://dx.doi.org/10.1016/j.ecolind.2017.01.018]
[121]
Powers CM, Slotkin TA, Seidler FJ, Badireddy AR, Padilla S. Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicol Teratol 2011; 33(6): 708-14.
[http://dx.doi.org/10.1016/j.ntt.2011.02.002] [PMID: 21315816]
[122]
Hu YL, Gao JQ. Potential neurotoxicity of nanoparticles. Int J Pharm 2010; 394(1-2): 115-21.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.026] [PMID: 20433914]
[123]
Karthikeyeni S, Vijayakumar T, Vasanth S, Ganesh A, Manimegalai M, Subramanian P. Biosynthesis of Iron oxide nanoparticles and its haematological effects on fresh water fish Oreochromis mossambicus. J Acad Indus Res 2013; 1(10): 645-9.
[124]
Saravanan M, Suganya R, Ramesh M, Poopal RK, Gopalan N, Ponpandian N. Iron oxide nanoparticles induced alterations in haematological, biochemical and ionoregulatory responses of an Indian major carp Labeo rohita. J Nanopart Res 2015; 17: 274.
[http://dx.doi.org/10.1007/s11051-015-3082-6]
[125]
Remya AS, Ramesh M, Saravanan M, Poopal RK, Bharathi S, Nataraj D. Iron oxide nanoparticles to an Indian major carp, Labeo rohita: Impacts on hematology, iono regulation and gill Na+/K+ ATPase activity. J King Saud Univ Sci 2015; 27: 151-60.
[126]
Vignesh V, Anbarasi KF, Karthikeyeni S, Sathiyanarayanan G, Subramanian P, Thirumurugan R. A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Colloids Surf A Physicochem Eng Asp 2013; 439: 184-92.
[http://dx.doi.org/10.1016/j.colsurfa.2013.04.011]
[127]
Rajkumar K, Kanipandian N, Thirumurugan R. Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appl Nanosci 2016; 6: 19.
[http://dx.doi.org/10.1007/s13204-015-0417-7]
[128]
Shaluei F, Hedayati A, Jahanbakhshi A, Kolangi H, Fotovat M. Effect of subacute exposure to silver nanoparticle on some hematological and plasma biochemical indices in silver carp (Hypophthalmichthys molitrix). Hum Exp Toxicol 2013; 32(12): 1270-7.
[http://dx.doi.org/10.1177/0960327113485258] [PMID: 23632006]
[129]
Imani M, Halimi M, Khara H. Effects of silver nanoparticles (AgNP) on hematological parameters of rainbow trout, Oncorhynchus mykiss. Comp Clin Pathol 2015; 24: 491-5.
[http://dx.doi.org/10.1007/s00580-014-1927-5]
[130]
Lee JW, Kim JE, Shin YJ, et al. Serum and ultrastructure responses of common carp (Cyprinus carpio L.) during long-term exposure to zinc oxide nanoparticles. Ecotoxicol Environ Saf 2014; 104: 9-17.
[http://dx.doi.org/10.1016/j.ecoenv.2014.01.040] [PMID: 24632117]
[131]
Ramsden CS, Smith TJ, Shaw BJ, Handy RD. Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 2009; 18(7): 939-51.
[http://dx.doi.org/10.1007/s10646-009-0357-7] [PMID: 19590957]
[132]
Akter M, Sikder MT, Rahman MM, et al. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 2018; 9: 1-16.
[http://dx.doi.org/10.1016/j.jare.2017.10.008] [PMID: 30046482]
[133]
Chen M, Yin J, Liang Y, et al. Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish. Aquat Toxicol 2016; 174: 54-60.
[http://dx.doi.org/10.1016/j.aquatox.2016.02.015] [PMID: 26921726]
[134]
Klaper R, Arndt D, Setyowati K, Chen J, Goetz F. Functionalization impacts the effects of carbon nanotubes on the immune system of rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 2010; 100(2): 211-7.
[http://dx.doi.org/10.1016/j.aquatox.2010.07.023] [PMID: 20732719]
[135]
Jovanović B, Anastasova L, Rowe EW, Zhang Y, Clapp AR, Palić D. Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820). Ecotoxicol Environ Saf 2011; 74(4): 675-83.
[http://dx.doi.org/10.1016/j.ecoenv.2010.10.017] [PMID: 21035856]
[136]
da Rocha AM, Costa CLA, Ferreira JRL, et al. Ecotoxicological risks of nanomaterials Exploring Themes on Aquatic Toxicology. India: Research Signpost 2013; pp. 75-88.
[137]
Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004; 112(10): 1058-62.
[http://dx.doi.org/10.1289/ehp.7021] [PMID: 15238277]
[138]
Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML. Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon 2006; 44: 1112-20.
[http://dx.doi.org/10.1016/j.carbon.2005.11.008]
[139]
Usenko CY, Harper SL, Tanguay RL. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol Appl Pharmacol 2008; 229(1): 44-55.
[http://dx.doi.org/10.1016/j.taap.2007.12.030] [PMID: 18299140]
[140]
Sumi N, Chitra KC. Effects of fullerene (C60) on antioxidant enzyme activities and lipid peroxidation in gill of the cichlid fish, Etroplus maculatus (Bloch, 1795). J Zool Stud 2016; 3(6): 31-7.
[141]
Sumi N, Chitra KC. Acute exposure to fullerene (C60) altered antioxidant defense system in hepatocytes of the cichlid fish, Pseudetroplus maculatus (Bloch 1795). Int J Res 2017; 4(5): 953-62.
[142]
Sumi N, Chitra KC. Oxidative stress in muscle tissue of the freshwater fish, Pseudetroplus maculatus (Bloch 1795): a toxic response from exposure to fullerene (C60) nanoparticles. Asian Fish Sci 2017; 30: 206-14.
[143]
Sumi N, Chitra KC. Fullerene (C60) induced alteration in the brain antioxidant system of the cichlid fish, Pseudetroplus maculatus (Bloch 1795). J Global Biosci 2017; 6(4): 4908-17.
[144]
De Marchi L, Pretti C, Gabriel B, Marques PAAP, Freitas R, Neto V. An overview of graphene materials: properties, applications and toxicity on aquatic environments. Sci Total Environ 2018; 631-632: 1440-56.
[http://dx.doi.org/10.1016/j.scitotenv.2018.03.132] [PMID: 29727968]
[145]
Chen Y, Hu X, Sun J, Zhou Q. Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology 2016; 10(1): 42-52.
[PMID: 25704117]
[146]
Souza JP, Baretta JF, Santos F, Paino IMM, Zucolotto V. Toxicological effects of graphene oxide on adult zebrafish (Danio rerio). Aquat Toxicol 2017; 186: 11-8.
[http://dx.doi.org/10.1016/j.aquatox.2017.02.017] [PMID: 28242497]
[147]
Zhang X, Zhou Q, Zou W, Hu X. Molecular mechanisms of developmental toxicity induced by graphene oxide at predicted environmental concentrations. Environ Sci Technol 2017; 51(14): 7861-71.
[http://dx.doi.org/10.1021/acs.est.7b01922] [PMID: 28614664]
[148]
Lammel T, Navas JM. Graphene nanoplatelets spontaneously translocate into the cytosol and physically interact with cellular organelles in the fish cell line PLHC-1. Aquat Toxicol 2014; 150: 55-65.
[http://dx.doi.org/10.1016/j.aquatox.2014.02.016] [PMID: 24642293]
[149]
Hao L, Wang Z, Xing B. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). J Environ Sci (China) 2009; 21(10): 1459-66.
[http://dx.doi.org/10.1016/S1001-0742(08)62440-7] [PMID: 20000003]
[150]
Massarsky A, Trudeau VL, Moon TW. Predicting the environmental impact of nanosilver. Environ Toxicol Pharmacol 2014; 38(3): 861-73.
[http://dx.doi.org/10.1016/j.etap.2014.10.006] [PMID: 25461546]
[151]
McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. Yao Wu Shi Pin Fen Xi 2014; 22(1): 116-27.
[http://dx.doi.org/10.1016/j.jfda.2014.01.010] [PMID: 24673909]
[152]
Wang D, Lin Z, Wang T, et al. Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? J Hazard Mater 2016; 308: 328-34.
[http://dx.doi.org/10.1016/j.jhazmat.2016.01.066] [PMID: 26852208]
[153]
Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 2009; 94(4): 320-7.
[http://dx.doi.org/10.1016/j.aquatox.2009.07.019] [PMID: 19699002]
[154]
Valerio-García RC, Carbajal-Hernández AL, Martínez-Ruíz EB, Jarquín-Díaz VH, Haro-Pérez C, Martínez-Jerónimo F. Exposure to silver nanoparticles produces oxidative stress and affects macromolecular and metabolic biomarkers in the goodeid fish Chapalichthys pardalis. Sci Total Environ 2017; 583: 308-18.
[http://dx.doi.org/10.1016/j.scitotenv.2017.01.070] [PMID: 28117161]
[155]
Zhao X, Wang S, Wu Y, You H, Lv L. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol 2013; 136-137: 49-59.
[http://dx.doi.org/10.1016/j.aquatox.2013.03.019] [PMID: 23643724]
[156]
Ganesan S, Anaimalai Thirumurthi N, Raghunath A, Vijayakumar S, Perumal E. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos. J Appl Toxicol 2016; 36(4): 554-67.
[http://dx.doi.org/10.1002/jat.3224] [PMID: 26493272]
[157]
Hao L, Chen L. Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf 2012; 80: 103-10.
[http://dx.doi.org/10.1016/j.ecoenv.2012.02.017] [PMID: 22425733]
[158]
Abdelazim AM, Saadeldin IM, Swelum AA, Afifi MM, Alkaladi A. Oxidative stress in the muscles of the fish Nile tilapia caused by zinc oxide nanoparticles and its modulation by vitamins C and E. Oxid Med Cell Longev 2018; 20186926712
[http://dx.doi.org/10.1155/2018/6926712] [PMID: 29849910]
[159]
Saddick S, Afifi M, Abu Zinada OA. Effect of Zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 2017; 24(7): 1672-8.
[http://dx.doi.org/10.1016/j.sjbs.2015.10.021] [PMID: 30294234]
[160]
Wang T, Wen X, Hu Y, Zhang X, Wang D, Yin S. Copper nanoparticles induced oxidation stress, cell apoptosis and immune response in the liver of juvenile Takifugu fasciatus. Fish Shellfish Immunol 2019; 84: 648-55.
[http://dx.doi.org/10.1016/j.fsi.2018.10.053] [PMID: 30366095]
[161]
Srikanth K, Pereira E, Duarte AC, Rao JV. Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles. Protoplasma 2016; 253(3): 873-84.
[http://dx.doi.org/10.1007/s00709-015-0849-7] [PMID: 26115719]
[162]
Stanca L, Petrache SN, Radu M, et al. Impact of silicon-based quantum dots on the antioxidative system in white muscle of Carassius auratus gibelio. Fish Physiol Biochem 2012; 38(4): 963-75.
[http://dx.doi.org/10.1007/s10695-011-9582-0] [PMID: 22139144]
[163]
Stanca L, Petrache SN, Serban AI, et al. Interaction of silicon-based quantum dots with gibel carp liver: oxidative and structural modifications. Nanoscale Res Lett 2013; 8(1): 254.
[http://dx.doi.org/10.1186/1556-276X-8-254] [PMID: 23718202]
[164]
Tang S, Cai Q, Chibli H, Allagadda V, Nadeau JL, Mayer GD. Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells. Toxicol Appl Pharmacol 2013; 272(2): 443-52.
[http://dx.doi.org/10.1016/j.taap.2013.06.004] [PMID: 23770381]
[165]
Poornavaishnavi C, Gowthami R, Srikanth K, Bramhachari PV, Venkatramaiah N. Nickel nanoparticles induces cytotoxicity, cell morphology and oxidative stress in blue gill sunfish (BF-2) cells. Appl Surf Sci 2019; 483: 1174-81.
[http://dx.doi.org/10.1016/j.apsusc.2019.03.255]
[166]
Liu W, Long Y, Yin N, et al. Toxicity of engineered nanoparticles to fish. In: Engineered Nanoparticles and the Environment: Biophysicochemical Processes and Toxicity. 1st ed. John Wiley & Sons, Inc 2016; pp. 347-66
[http://dx.doi.org/10.1002/9781119275855.ch18]
[167]
Du J, Tang J, Xu S, et al. A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms. Regul Toxicol Pharmacol 2018; 98: 231-9.
[http://dx.doi.org/10.1016/j.yrtph.2018.08.003] [PMID: 30096342]
[168]
Mohmood I, Ahmad I, Asim M, et al. Interference of the co-exposure of mercury with silica-coated iron oxide nanoparticles can modulate genotoxicity induced by their individual exposures--a paradox depicted in fish under in vitro conditions. Environ Sci Pollut Res Int 2015; 22(5): 3687-96.
[http://dx.doi.org/10.1007/s11356-014-3591-3] [PMID: 25256583]
[169]
Barreto A, Luis LG, Pinto E, et al. Genotoxicity of gold nanoparticles in the gilthead seabream (Sparus aurata) after single exposure and combined with the pharmaceutical gemfibrozil. Chemosphere 2019; 220: 11-9.
[http://dx.doi.org/10.1016/j.chemosphere.2018.12.090] [PMID: 30576896]
[170]
Davico C, Bacchetta C, López G, Cazenave J, Poletta G, Simoniello MF. Assessment of genotoxicity by micronucleus frequency in Piaractus mesopotamicus erythrocytes exposed to silver nanoparticles in vivo. Acta Toxicol Argent 2015; 23(2): 73-8.
[171]
Munari M, Sturve J, Frenzilli G, et al. Genotoxic effects of CdS quantum dots and Ag2S nanoparticles in fish cell lines (RTG-2). Mutat Res Genet Toxicol Environ Mutagen 2014; 775-776: 89-93.
[http://dx.doi.org/10.1016/j.mrgentox.2014.09.003] [PMID: 25435359]
[172]
Henry TB, Menn F-M, Fleming JT, Wilgus J, Compton RN, Sayler GS. Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ Health Perspect 2007; 115(7): 1059-65.
[http://dx.doi.org/10.1289/ehp.9757] [PMID: 17637923]
[173]
Mahaye N, Thwala M, Cowan DA, Musee N. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: a review. Mutat Res 2017; 773: 134-60.
[http://dx.doi.org/10.1016/j.mrrev.2017.05.004] [PMID: 28927524]
[174]
Rocco L, Santonastaso M, Mottola F, et al. Genotoxicity assessment of TiO2 nanoparticles in the teleost Danio rerio. Ecotoxicol Environ Saf 2015; 113: 223-30.
[http://dx.doi.org/10.1016/j.ecoenv.2014.12.012] [PMID: 25506637]
[175]
Cedervall T, Hansson L-A, Lard M, Frohm B, Linse S. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One 2012; 7(2)e32254
[http://dx.doi.org/10.1371/journal.pone.0032254] [PMID: 22384193]
[176]
Canli EG, Dogan A, Canli M. Serum biomarker levels alter following nanoparticle (Al2O3, CuO, TiO2) exposures in freshwater fish (Oreochromis niloticus). Environ Toxicol Pharmacol 2018; 62: 181-7.
[http://dx.doi.org/10.1016/j.etap.2018.07.009] [PMID: 30053707]
[177]
Gupta Y, Sellegounder D, Kannan M, Deepa S, Senthilkumaran B, Basavaraju Y. Effect of copper nanoparticles exposure in the physiology of the common carp (Cyprinus carpio): biochemical, histological and proteomic approaches. Aquac Fish 2016; 1: 15-23.
[http://dx.doi.org/10.1016/j.aaf.2016.09.003]
[178]
Lodhi IJ, Semenkovich CF. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab 2014; 19(3): 380-92.
[http://dx.doi.org/10.1016/j.cmet.2014.01.002] [PMID: 24508507]
[179]
Ostaszewska T, Śliwiński J, Kamaszewski M, Sysa P, Chojnacki M. Cytotoxicity of silver and copper nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Environ Sci Pollut Res Int 2018; 25(1): 908-15.
[http://dx.doi.org/10.1007/s11356-017-0494-0] [PMID: 29071536]
[180]
Paris-Palacios S, Biagianti-Risbourg S, Vernet G. Biochemical and (ultra) structural hepatic perturbations of Brachydanio rerio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulfate. Aquat Toxicol 2000; 50(1-2): 109-24.
[http://dx.doi.org/10.1016/S0166-445X(99)00090-9] [PMID: 10930654]
[181]
Johari SA, Kalbassi MR, Yu IJ, Lee JH. Chronic effect of waterborne silver nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and bioaccumulation. Comp Clin Pathol 2015; 24: 995-1007.
[http://dx.doi.org/10.1007/s00580-014-2019-2]
[182]
Adamek D, Śliwiński J, Ostaszewska T, et al. Effect of copper and silver nanoparticles on trunk muscles in rainbow trout (Oncorhynchus mykiss, Walbaum, 1792). Turk J Fish Aquat Sci 2018; 18: 781-8.
[183]
Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 2013; 126: 104-15.
[http://dx.doi.org/10.1016/j.aquatox.2012.10.005] [PMID: 23174144]
[184]
Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 2003; 69(7): 4278-81.
[http://dx.doi.org/10.1128/AEM.69.7.4278-4281.2003] [PMID: 12839814]
[185]
Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16(10): 2346-53.
[http://dx.doi.org/10.1088/0957-4484/16/10/059] [PMID: 20818017]
[186]
Mirghaed A, Yarahmadi P, Shabrang M, et al. Hemato-immunological, serum metabolite and enzymatic stress response alterations in exposed rainbow trout (Oncorhynchus mykiss) to nanosilver. Int J Aquat Biol 2018; 6(4): 221-34.
[187]
Kaya H, Duysak M, Akbulut M, et al. Effects of subchronic exposure to zinc nanoparticles on tissue accumulation, serum biochemistry, and histopathological changes in tilapia (Oreochromis niloticus). Environ Toxicol 2017; 32(4): 1213-25.
[http://dx.doi.org/10.1002/tox.22318] [PMID: 27464841]
[188]
Abdel-Khalek A, Kadry M, Badran S, Marie M. Comparative toxicity of copper oxide bulk and nano particles in Nile Tilapia; Oreochromis niloticus: biochemical and oxidative stress. J Basic Appl Zool 2015; 72: 43-57.
[http://dx.doi.org/10.1016/j.jobaz.2015.04.001]
[189]
Farmen E, Mikkelsen HN, Evensen O, et al. Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles. Aquat Toxicol 2012; 108: 78-84.
[http://dx.doi.org/10.1016/j.aquatox.2011.07.007] [PMID: 22265610]
[190]
Murali M, Athif P, Suganthi P, et al. Toxicological effect of Al2O3 nanoparticles on histoarchitecture of the freshwater fish Oreochromis mossambicus. Environ Toxicol Pharmacol 2018; 59: 74-81.
[http://dx.doi.org/10.1016/j.etap.2018.03.004] [PMID: 29544187]
[191]
Forouhar Vajargah M, Mohamadi Yalsuyi A, Hedayati A, Faggio C. Histopathological lesions and toxicity in common carp (Cyprinus carpio L. 1758) induced by copper nanoparticles. Microsc Res Tech 2018; 81(7): 724-9.
[http://dx.doi.org/10.1002/jemt.23028] [PMID: 29637649]
[192]
Schlenk D, Benson WH. New Perspectives: toxicology and the environment target organ toxicity in marine and freshwater teleosts. Boca Raton, FL: Taylor & Francis Group 2001.
[193]
Sumi N, Chitra KC. Histopathological alterations in gill, liver and muscle tissues of the freshwater fish, Pseudetroplus maculatus exposed to fullerene C60. Int J Fish Aquat 2017; 5(3): 604-8.
[194]
Bernet D, Schmidt H, Meier W, Burkhard-Holm P, Wahli T. Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 1999; 22: 25-34.
[http://dx.doi.org/10.1046/j.1365-2761.1999.00134.x]
[195]
Song L, Vijver MG, Peijnenburg WJGM, Galloway TS, Tyler CR. A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere 2015; 139: 181-9.
[http://dx.doi.org/10.1016/j.chemosphere.2015.06.021] [PMID: 26121603]
[196]
Diniz MS, de Matos AP, Lourenço J, et al. Liver alterations in two freshwater fish species (Carassius auratus and Danio rerio) following exposure to different TiO2 nanoparticle concentrations. Microsc Microanal 2013; 19(5): 1131-40.
[http://dx.doi.org/10.1017/S1431927613013238] [PMID: 23931156]
[197]
Deepa S, Murugananthkumar R, Raj Gupta Y, Gowda KSM, Senthilkumaran B. Effects of zinc oxide nanoparticles and zinc sulfate on the testis of common carp, Cyprinus carpio. Nanotoxicology 2019; 13(2): 240-57.
[http://dx.doi.org/10.1080/17435390.2018.1541259] [PMID: 30663471]
[198]
Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu X-HN. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 2007; 1(2): 133-43.
[199]
Wu Y, Zhou Q, Li H, Liu W, Wang T, Jiang G. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol 2010; 100(2): 160-7.
[http://dx.doi.org/10.1016/j.aquatox.2009.11.014] [PMID: 20034681]
[200]
Peters LE, MacKinnon M, Van Meer T, van den Heuvel MR, Dixon DG. Effects of oil sands process-affected waters and naphthenic acids on yellow perch (Perca flavescens) and Japanese medaka (Orizias latipes) embryonic development. Chemosphere 2007; 67(11): 2177-83.
[http://dx.doi.org/10.1016/j.chemosphere.2006.12.034] [PMID: 17316753]
[201]
Chen P-J, Su C-H, Tseng C-Y, Tan S-W, Cheng C-H. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Mar Pollut Bull 2011; 63(5-12): 339-46.
[http://dx.doi.org/10.1016/j.marpolbul.2011.02.045] [PMID: 21440267]
[202]
Zhu X, Tian S, Cai Z. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One 2012; 7(9)e46286
[http://dx.doi.org/10.1371/journal.pone.0046286] [PMID: 23029464]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy