Review Article

对于DNA甲基化分析的电化学和光学生物传感策略

卷 27, 期 36, 2020

页: [6159 - 6187] 页: 29

弟呕挨: 10.2174/0929867326666190903161750

价格: $65

摘要

DNA甲基化被认为是表观遗传修饰的重要组成部分,是近几十年来的研究热点。它通常是在DNA碱基序列保持不变的情况下,一个甲基加到胞嘧啶的第5个碳原子上。DNA甲基化对维持细胞功能、遗传印迹、胚胎发育和肿瘤发生过程有重要影响,因此DNA甲基化的分析具有重要的医学意义。随着分析技术的发展和DNA甲基化研究的深入,基于生物传感技术的DNA甲基化检测策略层出不穷,以满足不同的研究需求。本文综述了近年来DNA甲基化电化学和光学生物传感分析的研究进展;此外,我们还综述了近年来利用纳米孔生物传感器等新技术检测DNA甲基化的一些进展,并重点介绍了这些方法所涉及的关键技术和生物挑战。希望本文能为DNA甲基化分析方法的选择和建立提供有益的参考。

关键词: DNA甲基化被认为是表观遗传修饰的重要组成部分,是近几十年来的研究热点。它通常是在DNA碱基序列保持不变的情况下,一个甲基加到胞嘧啶的第5个碳原子上。DNA甲基化对维持细胞功能、遗传印迹、胚胎发育和肿瘤发生过程有重要影响,因此DNA甲基化的分析具有重要的医学意义。随着分析技术的发展和DNA甲基化研究的深入,基于生物传感技术的DNA甲基化检测策略层出不穷,以满足不同的研究需求。本文综述了近年来DNA甲基化电化学和光学生物传感分析的研究进展;此外,我们还综述了近年来利用纳米孔生物传感器等新技术检测DNA甲基化的一些进展,并重点介绍了这些方法所涉及的关键技术和生物挑战。希望本文能为DNA甲基化分析方法的选择和建立提供有益的参考。 DNA甲基化,甲基化测定,电化学生物传感器,光学生物传感器,癌症诊断,表观遗传学

[1]
Reik, W.; Dean, W.; Walter, J. Epigenetic reprogramming in mammalian development. Science, 2001, 293(5532), 1089-1093.
[http://dx.doi.org/10.1126/science.1063443] [PMID: 11498579]
[2]
Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology, 2013, 38(1), 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[3]
Verschure, P.J.; Visser, A.E.; Rots, M.G. Step out of the groove: epigenetic gene control systems and engineered transcription factors. Adv. Genet., 2006, 56(56), 163-204.
[http://dx.doi.org/10.1016/S0065-2660(06)56005-5] [PMID: 16735158]
[4]
Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell, 2007, 128(4), 683-692.
[http://dx.doi.org/10.1016/j.cell.2007.01.029] [PMID: 17320506]
[5]
Rodriguez, J.; Frigola, J.; Vendrell, E.; Risques, R.A.; Fraga, M.F.; Morales, C.; Moreno, V.; Esteller, M.; Capellà, G.; Ribas, M.; Peinado, M.A. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res., 2006, 66(17), 8462-9468.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0293] [PMID: 16951157]
[6]
Chen, R.Z.; Pettersson, U.; Beard, C.; Jackson-Grusby, L.; Jaenisch, R. DNA hypomethylation leads to elevated mutation rates. Nature, 1998, 395(6697), 89-93.
[http://dx.doi.org/10.1038/25779] [PMID: 9738504]
[7]
Jones, P.A.; Laird, P.W. Cancer epigenetics comes of age. Nat. Genet., 1999, 21(2), 163-167.
[http://dx.doi.org/10.1038/5947] [PMID: 9988266]
[8]
Mastroeni, D.; Grover, A.; Delvaux, E.; Whiteside, C.; Coleman, P.D.; Rogers, J. Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol. Aging, 2010, 31(12), 2025-2037.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.12.005] [PMID: 19117641]
[9]
Udali, S.; Guarini, P.; Moruzzi, S.; Choi, S.W.; Friso, S. Cardiovascular epigenetics: from DNA methylation to microRNAs. Mol. Aspects Med., 2013, 34(4), 883-901.
[http://dx.doi.org/10.1016/j.mam.2012.08.001] [PMID: 22981780]
[10]
Trasler, J.M. Gamete imprinting: setting epigenetic patterns for the next generation. Reprod. Fertil. Dev., 2006, 18(1-2), 63-69.
[http://dx.doi.org/10.1071/RD05118] [PMID: 16478603]
[11]
Issa, J.P. CpG island methylator phenotype in cancer. Nat. Rev. Cancer, 2004, 4(12), 988-993.
[http://dx.doi.org/10.1038/nrc1507] [PMID: 15573120]
[12]
Zardo, G.; Tiirikainen, M.I.; Hong, C.; Misra, A.; Feuerstein, B.G.; Volik, S.; Collins, C.C.; Lamborn, K.R.; Bollen, A.; Pinkel, D.; Albertson, D.G.; Costello, J.F. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat. Genet., 2002, 32(3), 453-458.
[http://dx.doi.org/10.1038/ng1007] [PMID: 12355068]
[13]
Feinberg, A.P.; Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 1983, 301(5895), 89-92.
[http://dx.doi.org/10.1038/301089a0] [PMID: 6185846]
[14]
Herman, J.G.; Latif, F.; Weng, Y.; Lerman, M.I.; Zbar, B.; Liu, S.; Samid, D.; Duan, D.S.; Gnarra, J.R.; Linehan, W.M. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA, 1994, 91(21), 9700-9704.
[http://dx.doi.org/10.1073/pnas.91.21.9700] [PMID: 7937876]
[15]
Baylin, S.B.; Ohm, J.E. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer, 2006, 6(2), 107-116.
[http://dx.doi.org/10.1038/nrc1799] [PMID: 16491070]
[16]
Zhu, J.; Yao, X. Use of DNA methylation for cancer detection: promises and challenges. Int. J. Biochem. Cell Biol., 2009, 41(1), 147-154.
[http://dx.doi.org/10.1016/j.biocel.2008.09.003] [PMID: 18834953]
[17]
Moore, L.E.; Pfeiffer, R.M.; Poscablo, C.; Real, F.X.; Kogevinas, M.; Silverman, D.; García-Closas, R.; Chanock, S.; Tardón, A.; Serra, C.; Carrato, A.; Dosemeci, M.; García-Closas, M.; Esteller, M.; Fraga, M.; Rothman, N.; Malats, N. Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish bladder cancer study: a case-control study. Lancet Oncol., 2008, 9(4), 359-366.
[http://dx.doi.org/10.1016/S1470-2045(08)70038-X] [PMID: 18339581]
[18]
Ibanez de Caceres, I.; Battagli, C.; Esteller, M.; Herman, J.G.; Dulaimi, E.; Edelson, M.I.; Bergman, C.; Ehya, H.; Eisenberg, B.L.; Cairns, P. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res., 2004, 64(18), 6476-6481.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1529] [PMID: 15374957]
[19]
Balgkouranidou, I.; Matthaios, D.; Karayiannakis, A.; Bolanaki, H.; Michailidis, P.; Xenidis, N.; Amarantidis, K.; Chelis, L.; Trypsianis, G.; Chatzaki, E.; Lianidou, E.S.; Kakolyris, S. Prognostic role of APC and RASSF1A promoter methylation status in cell free circulating DNA of operable gastric cancer patients. Mutat. Res., 2015, 778, 46-51.
[http://dx.doi.org/10.1016/j.mrfmmm.2015.05.002] [PMID: 26073472]
[20]
Milani, L.; Lundmark, A.; Kiialainen, A.; Nordlund, J.; Flaegstad, T.; Forestier, E.; Heyman, M.; Jonmundsson, G.; Kanerva, J.; Schmiegelow, K.; Söderhäll, S.; Gustafsson, M.G.; Lönnerholm, G.; Syvänen, A.C. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood, 2010, 115(6), 1214-1225.
[http://dx.doi.org/10.1182/blood-2009-04-214668] [PMID: 19965625]
[21]
Teodoridis, J.M.; Hall, J.; Marsh, S.; Kannall, H.D.; Smyth, C.; Curto, J.; Siddiqui, N.; Gabra, H.; McLeod, H.L.; Strathdee, G.; Brown, R. CpG island methylation of DNA damage response genes in advanced ovarian cancer. Cancer Res., 2005, 65(19), 8961-8967.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1187] [PMID: 16204069]
[22]
Shanmuganathan, R.; Basheer, N.B.; Amirthalingam, L.; Muthukumar, H.; Kaliaperumal, R.; Shanmugam, K. Conventional and nanotechniques for DNA methylation profiling. J. Mol. Diagn., 2013, 15(1), 17-26.
[http://dx.doi.org/10.1016/j.jmoldx.2012.06.007] [PMID: 23127612]
[23]
Frommer, M.; McDonald, L.E.; Millar, D.S.; Collis, C.M.; Watt, F.; Grigg, G.W.; Molloy, P.L.; Paul, C.L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA, 1992, 89(5), 1827-1831.
[http://dx.doi.org/10.1073/pnas.89.5.1827] [PMID: 1542678]
[24]
Clark, S.J.; Harrison, J.; Paul, C.L.; Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res., 1994, 22(15), 2990-2997.
[http://dx.doi.org/10.1093/nar/22.15.2990] [PMID: 8065911]
[25]
Herman, J.G.; Graff, J.R.; Myöhänen, S.; Nelkin, B.D.; Baylin, S.B.; Methylation-specific, P.C.R. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA, 1996, 93(18), 9821-9826.
[http://dx.doi.org/10.1073/pnas.93.18.9821] [PMID: 8790415]
[26]
Hibi, K.; Goto, T.; Shirahata, A.; Saito, M.; Kigawa, G.; Nemoto, H.; Sanada, Y. Detection of TFPI2 methylation in the serum of colorectal cancer patients. Cancer Lett., 2011, 311(1), 96-100.
[http://dx.doi.org/10.1016/j.canlet.2011.07.006] [PMID: 21820798]
[27]
Eads, C.A.; Danenberg, K.D.; Kawakami, K.; Saltz, L.B.; Blake, C.; Shibata, D.; Danenberg, P.V.; Laird, P.W. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res., 2000, 28(8),E32.
[http://dx.doi.org/10.1093/nar/28.8.e32] [PMID: 10734209]
[28]
Wojdacz, T.K.; Dobrovic, A. Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res., 2007, 35(6),e41.
[http://dx.doi.org/10.1093/nar/gkm013] [PMID: 17289753]
[29]
Tost, J.; Gut, I.G. DNA methylation analysis by pyrosequencing. Nat. Protoc., 2007, 2(9), 2265-2275.
[http://dx.doi.org/10.1038/nprot.2007.314] [PMID: 17853883]
[30]
Krejcova, L.; Richtera, L.; Hynek, D.; Labuda, J.; Adam, V. Current trends in electrochemical sensing and biosensing of DNA methylation. Biosens. Bioelectron., 2017, 97, 384-399.
[http://dx.doi.org/10.1016/j.bios.2017.06.004] [PMID: 28641203]
[31]
Singer, J.; Roberts-Ems, J.; Riggs, A.D. Methylation of mouse liver DNA studied by means of the restriction enzymes msp I and hpa II. Science, 1979, 203(4384), 1019-1021.
[http://dx.doi.org/10.1126/science.424726] [PMID: 424726]
[32]
Hiraoka, D.; Yoshida, W.; Abe, K.; Wakeda, H.; Hata, K.; Ikebukuro, K. Development of a method to measure DNA methylation levels by using methyl CpG-binding protein and luciferase-fused zinc finger protein. Anal. Chem., 2012, 84(19), 8259-8264.
[http://dx.doi.org/10.1021/ac3015774] [PMID: 22924825]
[33]
Wang, X.; Song, Y.; Song, M.; Wang, Z.; Li, T.; Wang, H. Fluorescence polarization combined capillary electrophoresis immunoassay for the sensitive detection of genomic DNA methylation. Anal. Chem., 2009, 81(19), 7885-7891.
[http://dx.doi.org/10.1021/ac901681k] [PMID: 19788313]
[34]
Shiraishi, M.; Sekiguchi, A.; Oates, A.J.; Terry, M.J.; Miyamoto, Y.; Sekiya, T. Methyl-CpG binding domain column chromatography as a tool for the analysis of genomic DNA methylation. Anal. Biochem., 2004, 329(1), 1-10.
[http://dx.doi.org/10.1016/j.ab.2004.02.024] [PMID: 15136161]
[35]
Friso, S.; Choi, S.W.; Dolnikowski, G.G.; Selhub, J. A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal. Chem., 2002, 74(17), 4526-4531.
[http://dx.doi.org/10.1021/ac020050h] [PMID: 12236365]
[36]
Le, T.; Kim, K.P.; Fan, G.; Faull, K.F. A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples. Anal. Biochem., 2011, 412(2), 203-209.
[http://dx.doi.org/10.1016/j.ab.2011.01.026] [PMID: 21272560]
[37]
Li, Y.; Yu, C.; Han, H.; Zhao, C.; Zhang, X. Sensitive SERS detection of DNA methyltransferase by target triggering primer generation-based multiple signal amplification strategy. Biosens. Bioelectron., 2016, 81, 111-116.
[http://dx.doi.org/10.1016/j.bios.2016.02.057] [PMID: 26926592]
[38]
Gitan, R.S.; Shi, H.; Chen, C.M.; Yan, P.S.; Huang, T.H. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res., 2002, 12(1), 158-164.
[http://dx.doi.org/10.1101/gr.202801] [PMID: 11779841]
[39]
Jelen, F.; Tomschik, M.; Paleček, E. Adsorptive stripping square-wave voltammetry of DNA. J. Electroanal. Chem. (Lausanne Switz.), 1997, 423(1-2), 141-148.
[http://dx.doi.org/10.1016/S0022-0728(96)04954-6]
[40]
Jing, X.; Cao, X.; Wang, L.; Lan, T.; Li, Y.; Xie, G. DNA-AuNPs based signal amplification for highly sensitive detection of DNA methylation, methyltransferase activity and inhibitor screening. Biosens. Bioelectron., 2014, 58, 40-47.
[http://dx.doi.org/10.1016/j.bios.2014.02.035] [PMID: 24613968]
[41]
Labib, M.; Sargent, E.H.; Kelley, S.O. electrochemical methods for the analysis of clinically relevant biomolecules. Chem. Rev., 2016, 116(16), 9001-9090.
[http://dx.doi.org/10.1021/acs.chemrev.6b00220] [PMID: 27428515]
[42]
Mulchandani, A.; Bassi, A.S. Principles and applications of biosensors for bioprocess monitoring and control. Crit. Rev. Biotechnol., 1995, 15(2), 105-124.
[http://dx.doi.org/10.3109/07388559509147402] [PMID: 7641291]
[43]
Clark, L.C., Jr; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci., 1962, 102(1), 29-45.
[http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x] [PMID: 14021529]
[44]
Goode, J.A.; Rushworth, J.V.; Millner, P.A. Biosensor regeneration: a review of common techniques and outcomes. Langmuir, 2015, 31(23), 6267-6276.
[http://dx.doi.org/10.1021/la503533g] [PMID: 25402969]
[45]
Vargas-Bernal, R.; Rodrguez-Miranda, E.; Herrera-Prez, G. Evolution and expectations of enzymatic biosensors for pesticides; Pesticides - Advances in Chemical and Botanical Pesticides, 2012, pp. 331-354.
[http://dx.doi.org/10.5772/46227]
[46]
Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors - sensor principles and architectures. Sensors (Basel), 2008, 8(3), 1400-1458.
[http://dx.doi.org/10.3390/s80314000] [PMID: 27879772]
[47]
Kasemo, B. Biological surface science. Surf. Sci., 2002, 500(1-3), 656-677.
[http://dx.doi.org/10.1016/S0039-6028(01)01809-X]
[48]
Rawson, F.J.; Yeung, C.L.; Jackson, S.K.; Mendes, P.M. Tailoring 3D single-walled carbon nanotubes anchored to indium tin oxide for natural cellular uptake and intracellular sensing. Nano Lett., 2013, 13(1), 1-8.
[http://dx.doi.org/10.1021/nl203780d] [PMID: 22268573]
[49]
Ge, C.; Miao, W.; Ji, M.; Gu, N. Glutaraldehyde-modified electrode for nonlabeling voltammetric detection of p16 INK4A gene. Anal. Bioanal. Chem., 2005, 383(4), 651-659.
[http://dx.doi.org/10.1007/s00216-005-0032-7] [PMID: 16132144]
[50]
Yin, H.; Zhou, Y.; Xu, Z.; Chen, L.; Zhang, D.; Ai, S. An electrochemical assay for DNA methylation, methyltransferase activity and inhibitor screening based on methyl binding domain protein. Biosens. Bioelectron., 2013, 41, 492-497.
[http://dx.doi.org/10.1016/j.bios.2012.09.010] [PMID: 23021851]
[51]
Yin, H.; Zhou, Y.; Yang, Z.; Guo, Y.; Wang, X.; Ai, S.; Zhang, X. Electrochemical immunosensor for N6-methyladenosine RNA modification detection. Sens. Actuators B Chem., 2015, 221, 1-6.
[http://dx.doi.org/10.1016/j.snb.2015.06.045]
[52]
Zhou, Y.; Li, B.; Wang, M.; Yang, Z.; Yin, H.; Ai, S. Enzyme-based electrochemical biosensor for sensitive detection of DNA demethylation and the activity of DNA demethylase. Anal. Chim. Acta, 2014, 840, 28-32.
[http://dx.doi.org/10.1016/j.aca.2014.06.020] [PMID: 25086890]
[53]
Saheb, A.; Patterson, S.; Josowicz, M. Probing for DNA methylation with a voltammetric DNA detector. Analyst (Lond.), 2014, 139(4), 786-792.
[http://dx.doi.org/10.1039/C3AN02154H] [PMID: 24358460]
[54]
Daneshpour, M.; Moradi, L.S.; Izadi, P.; Omidfar, K. Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe3O4/TMC/Au nanocomposite and PT-modified electrode. Biosens. Bioelectron., 2016, 77, 1095-1103.
[http://dx.doi.org/10.1016/j.bios.2015.11.007] [PMID: 26562330]
[55]
Brotons, A.; Arán-Ais, R.M.; Feliu, J.M.; Montiel, V.; Iniesta, J.; Vidal-Iglesias, F.J.; Solla-Gullón, J. Electrochemical detection of cytosine and 5-methylcytosine on Au(111) surfaces. Electrochem. Commun., 2016, 65, 27-30.
[http://dx.doi.org/10.1016/j.elecom.2016.02.008]
[56]
Wang, G.L.; Zhou, L.Y.; Luo, H.Q.; Li, N.B.G.L. Electrochemical strategy for sensing DNA methylation and DNA methyltransferase activity. Anal. Chim. Acta, 2013, 768, 76-81.
[http://dx.doi.org/10.1016/j.aca.2013.01.026] [PMID: 23473252]
[57]
Kato, D.; Sekioka, N.; Ueda, A.; Kurita, R.; Hirono, S.; Suzuki, K.; Niwa, O. A nanocarbon film electrode as a platform for exploring DNA methylation. J. Am. Chem. Soc., 2008, 130(12), 3716-3717.
[http://dx.doi.org/10.1021/ja710536p] [PMID: 18314986]
[58]
Xu, Z.; Wang, M.; Yin, H.; Ai, S.; Wang, L.; Pang, J. A sensitive electrochemical method for DNA methyltransferase assay and inhibitor screening based on DNA methylation-sensitive cleavage. Electrochim. Acta, 2013, 112(12), 596-602.
[http://dx.doi.org/10.1016/j.electacta.2013.09.037]
[59]
Hossain, T.; Mahmudunnabi, G.; Masud, M.K.; Islam, M.N.; Ooi, L.; Konstantinov, K.; Hossain, M.S.A.; Martinac, B.; Alici, G.; Nguyen, N.T.; Shiddiky, M.J.A. Electrochemical biosensing strategies for DNA methylation analysis. Biosens. Bioelectron., 2017, 94, 63-73.
[http://dx.doi.org/10.1016/j.bios.2017.02.026] [PMID: 28259051]
[60]
Bartosik, M.; Fojta, M.; Palecek, E. Electrochemical detection of 5-methylcytosine in bisulfite-treated DNA. Electrochim. Acta, 2012, 78(9), 75-81.
[http://dx.doi.org/10.1016/j.electacta.2012.05.115]
[61]
Wang, P.; Wu, H.; Dai, Z.; Zou, X. Picomolar level profiling of the methylation status of the p53 tumor suppressor gene by a label-free electrochemical biosensor. Chem. Commun. (Camb.), 2012, 48(87), 10754-10756.
[http://dx.doi.org/10.1039/c2cc35615e] [PMID: 23010984]
[62]
Haque, M.H.; Gopalan, V.; Yadav, S.; Islam, M.N.; Eftekhari, E.; Li, Q.; Carrascosa, L.G.; Nguyen, N.T.; Lam, A.K.; Shiddiky, M.J.A. Detection of regional DNA methylation using DNA-graphene affinity interactions. Biosens. Bioelectron., 2017, 87, 615-621.
[http://dx.doi.org/10.1016/j.bios.2016.09.016] [PMID: 27616287]
[63]
Liu, S.; Zhang, X.; Zhao, K. Methylation-specific electrochemical biosensing strategy for highly sensitive and quantitative analysis of promoter methylation of tumor-suppressor gene in real sample. Electroanal. Chem., 2016, 773, 63-68.
[http://dx.doi.org/10.1016/j.jelechem.2016.03.001]
[64]
Kurita, R.; Yanagisawa, H.; Kamata, T.; Kato, D.; Niwa, O. On-chip evaluation of DNA methylation with electrochemical combined bisulfite restriction analysis utilizing a carbon film containing a nanocrystalline structure. Anal. Chem., 2017, 89(11), 5976-5982.
[http://dx.doi.org/10.1021/acs.analchem.7b00533] [PMID: 28466637]
[65]
Yanagisawa, H.; Kurita, R.; Yoshida, T.; Kamata, T.; Niwa, O. Electrochemical assessment of local cytosine methylation in genomic DNA on a nanocarbon film electrode fabricated by unbalanced magnetron sputtering. Sens. Actuators B Chem., 2015, 221, 816-822.
[http://dx.doi.org/10.1016/j.snb.2015.07.030]
[66]
Liu, H.; Luo, J.; Fang, L.; Huang, H.; Deng, J.; Huang, J.; Zhang, S.; Li, Y.; Zheng, J. An electrochemical strategy with tetrahedron rolling circle amplification for ultrasensitive detection of DNA methylation. Biosens. Bioelectron., 2018, 121, 47-53.
[http://dx.doi.org/10.1016/j.bios.2018.07.055] [PMID: 30196047]
[67]
Chen, C.; Li, B. Chemiluminescence resonance energy transfer biosensing platform for site-specific determination of DNA methylation and assay of DNA methyltransferase activity using exonuclease III-assisted target recycling amplification. Biosens. Bioelectron., 2014, 54, 48-54.
[http://dx.doi.org/10.1016/j.bios.2013.10.050] [PMID: 24240168]
[68]
Koo, K.M.; Wee, E.J.; Rauf, S.; Shiddiky, M.J.; Trau, M. Microdevices for detecting locus-specific DNA methylation at CpG resolution. Biosens. Bioelectron., 2014, 56, 278-285.
[http://dx.doi.org/10.1016/j.bios.2014.01.029] [PMID: 24514080]
[69]
Dai, Z.; Cai, T.; Zhu, W.; Gao, X.; Zou, X. Simultaneous profiling of multiple gene-methylation loci by electrochemical methylation-specific ligase detection reaction. Chem. Commun. (Camb.), 2013, 49(19), 1939-1941.
[http://dx.doi.org/10.1039/c3cc38942a] [PMID: 23364409]
[70]
Xu, Y.; Gao, X.; Li, Z.; Chen, D.; Zong, D.; Zou, X. Simultaneous detection of double gene-specific methylation loci based on hairpin probes tagged with electrochemical quantum dots barcodes. Electroanal. Chem., 2016, 781, 356-362.
[http://dx.doi.org/10.1016/j.jelechem.2016.06.042]
[71]
Shin, Y.; Perera, A.P.; Kee, J.S.; Song, J.; Fang, Q.; Lo, G.Q.; Park, M.K. Label-free methylation specific sensor based on silicon microring resonators for detection and quantification of DNA methylation biomarkers in bladder cancer. Sens. Actuators B Chem., 2013, 177(2), 404-411.
[http://dx.doi.org/10.1016/j.snb.2012.11.058]
[72]
Yoon, J.; Park, M.K.; Lee, T.Y.; Yoon, Y.J.; Shin, Y. LoMA-B: a simple and versatile lab-on-a-chip system based on single-channel bisulfite conversion for DNA methylation analysis. Lab Chip, 2015, 15(17), 3530-3539.
[http://dx.doi.org/10.1039/C5LC00458F] [PMID: 26194344]
[73]
Khulan, B.; Thompson, R.F.; Ye, K.; Fazzari, M.J.; Suzuki, M.; Stasiek, E.; Figueroa, M.E.; Glass, J.L.; Chen, Q.; Montagna, C.; Hatchwell, E.; Selzer, R.R.; Richmond, T.A.; Green, R.D.; Melnick, A.; Greally, J.M. Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res., 2006, 16(8), 1046-1055.
[http://dx.doi.org/10.1101/gr.5273806] [PMID: 16809668]
[74]
Ferrin, L.J.; Camerini-Otero, R.D. Selective cleavage of human DNA: recA-assisted restriction endonuclease (RARE) cleavage. Science, 1991, 254(5037), 1494-1497.
[http://dx.doi.org/10.1126/science.1962209] [PMID: 1962209]
[75]
Li, X.; Xie, Z.; Wang, W.; Zhou, Y.; Yin, H.; Yang, Z.; Ai, S. Rapid detection of Dam methyltransferase activity based on the exonuclease III-assisted isothermal amplification cycle. Anal. Methods, 2016, 8(13), 2771-2777.
[http://dx.doi.org/10.1039/C5AY03397G]
[76]
Dai, Z.; Hu, X.; Wu, H.; Zou, X. A label-free electrochemical assay for quantification of gene-specific methylation in a nucleic acid sequence. Chem. Commun. (Camb.), 2012, 48(12), 1769-1771.
[http://dx.doi.org/10.1039/c2cc15398j] [PMID: 22218332]
[77]
Hou, P.; Ji, M.; Ge, C.; Shen, J.; Li, S.; He, N.; Lu, Z. Detection of methylation of human p16(Ink4a) gene 5′-CpG islands by electrochemical method coupled with linker-PCR. Nucleic Acids Res., 2003, 31(16),e92.
[http://dx.doi.org/10.1093/nar/gng092] [PMID: 12907744]
[78]
Hashimoto, K.; Kokubun, S.; Itoi, E.; Roach, H.I. Improved quantification of DNA methylation using methylation-sensitive restriction enzymes and real-time PCR. Epigenetics, 2007, 2(2), 86-91.
[http://dx.doi.org/10.4161/epi.2.2.4203] [PMID: 17965602]
[79]
Yin, H.; Yang, Z.; Li, B.; Zhou, Y.; Ai, S. Electrochemical biosensor for DNA demethylase detection based on demethylation triggered endonuclease BstUI and Exonuclease III digestion. Biosens. Bioelectron., 2015, 66, 266-270.
[http://dx.doi.org/10.1016/j.bios.2014.11.026] [PMID: 25437362]
[80]
Muren, N.B.; Barton, J.K. Electrochemical assay for the signal-on detection of human DNA methyltransferase activity. J. Am. Chem. Soc., 2013, 135(44), 16632-16640.
[http://dx.doi.org/10.1021/ja4085918] [PMID: 24164112]
[81]
Joda, H.; Moutsiopoulou, A.; Stone, G.; Daunert, S.; Deo, S. Design of Gaussia luciferase-based bioluminescent stem-loop probe for sensitive detection of HIV-1 nucleic acids. Analyst (Lond.), 2018, 143(14), 3374-3381.
[http://dx.doi.org/10.1039/C8AN00047F] [PMID: 29897056]
[82]
Liu, W.; Lai, H.; Huang, R.; Zhao, C.; Wang, Y.; Weng, X.; Zhou, X. DNA methyltransferase activity detection based on fluorescent silver nanocluster hairpin-shaped DNA probe with 5′-C-rich/G-rich-3′ tails. Biosens. Bioelectron., 2015, 68, 736-740.
[http://dx.doi.org/10.1016/j.bios.2015.02.005] [PMID: 25682501]
[83]
Zhang, H.; Zou, L.; Li, R.; Zhao, M.; Ling, L. Hairpin probe for sequence-specific recognition of double-stranded DNA on simian virus 40. Chem. Res. Chin. Univ., 2017, 34, 28-32.
[http://dx.doi.org/10.1007/s40242-017-7152-4]
[84]
Bonnet, G.; Tyagi, S.; Libchaber, A.; Kramer, F.R. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc. Natl. Acad. Sci. USA, 1999, 96(11), 6171-6176.
[http://dx.doi.org/10.1073/pnas.96.11.6171] [PMID: 10339560]
[85]
Su, J.; He, X.; Wang, Y.; Wang, K.; Chen, Z.; Yan, G. A sensitive signal-on assay for MTase activity based on methylation-responsive hairpin-capture DNA probe. Biosens. Bioelectron., 2012, 36(1), 123-128.
[http://dx.doi.org/10.1016/j.bios.2012.04.012] [PMID: 22560164]
[86]
Wu, H.; Liu, S.; Jiang, J.; Shen, G.; Yu, R. A sensitive electrochemical biosensor for detection of DNA methyltransferase activity by combining DNA methylation-sensitive cleavage and terminal transferase-mediated extension. Chem. Commun. (Camb.), 2012, 48(50), 6280-6282.
[http://dx.doi.org/10.1039/c2cc32397d] [PMID: 22610282]
[87]
Liu, P.; Wang, D.; Zhou, Y.; Wang, H.; Yin, H.; Ai, S. DNA methyltransferase detection based on digestion triggering the combination of poly adenine DNA with gold nanoparticles. Biosens. Bioelectron., 2016, 80, 74-78.
[http://dx.doi.org/10.1016/j.bios.2015.12.100] [PMID: 26807517]
[88]
Liu, P.; Liu, M.; Yin, H.; Zhou, Y.; Ai, S. Electrochemical biosensor for DNA methyltransferase detection based on DpnI digestion triggering the formation of G-quadruplex DNAzymes. Sens. Actuators B Chem., 2015, 220, 101-106.
[http://dx.doi.org/10.1016/j.snb.2015.05.058]
[89]
Li, J.; He, G.; Mu, C.; Wang, K.; Xiang, Y. Assay of DNA methyltransferase 1 activity based on uracil-specific excision reagent digestion induced G-quadruplex formation. Anal. Chim. Acta, 2017, 986, 131-137.
[http://dx.doi.org/10.1016/j.aca.2017.07.021] [PMID: 28870318]
[90]
Liu, K.; Xu, C.; Lei, M.; Yang, A.; Loppnau, P.; Hughes, T.R.; Min, J. Structural basis for the ability of MBD domains to bind methyl-CG and TG sites in DNA. J. Biol. Chem., 2018, 293(19), 7344-7354.
[http://dx.doi.org/10.1074/jbc.RA118.001785] [PMID: 29567833]
[91]
Yang, Z.; Jiang, W.; Liu, F.; Zhou, Y.; Yin, H.; Ai, S. A novel electrochemical immunosensor for 5-hydroxymethylcytosine quantitative detection in genomic DNA of breast cancer tissue. Chem. Commun. (Camb.), 2015, 51(78), 14671-14673.
[http://dx.doi.org/10.1039/C5CC05921F] [PMID: 26291430]
[92]
Haque, M.H.; Bhattacharjee, R.; Islam, M.N.; Gopalan, V.; Nguyen, N.T.; Lam, A.K.; Shiddiky, M.J.A. Colorimetric and electrochemical quantification of global DNA methylation using a methyl cytosine-specific antibody. Analyst (Lond.), 2017, 142(11), 1900-1908.
[http://dx.doi.org/10.1039/C7AN00526A] [PMID: 28516982]
[93]
Povedano, E.; Vargas, E.; Montiel, V.R.; Torrente-Rodríguez, R.M.; Pedrero, M.; Barderas, R.; Segundo-Acosta, P.S.; Peláez-García, A.; Mendiola, M.; Hardisson, D.; Campuzano, S.; Pingarrón, J.M. Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments. Sci. Rep., 2018, 8(1), 6418.
[http://dx.doi.org/10.1038/s41598-018-24902-1] [PMID: 29686400]
[94]
Bhattacharjee, R.; Moriam, S.; Nguyen, N.T.; Shiddiky, M.J.A. A bisulfite treatment and PCR-free global DNA methylation detection method using electrochemical enzymatic signal engagement. Biosens. Bioelectron., 2019, 126, 102-107.
[http://dx.doi.org/10.1016/j.bios.2018.10.020] [PMID: 30396016]
[95]
Gao, F.; Fan, T.; Ou, S.; Wu, J.; Zhang, X.; Luo, J.; Li, N.; Yao, Y.; Mou, Y.; Liao, X.; Geng, D. Highly efficient electrochemical sensing platform for sensitive detection DNA methylation, and methyltransferase activity based on Ag NPs decorated carbon nanocubes. Biosens. Bioelectron., 2018, 99, 201-208.
[http://dx.doi.org/10.1016/j.bios.2017.07.063] [PMID: 28759870]
[96]
Du, Q.; Luu, P.L.; Stirzaker, C.; Clark, S.J. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics, 2015, 7(6), 1051-1073.
[http://dx.doi.org/10.2217/epi.15.39] [PMID: 25927341]
[97]
Xu, Z.; Yin, H.; Tian, Z.; Zhou, Y.; Ai, S. Electrochemical immunoassays for the detection the activity of DNA methyltransferase by using the rolling circle amplification technique. Mikrochim. Acta, 2014, 181, 471-477.
[http://dx.doi.org/10.1007/s00604-013-1141-1]
[98]
Yin, H.; Zhou, Y.; Xu, Z.; Wang, M.; Ai, S. Ultrasensitive electrochemical immunoassay for DNA methyltransferase activity and inhibitor screening based on methyl binding domain protein of MeCP2 and enzymatic signal amplification. Biosens. Bioelectron., 2013, 49, 39-45.
[http://dx.doi.org/10.1016/j.bios.2013.04.040] [PMID: 23708816]
[99]
Xu, Z.; Yin, H.; Huo, L.; Zhou, Y.; Ai, S. Electrochemical immunosensor for DNA methyltransferase activity assay based on methyl CpG-binding protein and dual gold nanoparticle conjugate-based signal amplification. Sens. Actuators B Chem., 2014, 192, 143-149.
[http://dx.doi.org/10.1016/j.snb.2013.10.099]
[100]
Lee, J.; Yoshida, W.; Abe, K.; Nakabayashi, K.; Wakeda, H.; Hata, K.; Marquette, C.A.; Blum, L.J.; Sode, K.; Ikebukuro, K. Development of an electrochemical detection system for measuring DNA methylation levels using methyl CpG-binding protein and glucose dehydrogenase-fused zinc finger protein. Biosens. Bioelectron., 2017, 93, 118-123.
[http://dx.doi.org/10.1016/j.bios.2016.09.060] [PMID: 27666367]
[101]
Gilboa, T.; Torfstein, C.; Juhasz, M.; Grunwald, A.; Ebenstein, Y.; Weinhold, E.; Meller, A. Single-molecule DNA methylation quantification using electro-optical sensing in solid-state nanopores. ACS Nano, 2016, 10(9), 8861-8870.
[http://dx.doi.org/10.1021/acsnano.6b04748] [PMID: 27580095]
[102]
Yang, Z.; Wang, F.; Wang, M.; Yin, H.; Ai, S. A novel signal-on strategy for M.SssI methyltransfease activity analysis and inhibitor screening based on photoelectrochemical immunosensor. Biosens. Bioelectron., 2015, 66, 109-114.
[http://dx.doi.org/10.1016/j.bios.2014.11.015] [PMID: 25460890]
[103]
Tanabe, K.; Yamada, H.; Ito, T.; Nishimoto, S. Photoelectrochemical identification of 5-methylcytosine modification in DNA: combination of photosensitization and enzymatic cleavage. Nucleic Acids Symp Ser (Oxf), 2009, 53(1), 205-206.
[http://dx.doi.org/10.1093/nass/nrp103]]
[104]
Hawk, R.M.; Armani, A.M. Label free detection of 5′ hydroxymethylcytosine within CpG islands using optical sensors. Biosens. Bioelectron., 2015, 65, 198-203.
[http://dx.doi.org/10.1016/j.bios.2014.10.041] [PMID: 25461158]
[105]
Wu, Y.; Zhang, B.; Guo, L.H. Label-free and selective photoelectrochemical detection of chemical DNA methylation damage using DNA repair enzymes. Anal. Chem., 2013, 85(14), 6908-6914.
[http://dx.doi.org/10.1021/ac401346x] [PMID: 23777269]
[106]
Wang, H.; Zhu, L.; Duan, J.; Wang, M.; Yin, H.; Wang, P.; Ai, S. Photoelectrochemical biosensor for HEN1 RNA methyltransferase detection using peroxidase mimics PtCu NFs and poly(U) polymerase-mediated RNA extension. Biosens. Bioelectron., 2018, 103, 32-38.
[http://dx.doi.org/10.1016/j.bios.2017.12.035] [PMID: 29277012]
[107]
Wang, H.; Liu, P.; Jiang, W.; Li, X.; Yin, H.; Ai, S. Photoelectrochemical immunosensing platform for M.SssI methyltransferase activity analysis and inhibitor screening based on g-C3N4 and CdS quantum dots. Sens. Actuators B Chem., 2017, 244, 458-465.
[http://dx.doi.org/10.1016/j.snb.2017.01.016]
[108]
Wang, Z.Y.; Wang, L.J.; Zhang, Q.; Tang, B.; Zhang, C.Y. Single quantum dot-based nanosensor for sensitive detection of 5-methylcytosine at both CpG and non-CpG sites. Chem. Sci. (Camb.), 2017, 9(5), 1330-1338.
[http://dx.doi.org/10.1039/C7SC04813K] [PMID: 29675180]
[109]
Shen, Q.; Han, L.; Fan, G.; Abdel-Halim, E.S.; Jiang, L.; Zhu, J.J. Highly sensitive photoelectrochemical assay for DNA methyltransferase activity and inhibitor screening by exciton energy transfer coupled with enzyme cleavage biosensing strategy. Biosens. Bioelectron., 2015, 64, 449-455.
[http://dx.doi.org/10.1016/j.bios.2014.09.044] [PMID: 25282398]
[110]
Dadmehr, M.; Hosseini, M.; Hosseinkhani, S.; Ganjali, M.R.; Khoobi, M.; Behzadi, H.; Hamedani, M.; Sheikhnejad, R. DNA methylation detection by a novel fluorimetric nanobiosensor for early cancer diagnosis. Biosens. Bioelectron., 2014, 60, 35-44.
[http://dx.doi.org/10.1016/j.bios.2014.03.033] [PMID: 24768860]
[111]
Ma, Y.; Bai, Y.; Mao, H.; Hong, Q.; Yang, D.; Zhang, H.; Liu, F.; Wu, Z.; Jin, Q.; Zhou, H.; Cao, J.; Zhao, J.; Zhong, X.; Mao, H. A panel of promoter methylation markers for invasive and noninvasive early detection of NSCLC using a quantum dots-based FRET approach. Biosens. Bioelectron., 2016, 85, 641-648.
[http://dx.doi.org/10.1016/j.bios.2016.05.067] [PMID: 27240011]
[112]
Wang, P.; Han, P.; Dong, L.; Miao, X. Direct potential resolution and simultaneous detection of cytosine and 5-methylcytosine based on the construction of polypyrrole functionalized graphene nanowall interface. Electrochem. Commun., 2015, 61, 36-39.
[http://dx.doi.org/10.1016/j.elecom.2015.09.025]
[113]
Kurita, R.; Arai, K.; Nakamoto, K.; Kato, D.; Niwa, O. Determination of DNA methylation using electrochemiluminescence with surface accumulable coreactant. Anal. Chem., 2012, 84(4), 1799-1803.
[http://dx.doi.org/10.1021/ac202692f] [PMID: 22263690]
[114]
Zhang, H.; Li, M.; Fan, M.; Gu, J.; Wu, P.; Cai, C. Electrochemiluminescence signal amplification combined with a conformation-switched hairpin DNA probe for determining the methylation level and position in the Hsp53 tumor suppressor gene. Chem. Commun. (Camb.), 2014, 50(22), 2932-2934.
[http://dx.doi.org/10.1039/C3CC49719D] [PMID: 24501739]
[115]
Zhang, H.; Guo, Z.; Dong, H.; Chen, H.; Cai, C. An electrochemiluminescence assay for sensitive detection of methyltransferase activity in different cancer cells by hybridization chain reaction coupled with a G-quadruplex/hemin DNAzyme biosensing strategy. Analyst (Lond.), 2017, 142(11), 2013-2019.
[http://dx.doi.org/10.1039/C7AN00486A] [PMID: 28513652]
[116]
Sun, H.; Ma, S.; Li, Y.; Qi, H.; Ning, X.; Zheng, J. Electrogenerated chemiluminescence biosensing method for the discrimination of DNA hydroxymethylation and assay of the β-glucosyltransferase activity. Biosens. Bioelectron., 2016, 79, 92-97.
[http://dx.doi.org/10.1016/j.bios.2015.11.068] [PMID: 26700581]
[117]
Zhao, H.F.; Liang, R.P.; Wang, J.W.; Qiu, J.D. One-pot synthesis of GO/AgNPs/luminol composites with electrochemiluminescence activity for sensitive detection of DNA methyltransferase activity. Biosens. Bioelectron., 2015, 63, 458-464.
[http://dx.doi.org/10.1016/j.bios.2014.07.079] [PMID: 25129507]
[118]
Wang, P.; Mai, Z.; Dai, Z.; Zou, X. Investigation of DNA methylation by direct electrocatalytic oxidation. Chem. Commun. (Camb.), 2010, 46(41), 7781-7783.
[http://dx.doi.org/10.1039/c0cc00983k] [PMID: 20830331]
[119]
Meng, X.; Xu, Z.; Wang, M.; Yin, H.; Ai, S. Direct determination of 5-methylcytosine based on electrochemical activation of surfactant functionalized graphene modified pyrolytic graphite electrode. Electrochim. Acta, 2013, 95, 200-204.
[http://dx.doi.org/10.1016/j.electacta.2013.02.050]
[120]
Zheng, X.; Wang, L. Direct electrocatalytic oxidation and simultaneous determination of 5-methylcytosine and cytosine at electrochemically reduced graphene modified glassy carbon electrode. Electroanalysis, 2013, 25(7), 1697-1705.
[http://dx.doi.org/10.1002/elan.201300040]
[121]
Wang, J.; Kawde, A-N.; Musameh, M. Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst (Lond.), 2003, 128(7), 912-916.
[http://dx.doi.org/10.1039/b303282e] [PMID: 12894830]
[122]
Xu, Y.; Niu, C.; Xiao, X.; Zhu, W.; Dai, Z.; Zou, X. Chemical-oxidation cleavage triggered isothermal exponential amplification reaction for attomole gene-specific methylation analysis. Anal. Chem., 2015, 87(5), 2945-2951.
[http://dx.doi.org/10.1021/ac5044785] [PMID: 25635709]
[123]
Ma, S.; Sun, H.; Li, Y.; Qi, H.; Zheng, J. Discrimination between 5-hydroxymethylcytosine and 5-methylcytosine in DNA via selective electrogenerated chemiluminescence labeling. Anal. Chem., 2016, 88(20), 9934-9940.
[http://dx.doi.org/10.1021/acs.analchem.6b01265] [PMID: 27620533]
[124]
Zhou, Y.; Yang, Z.; Li, X.; Wang, Y.; Yin, H.; Ai, S. Electrochemical biosensor for detection of DNA hydroxymethylation based on glycosylation and alkaline phosphatase catalytic signal amplification. Electrochimica, 2015, 174, 647-652.
[http://dx.doi.org/10.1016/j.electacta.2015.06.043]
[125]
Fukuzawa, S.; Tachibana, K.; Tajima, S.; Suetake, I. Selective oxidation of 5-hydroxymethylcytosine with micelle incarcerated oxidants to determine it at single base resolution. Bioorg. Med. Chem. Lett., 2015, 25(24), 5667-5671.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.017] [PMID: 26584880]
[126]
Chandran, S. Rapid assembly of DNA via ligase cycling reaction (LCR). Methods Mol. Biol., 2017, 1472, 105-110.
[http://dx.doi.org/10.1007/978-1-4939-6343-0_8] [PMID: 27671935]
[127]
Gibriel, A.A.; Adel, O. Advances in ligase chain reaction and ligation based amplifications for genotyping assays: detection and applications. Mutat. Res., 2017, 773, 66-90.
[http://dx.doi.org/10.1016/j.mrrev.2017.05.001]] [PMID: 28927538]
[128]
Wee, E.J.H.; Shiddiky, M.J.A.; Brown, M.A.; Trau, M. eLCR: electrochemical detection of single DNA base changes via ligase chain reaction. Chem. Commun. (Camb.), 2012, 48(98), 12014-12016.
[http://dx.doi.org/10.1039/c2cc35841g] [PMID: 23133830]
[129]
Wee, E.J.H.; Rauf, S.; Koo, K.M.; Shiddiky, M.J.A.; Trau, M. μ-eLCR: a microfabricated device for electrochemical detection of DNA base changes in breast cancer cell lines. Lab Chip, 2013, 13(22), 4385-4391.
[http://dx.doi.org/10.1039/c3lc50528f] [PMID: 24061339]
[130]
Su, F.; Wang, L.; Sun, Y.; Liu, C.; Duan, X.; Li, Z. Highly sensitive detection of CpG methylation in genomic DNA by AuNP-based colorimetric assay with ligase chain reaction. Chem. Commun. (Camb.), 2015, 51(16), 3371-3374.
[http://dx.doi.org/10.1039/C4CC07688E] [PMID: 25621431]
[131]
Wang, Y.; Wee, E.J.H.; Trau, M. Highly sensitive DNA methylation analysis at CpG resolution by surface-enhanced Raman scattering via ligase chain reaction. Chem. Commun. (Camb.), 2015, 51(54), 10953-10956.
[http://dx.doi.org/10.1039/C5CC03921E] [PMID: 26063626]
[132]
Erdem, A.; Meric, B.; Kerman, K.; Dalbasti, T.; Ozsoz, M. Detection of interaction between metal complex indicator and DNA by using electrochemical biosensor. Electroanalysis, 2015, 11(18), 1372-1376.
[http://dx.doi.org/10.1002/(SICI)1521-4109(199912)11:18<1372:AID-ELAN1372>3.0.CO;2-4]
[133]
Li, W.; Liu, X.; Hou, T.; Li, H.; Li, F. Ultrasensitive homogeneous electrochemical strategy for DNA methyltransferase activity assay based on autonomous exonuclease III-assisted isothermal cycling signal amplification. Biosens. Bioelectron., 2015, 70, 304-309.
[http://dx.doi.org/10.1016/j.bios.2015.03.060] [PMID: 25840015]
[134]
Furst, A.L.; Muren, N.B.; Hill, M.G.; Barton, J.K. Label-free electrochemical detection of human methyltransferase from tumors. Proc. Natl. Acad. Sci. USA, 2014, 111(42), 14985-14989.
[http://dx.doi.org/10.1073/pnas.1417351111] [PMID: 25288757]
[135]
Hong, L.; Wan, J.; Zhang, X.; Wang, G. DNA-gold nanoparticles network based electrochemical biosensors for DNA MTase activity. Talanta, 2016, 152, 228-235.
[http://dx.doi.org/10.1016/j.talanta.2016.01.026] [PMID: 26992515]
[136]
Bao, J.; Geng, X.; Hou, C.; Zhao, Y.; Huo, D.; Wang, Y.; Wang, Z.; Zeng, Y.; Yang, M.; Fa, H. A simple and universal electrochemical assay for sensitive detection of DNA methylation, methyltransferase activity and screening of inhibitors. J. Electroanal. Chem. (Lausanne Switz.), 2018, 814, 144-152.
[http://dx.doi.org/10.1016/j.jelechem.2018.02.060]
[137]
Sato, S.; Takenaka, S. Ferrocenyl naphthalene diimides as tetraplex DNA binders. J. Inorg. Biochem., 2017, 167, 21-26.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.11.020] [PMID: 27893990]
[138]
Sato, S.; Tsueda, M.; Kanezaki, Y.; Takenaka, S. Detection of an aberrant methylation of CDH4 gene in PCR product by ferrocenylnaphthalene diimide-based electrochemical hybridization assay. Anal. Chim. Acta, 2012, 715, 42-48.
[http://dx.doi.org/10.1016/j.aca.2011.12.010] [PMID: 22244165]
[139]
Haraguchi, K.; Sato, S.; Habu, M.; Yada, N.; Hayakawa, M.; Takahashi, O.; Yoshioka, I.; Matsuo, K.; Tominaga, K.; Takenaka, S. Oral cancer screening based on methylation frequency detection in hTERT gene using electrochemical hybridization assay via a multi-electrode chip coupled with ferrocenylnaphthalene diimide. Electroanalysis, 2017, 29(6), 1596-1601.
[http://dx.doi.org/10.1002/elan.201700028]
[140]
Zhang, Z.; Sheng, S.; Cao, X.; Li, Y.; Yao, J.; Wang, T.; Xie, G. Proximity-based electrochemical biosensor for highly sensitive determination of methyltransferase activity using gold nanoparticle-based cooperative signal amplification. Mikrochim. Acta, 2015, 182, 2329-2336.
[http://dx.doi.org/10.1007/s00604-015-1564-y]
[141]
Hasegawa, Y.; Takada, T.; Nakamura, M.; Yamana, K. Ferrocene conjugated oligonucleotide for electrochemical detection of DNA base mismatch. Bioorg. Med. Chem. Lett., 2017, 27(15), 3555-3557.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.049] [PMID: 28583799]
[142]
Shen, Q.; Fan, M.; Yang, Y.; Zhang, H. Electrochemical DNA sensor-based strategy for sensitive detection of DNA demethylation and DNA demethylase activity. Anal. Chim. Acta, 2016, 934, 66-71.
[http://dx.doi.org/10.1016/j.aca.2016.06.037] [PMID: 27506345]
[143]
Cui, W.R.; Li, Z.J.; Chi, B.Z.; Li, Z.M.; Liang, R.P.; Qiu, J.D. Ultrasensitively electrochemical detection activity of DNA methyltransferase using an autocatalytic and recycling amplification strategy. J. Electroanal. Chem. (Lausanne Switz.), 2018, 808, 329-334.
[http://dx.doi.org/10.1016/j.jelechem.2017.12.011]
[144]
Sina, A.A.I.; Howell, S.; Carrascosa, L.G.; Rauf, S.; Shiddiky, M.J.A.; Trau, M. eMethylsorb: electrochemical quantification of DNA methylation at CpG resolution using DNA-gold affinity interactions. Chem. Commun. (Camb.), 2014, 50(86), 13153-13156.
[http://dx.doi.org/10.1039/C4CC06732K] [PMID: 25227312]
[145]
Sina, A.A.I.; Foster, M.T.; Korbie, D.; Carrascosa, L.G.; Shiddiky, M.J.A.; Gao, J.; Dey, S.; Trau, M. A multiplex microplatform for the detection of multiple DNA methylation events using gold-DNA affinity. Analyst (Lond.), 2017, 142(19), 3573-3578.
[http://dx.doi.org/10.1039/C7AN00611J] [PMID: 28861578]
[146]
Haque, M.H.; Gopalan, V.; Islam, M.N.; Masud, M.K.; Bhattacharjee, R.; Hossain, M.S.A.; Nguyen, N.T.; Lam, A.K.; Shiddiky, M.J.A. Quantification of gene-specific DNA methylation in oesophageal cancer via electrochemistry. Anal. Chim. Acta, 2017, 976, 84-93.
[http://dx.doi.org/10.1016/j.aca.2017.04.034] [PMID: 28576321]
[147]
Huang, Z.; Liu, J. Length-dependent diblock DNA with poly-cytosine (Poly-C) as high-affinity anchors on graphene oxide. Langmuir, 2018, 34(3), 1171-1177.
[http://dx.doi.org/10.1021/acs.langmuir.7b02812] [PMID: 28946748]
[148]
Špaček, J.; Daňhel, A.; Hasoň, S.; Fojta, M. Label-free detection of canonical DNA bases, uracil and 5-methylcytosine in DNA oligonucleotides using linear sweep voltammetry at a pyrolytic graphite electrode. Electrochem. Commun., 2017, 82, 34-38.
[http://dx.doi.org/10.1016/j.elecom.2017.07.013]
[149]
Wei, W.; Gao, C.; Xiong, Y.; Zhang, Y.; Liu, S.; Pu, Y. A fluorescence method for detection of DNA and DNA methylation based on graphene oxide and restriction endonuclease HpaII. Talanta, 2015, 131, 342-347.
[http://dx.doi.org/10.1016/j.talanta.2014.07.094] [PMID: 25281112]
[150]
Le, X.; Li, X.; Chuan, G.; Yulin, Z.; Qunfeng, Y.; Guo-Jun, Z.A. MoS2 nanosheet-based fluorescence biosensor for simple and quantitative analysis of DNA methylation. Sensors (Basel), 2016, 16(10), 1561.
[http://dx.doi.org/10.3390/s16101561] [PMID: 27669248]
[151]
Taleat, Z.; Mathwig, K.; Sudhölter, E.J.R.; Rassaei, L. Detection strategies for methylated and hypermethylated DNA. Trends Analyt. Chem., 2015, 66, 80-89.
[http://dx.doi.org/10.1016/j.trac.2014.11.013]
[152]
Mirsaidov, U.; Timp, W.; Zou, X.; Dimitrov, V.; Schulten, K.; Feinberg, A.P.; Timp, G. Nanoelectromechanics of methylated DNA in a synthetic nanopore. Biophys. J., 2009, 96(4), L32-L34.
[http://dx.doi.org/10.1016/j.bpj.2008.12.3760] [PMID: 19217843]
[153]
Timp, G.; Timp, W.; Feinberg, A.; Mirsaidov, U.; University, T.J.H. Detecting and sorting methylated DNA using a synthetic nanopore U.S. Patent 8394584, 2009.
[154]
Wang, Y.; Zhang, Y.; Guo, Y.; Kang, X.F. Fast and precise detection of DNA methylation with tetramethylammonium-filled nanopore. Sci. Rep., 2017, 7(1), 183.
[http://dx.doi.org/10.1038/s41598-017-00317-2] [PMID: 28298646]
[155]
Laszlo, A.H.; Derrington, I.M.; Brinkerhoff, H.; Langford, K.W.; Nova, I.C.; Samson, J.M.; Bartlett, J.J.; Pavlenok, M.; Gundlach, J.H. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc. Natl. Acad. Sci. USA, 2013, 110(47), 18904-18909.
[http://dx.doi.org/10.1073/pnas.1310240110] [PMID: 24167255]
[156]
Wang, R.; Dejian, G.U.; Liu, Q. Research progress in nanopores-based sensing technology for nucleic acid detection. Materials China, 2018, 1, 059-067.
[157]
Kang, I.; Wang, Y.; Reagan, C.; Fu, Y.; Wang, M.X.; Gu, L.Q. Designing DNA interstrand lock for locus-specific methylation detection in a nanopore. Sci. Rep., 2013, 3, 2381.
[http://dx.doi.org/10.1038/srep02381] [PMID: 24135881]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy