Research Article

X连锁阿尔波特综合征的汉族家庭中的COL4A5错义变体。

卷 19, 期 10, 2019

页: [758 - 765] 页: 8

弟呕挨: 10.2174/1566524019666190906144214

价格: $65

摘要

背景:Alport综合征(AS)是一种遗传性家族性肾病,其特征是进行性血尿性肾炎,双侧感觉神经性听觉不全和眼部异常。 X连锁AS(XLAS)是主要的AS形式,在临床上是异质的,它与IV型胶原蛋白α5链基因(COL4A5)的缺陷有关。 目的:本研究的目的是在3代汉族谱系中发现导致肾脏疾病的遗传缺陷。 方法:收集并记录详细的家族史和家庭成员的临床资料。在先证者中应用了全外显子组测序(WES)来筛选潜在的遗传变异,然后使用Sanger测序来验证该家族中的变异。招募了200名没有肾脏疾病的种族匹配的正常人(男性/女性:100/100,年龄37.5 ... 5.5岁)作为对照。 结果:三名患者(I:1,II:1和II:2)出现镜下血尿和蛋白尿,I:1患者在55岁时出现尿毒症和终末期肾病(ESRD),并表现出感觉神经性听力丧失。患者II:2出现轻度左耳听力下降。白内障存在于I:1和II:1患者中。已发现位于外显子28的Gly-X-Y重复序列中的COL4A5基因错义变体c.2156G> A(p.G719E)与该家族的肾脏疾病共隔离。该变体在200个种族匹配的对照中不存在。 结论:通过进行WES和Sanger测序,发现COL4A5错义变体c.2156G> A(p.G719E)与肾脏疾病共分离,并且该变体可能是该疾病的遗传原因在这个家庭。我们的研究可能会扩展XLAS的突变谱,可能对该家庭的遗传咨询有用。在以下研究中,有必要进行与遗传缺陷相关的进一步功能研究。

关键词: X连锁Alport综合征,COL4A5基因,IV型胶原蛋白,α3α4α5网络,WES,Sanger测序。

[1]
Cosgrove D. Glomerular pathology in Alport syndrome: a molecular perspective. Pediatr Nephrol 2012; 27(6): 885-90.
[http://dx.doi.org/10.1007/s00467-011-1868-z] [PMID: 21455721]
[2]
Cervera-Acedo C, Coloma A, Huarte-Loza E, Sierra-Carpio M, Domínguez-Garrido E. Phenotype variability in a large Spanish family with Alport syndrome associated with novel mutations in COL4A3 gene. BMC Nephrol 2017; 18(1): 325.
[http://dx.doi.org/10.1186/s12882-017-0735-y] [PMID: 29089023]
[3]
Liu JH, Wei XX, Li A, et al. Novel mutations in COL4A3, COL4A4, and COL4A5 in Chinese patients with Alport Syndrome. PLoS One 2017; 12(5)e0177685
[http://dx.doi.org/10.1371/journal.pone.0177685] [PMID: 28542346]
[4]
Guo Y, Yuan J, Liang H, et al. Identification of a novel COL4A5 mutation in a Chinese family with X-linked Alport syndrome using exome sequencing. Mol Biol Rep 2014; 41(6): 3631-5.
[http://dx.doi.org/10.1007/s11033-014-3227-1] [PMID: 24522658]
[5]
Jais JP, Knebelmann B, Giatras I, et al. X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a “European Community Alport Syndrome Concerted Action” study. J Am Soc Nephrol 2003; 14(10): 2603-10.
[http://dx.doi.org/10.1097/01.ASN.0000090034.71205.74] [PMID: 14514738]
[6]
Savige J. Alport syndrome: its effects on the glomerular filtration barrier and implications for future treatment. J Physiol 2014; 592(18): 4013-23.
[http://dx.doi.org/10.1113/jphysiol.2014.274449] [PMID: 25107927]
[7]
Mao M, Alavi MV, Labelle-Dumais C, Gould DB. Type IV collagens and basement membrane diseases: cell biology and pathogenic mechanisms. Curr Top Membr 2015; 76: 61-116.
[http://dx.doi.org/10.1016/bs.ctm.2015.09.002] [PMID: 26610912]
[8]
Haas M. Alport syndrome and thin glomerular basement membrane nephropathy: a practical approach to diagnosis. Arch Pathol Lab Med 2009; 133(2): 224-32.
[http://dx.doi.org/10.1043/1543-2165-133.2.224] [PMID: 19195966]
[9]
Xiao H, Guo Y, Yi J, et al. Identification of a novel keratin 9 missense mutation in a Chinese family with epidermolytic palmoplantar keratoderma. Cell Physiol Biochem 2018; 46(5): 1919-29.
[http://dx.doi.org/10.1159/000489381] [PMID: 29719290]
[10]
Xiao H, Yuan L, Xu H, et al. Novel and recurring disease-causing NF1 variants in two Chinese families with neurofibromatosis type 1. J Mol Neurosci 2018; 65(4): 557-63.
[http://dx.doi.org/10.1007/s12031-018-1128-9] [PMID: 30046999]
[11]
Chen Q, Yuan L, Deng X, et al. A missense variant p.Ala117Ser in the transthyretin gene of a Han Chinese family with familial amyloid polyneuropathy. Mol Neurobiol 2018; 55(6): 4911-7.
[http://dx.doi.org/10.1007/s12035-017-0694-0] [PMID: 28762097]
[12]
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25(14): 1754-60.
[http://dx.doi.org/10.1093/bioinformatics/btp324] [PMID: 19451168]
[13]
Xiao H, Deng S, Deng X, et al. Mutation analysis of the ATP7B gene in seven Chinese families with Wilson’s disease. Digestion 2019; 99(4): 319-26.
[http://dx.doi.org/10.1159/000493314] [PMID: 30384382]
[14]
Wu Y, Hu P, Xu H, et al. A novel heterozygous COL4A4 missense mutation in a Chinese family with focal segmental glomerulosclerosis. J Cell Mol Med 2016; 20(12): 2328-32.
[http://dx.doi.org/10.1111/jcmm.12924] [PMID: 27469977]
[15]
Xiu X, Yuan J, Deng X, et al. A novel COL4A5 mutation identified in a Chinese Han family using exome sequencing. BioMed Res Int 2014; 2014186048
[http://dx.doi.org/10.1155/2014/186048] [PMID: 25110662]
[16]
Savige J, Sheth S, Leys A, Nicholson A, Mack HG, Colville D. Ocular features in Alport syndrome: pathogenesis and clinical significance. Clin J Am Soc Nephrol 2015; 10(4): 703-9.
[http://dx.doi.org/10.2215/CJN.10581014] [PMID: 25649157]
[17]
Miner JH. The glomerular basement membrane. Exp Cell Res 2012; 318(9): 973-8.
[http://dx.doi.org/10.1016/j.yexcr.2012.02.031] [PMID: 22410250]
[18]
Kashtan C. Alport syndrome: facts and opinions. F1000 Res 2017; 6: 50.
[http://dx.doi.org/10.12688/f1000research.9636.1] [PMID: 28163907]
[19]
Kashtan CE, Kim Y. Distribution of the alpha 1 and alpha 2 chains of collagen IV and of collagens V and VI in Alport syndrome. Kidney Int 1992; 42(1): 115-26.
[http://dx.doi.org/10.1038/ki.1992.269] [PMID: 1635341]
[20]
Abrahamson DR, Prettyman AC, Robert B, St John PL. Laminin-1 reexpression in Alport mouse glomerular basement membranes. Kidney Int 2003; 63(3): 826-34.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00800.x] [PMID: 12631063]
[21]
Kashtan CE, Kim Y, Lees GE, Thorner PS, Virtanen I, Miner JH. Abnormal glomerular basement membrane laminins in murine, canine, and human Alport syndrome: aberrant laminin alpha2 deposition is species independent. J Am Soc Nephrol 2001; 12(2): 252-60.
[PMID: 11158215]
[22]
Meehan DT, Delimont D, Cheung L, et al. Biomechanical strain causes maladaptive gene regulation, contributing to Alport glomerular disease. Kidney Int 2009; 76(9): 968-76.
[http://dx.doi.org/10.1038/ki.2009.324] [PMID: 19710627]
[23]
Jais JP, Knebelmann B, Giatras I, et al. X-linked Alport syndrome: natural history in 195 families and genotype- phenotype correlations in males. J Am Soc Nephrol 2000; 11(4): 649-57.
[PMID: 10752524]
[24]
Rheault MN. Women and Alport syndrome. Pediatr Nephrol 2012; 27(1): 41-6.
[http://dx.doi.org/10.1007/s00467-011-1836-7] [PMID: 21380623]
[25]
Bekheirnia MR, Reed B, Gregory MC, et al. Genotype-phenotype correlation in X-linked Alport syndrome. J Am Soc Nephrol 2010; 21(5): 876-83.
[http://dx.doi.org/10.1681/ASN.2009070784] [PMID: 20378821]
[26]
Wang F, Zhao D, Ding J, et al. Skin biopsy is a practical approach for the clinical diagnosis and molecular genetic analysis of X-linked Alport’s syndrome. J Mol Diagn 2012; 14(6): 586-93.
[http://dx.doi.org/10.1016/j.jmoldx.2012.06.005] [PMID: 22921432]
[27]
Zhou J, Hertz JM, Leinonen A, Tryggvason K. Complete amino acid sequence of the human alpha 5 (IV) collagen chain and identification of a single-base mutation in exon 23 converting glycine 521 in the collagenous domain to cysteine in an Alport syndrome patient. J Biol Chem 1992; 267(18): 12475-81.
[PMID: 1352287]
[28]
Gross O, Netzer KO, Lambrecht R, Seibold S, Weber M. Meta-analysis of genotype-phenotype correlation in X-linked Alport syndrome: impact on clinical counselling. Nephrol Dial Transplant 2002; 17(7): 1218-27.
[http://dx.doi.org/10.1093/ndt/17.7.1218] [PMID: 12105244]
[29]
Lemmink HH, Schröder CH, Monnens LA, Smeets HJ. The clinical spectrum of type IV collagen mutations. Hum Mutat 1997; 9(6): 477-99.
[http://dx.doi.org/10.1002/(SICI)1098-1004(1997)9:6<477:AID-HUMU1>3.0.CO;2-#] [PMID: 9195222]
[30]
Kruegel J, Rubel D, Gross O. Alport syndrome--insights from basic and clinical research. Nat Rev Nephrol 2013; 9(3): 170-8.
[http://dx.doi.org/10.1038/nrneph.2012.259] [PMID: 23165304]
[31]
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology. Genet Med 2015; 17(5): 405-24.
[http://dx.doi.org/10.1038/gim.2015.30] [PMID: 25741868]
[32]
Ma J, Pan X, Wang Z, et al. Twenty-one novel mutations identified in the COL4A5 gene in Chinese patients with X-linked Alport’s syndrome confirmed by skin biopsy. Nephrol Dial Transplant 2011; 26(12): 4003-10.
[http://dx.doi.org/10.1093/ndt/gfr184] [PMID: 21505094]
[33]
Barker DF, Denison JC, Atkin CL, Gregory MC. Efficient detection of Alport syndrome COL4A5 mutations with multiplex genomic PCR-SSCP. Am J Med Genet 2001; 98(2): 148-60.
[http://dx.doi.org/10.1002/1096-8628(20010115)98:2<148:AID-AJMG1024>3.0.CO;2-W] [PMID: 11223851]
[34]
Kashtan CE. Animal models of Alport syndrome. Nephrol Dial Transplant 2002; 17(8): 1359-62.
[http://dx.doi.org/10.1093/ndt/17.8.1359] [PMID: 12147777]
[35]
Zheng K, Thorner PS, Marrano P, Baumal R, McInnes RR. Canine X chromosome-linked hereditary nephritis: a genetic model for human X-linked hereditary nephritis resulting from a single base mutation in the gene encoding the alpha 5 chain of collagen type IV. Proc Natl Acad Sci USA 1994; 91(9): 3989-93.
[http://dx.doi.org/10.1073/pnas.91.9.3989] [PMID: 8171024]
[36]
Cox ML, Lees GE, Kashtan CE, Murphy KE. Genetic cause of X-linked Alport syndrome in a family of domestic dogs. Mamm Genome 2003; 14(6): 396-403.
[http://dx.doi.org/10.1007/s00335-002-2253-9] [PMID: 12879362]
[37]
Rheault MN, Kren SM, Thielen BK, et al. Mouse model of X-linked Alport syndrome. J Am Soc Nephrol 2004; 15(6): 1466-74.
[http://dx.doi.org/10.1097/01.ASN.0000130562.90255.8F] [PMID: 15153557]
[38]
Hashikami K, Asahina M, Nozu K, Iijima K, Nagata M, Takeyama M. Establishment of X-linked alport syndrome model mice with a Col4a5 R471X mutation. Biochem Biophys Rep 2018; 17: 81-6.
[http://dx.doi.org/10.1016/j.bbrep.2018.12.003] [PMID: 30582011]
[39]
Kashtan CE, Ding J, Gregory M, et al. Clinical practice recommendations for the treatment of Alport syndrome: a statement of the Alport Syndrome Research Collaborative. Pediatr Nephrol 2013; 28(1): 5-11.
[http://dx.doi.org/10.1007/s00467-012-2138-4] [PMID: 22461141]
[40]
Katayama K, Nomura S, Tryggvason K, Ito M. Searching for a treatment for Alport syndrome using mouse models. World J Nephrol 2014; 3(4): 230-6.
[http://dx.doi.org/10.5527/wjn.v3.i4.230] [PMID: 25374816]
[41]
Parpala-Spårman T, Lukkarinen O, Heikkilä P, Tryggvason K. A novel surgical organ perfusion method for effective ex vivo and in vivo gene transfer into renal glomerular cells. Urol Res 1999; 27(2): 97-102.
[http://dx.doi.org/10.1007/s002400050094] [PMID: 10424390]
[42]
Heikkilä P, Tibell A, Morita T, et al. Adenovirus-mediated transfer of type IV collagen alpha5 chain cDNA into swine kidney in vivo: deposition of the protein into the glomerular basement membrane. Gene Ther 2001; 8(11): 882-90.
[http://dx.doi.org/10.1038/sj.gt.3301342] [PMID: 11423936]
[43]
Prodromidi EI, Poulsom R, Jeffery R, et al. Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells 2006; 24(11): 2448-55.
[http://dx.doi.org/10.1634/stemcells.2006-0201] [PMID: 16873763]
[44]
LeBleu V, Sugimoto H, Mundel TM, et al. Stem cell therapies benefit Alport syndrome. J Am Soc Nephrol 2009; 20(11): 2359-70.
[http://dx.doi.org/10.1681/ASN.2009010123] [PMID: 19833902]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy