[1]
Rohloff, J. Volatiles from rhizomes of Rhodiola rosea L. Phytochemistry, 2002, 59(6), 655-661.
[2]
Panossian, A.; Wagner, H. Stimulating effect of adaptogens: An overview with particular reference to their efficacy following single dose administration. Phytother. Res., 2005, 19(10), 819-838.
[3]
Kelly, G.S. Rhodiola rosea: A possible plant adaptogen. Altern. Med. Rev., 2001, 6(3), 293-302.
[4]
Brown, R.; Gerbarg, P.; Ramazanov, Z. Rhodiola rosea; a phytomedicinal overview. HerbalGram, 2002, 56, 40-52.
[5]
Ming, D.S.; Hillhouse, B.J.; Guns, E.S.; Eberding, A.; Xie, S.; Vimalanathan, S.; Towers, G.N. Bioactive compounds from Rhodiola rosea (Crassulaceae). Phytother. Res., 2005, 19(9), 740-743.
[6]
Aksenova, R.; Zotova, M.; Nekhoda, M.; Cherdintsev, S. Comparative characteristics of the stimulating and adaptogenic effects of Rhodiola rosea preparations. Stimul. Central Nervous Syst., 1968, 2(1), 3-12.
[7]
Hung, S.K.; Perry, R.; Ernst, E. The effectiveness and efficacy of Rhodiola rosea L.: A systematic review of randomized clinical trials. Phytomedicine, 2011, 18(4), 235-244.
[8]
Panossian, A.; Wikman, G.; Sarris, J. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine, 2010, 17(7), 481-493.
[9]
Panossian, A.; Hamm, R.; Wikman, G.; Efferth, T. Mechanism of action of Rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: An interactive pathway analysis of the downstream effects using RNA microarray data. Phytomedicine, 2014, 21(11), 1325-1348.
[10]
Khanum, F.; Bawa, A.S.; Singh, B. Rhodiola rosea: A versatile adaptogen. Compr. Rev. Food Sci. Food Saf., 2005, 4(3), 55-62.
[11]
Jafari, M.; Felgner, J.S. Bussel, II; Hutchili, T.; Khodayari, B.; Rose, M.R.; Vince-Cruz, C.; Mueller, L.D. Rhodiola: A promising anti-aging Chinese herb. Rejuvenation Res., 2007, 10(4), 587-602.
[12]
Panossian, A.G. Adaptogens: Tonic herbs for fatigue and stress. Altern. Complement. Ther., 2003, 9(6), 327-331.
[13]
Nabavi, S.F.; Braidy, N.; Orhan, I.E.; Badiee, A.; Daglia, M.; Nabavi, S.M. Rhodiola rosea L. and Alzheimer’s Disease: From farm to pharmacy. Phytother. Res., 2016, 30(4), 532-539.
[14]
Amsterdam, J.D.; Panossian, A.G. Rhodiola rosea L. as a putative botanical antidepressant. Phytomedicine, 2016, 23(7), 770-783.
[15]
Panossian, A.; Nikoyan, N.; Ohanyan, N.; Hovhannisyan, A.; Abrahamyan, H.; Gabrielyan, E.; Wikman, G. Comparative study of Rhodiola preparations on behavioral despair of rats. Phytomedicine, 2008, 15(1-2), 84-91.
[16]
Bystritsky, A.; Kerwin, L.; Feusner, J.D. A pilot study of Rhodiola rosea (Rhodax) for generalized anxiety disorder (GAD). J. Altern. Complement. Med., 2008, 14(2), 175-180.
[17]
Darbinyan, V.; Aslanyan, G.; Amroyan, E.; Gabrielyan, E.; Malmstrom, C.; Panossian, A. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nord. J. Psychiatry, 2007, 61(5), 343-348.
[18]
Darbinyan, V.; Kteyan, A.; Panossian, A.; Gabrielian, E.; Wikman, G.; Wagner, H. Rhodiola rosea in stress induced fatigue--a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine, 2000, 7(5), 365-371.
[19]
Olsson, E.M.; von Scheele, B.; Panossian, A.G. A randomised, double-blind, placebo-controlled, parallel-group study of the standardised extract shr-5 of the roots of Rhodiola rosea in the treatment of subjects with stress-related fatigue. Planta Med., 2009, 75(2), 105-112.
[20]
Spasov, A.A.; Wikman, G.K.; Mandrikov, V.B.; Mironova, I.A.; Neumoin, V.V. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine, 2000, 7(2), 85-89.
[21]
Petkov, V.D.; Yonkov, D.; Mosharoff, A.; Kambourova, T.; Alova, L.; Petkov, V.V.; Todorov, I. Effects of alcohol aqueous extract from Rhodiola rosea L. roots on learning and memory. Acta Physiol. Pharmacol. Bulg., 1986, 12(1), 3-16.
[22]
Shevtsov, V.A.; Zholus, B.I.; Shervarly, V.I.; Vol’skij, V.B.; Korovin, Y.P.; Khristich, M.P.; Roslyakova, N.A.; Wikman, G. A randomized trial of two different doses of a SHR-5 Rhodiola rosea extract versus placebo and control of capacity for mental work. Phytomedicine, 2003, 10(2-3), 95-105.
[23]
Huang, S.C.; Lee, F.T.; Kuo, T.Y.; Yang, J.H.; Chien, C.T. Attenuation of long-term Rhodiola rosea supplementation on exhaustive swimming-evoked oxidative stress in the rat. Chin. J. Physiol., 2009, 52(5), 316-324.
[24]
Wing, S.L.; Askew, E.W.; Luetkemeier, M.J.; Ryujin, D.T.; Kamimori, G.H.; Grissom, C.K. Lack of effect of Rhodiola or oxygenated water supplementation on hypoxemia and oxidative stress. Wilderness Environ. Med., 2003, 14(1), 9-16.
[25]
Xu, M.C.; Shi, H.M.; Wang, H.; Gao, X.F. Salidroside protects against hydrogen peroxide-induced injury in HUVECs via the regulation of REDD1 and mTOR activation. Mol. Med. Rep., 2013, 8(1), 147-153.
[26]
Maslova, L.V.; Kondrat’ev, B.; Maslov, L.N.; Lishmanov Iu, B. The cardioprotective and antiadrenergic activity of an extract of Rhodiola rosea in stress. Eksp. Klin. Farmakol., 1994, 57(6), 61-63.
[27]
Alameddine, A.; Fajloun, Z.; Bourreau, J.; Gauquelin-Koch, G.; Yuan, M.; Gauguier, D.; Derbre, S.; Ayer, A.; Custaud, M.A.; Navasiolava, N. The cardiovascular effects of salidroside in the Goto-Kakizaki diabetic rat model. J. Physiol. Pharmacol., 2015, 66(2), 249-257.
[28]
Wang, X.L.; Wang, X.; Xiong, L.L.; Zhu, Y.; Chen, H.L.; Chen, J.X.; Wang, X.X.; Li, R.L.; Guo, Z.Y.; Li, P.; Jiang, W. Salidroside improves doxorubicin-induced cardiac dysfunction by suppression of excessive oxidative stress and cardiomyocyte apoptosis. J. Cardiovasc. Pharmacol., 2013, 62(6), 512-523.
[29]
Xu, Z-W.; Chen, X.; Jin, X-H.; Meng, X-Y.; Zhou, X.; Fan, F-X.; Mao, S-Y.; Wang, Y.; Zhang, W-C.; Shan, N-N. SILAC-based proteomic analysis reveals that salidroside antagonizes cobalt chloride-induced hypoxic effects by restoring the tricarboxylic acid cycle in cardiomyocytes. J. Proteomics, 2016, 130(1), 211-220.
[30]
Hu, X.; Lin, S.; Yu, D.; Qiu, S.; Zhang, X.; Mei, R. A preliminary study: the anti-proliferation effect of salidroside on different human cancer cell lines. Cell Biol. Toxicol., 2010, 26(6), 499-507.
[31]
Gao, D.; Li, Q.; Liu, Z.; Feng, J.; Li, J.; Han, Z.; Duan, Y. Antidiabetic potential of Rhodiola sachalinensis root extract in streptozotocin-induced diabetic rats. Methods Find. Exp. Clin. Pharmacol., 2009, 31(6), 375-381.
[32]
Li, F.; Tang, H.; Xiao, F.; Gong, J.; Peng, Y.; Meng, X. Protective effect of salidroside from Rhodiolae Radix on diabetes-induced oxidative stress in mice. Molecules, 2011, 16(12), 9912-9924.
[33]
Niu, C.S.; Chen, L.J.; Niu, H.S. Antihyperglycemic action of rhodiola-aqeous extract in type1-like diabetic rats. BMC Complement. Altern. Med., 2014, 14(1), 20.
[34]
Zhang, X.R.; Fu, X.J.; Zhu, D.S.; Zhang, C.Z.; Hou, S.; Li, M.; Yang, X.H. Salidroside-regulated lipid metabolism with down-regulation of miR-370 in type 2 diabetic mice. Eur. J. Pharmacol., 2016, 779(1), 46-52.
[35]
Arora, R.; Chawla, R.; Sagar, R.; Prasad, J.; Singh, S.; Kumar, R.; Sharma, A.; Singh, S.; Sharma, R.K. Evaluation of radioprotective activities of Rhodiola imbricata Edgew - A high altitude plant. Mol. Cell. Biochem., 2005, 273(1-2), 209-223.
[36]
Ahmed, M.; Henson, D.A.; Sanderson, M.C.; Nieman, D.C.; Zubeldia, J.M.; Shanely, R.A. Rhodiola rosea Exerts antiviral activity in athletes following a competitive marathon race. Front. Nutr., 2015, 2(1), 24.
[37]
Déciga-Campos, M.; González-Trujano, M.E.; Ventura‐Martínez, R.; Montiel-Ruiz, R.M.; Ángeles-López, G.E.; Brindis, F. Antihyperalgesic activity of Rhodiola Rosea in a diabetic rat model. Drug Res., 2016, 77(1), 29-36.
[38]
Panossian, A.; Hamm, R.; Kadioglu, O.; Wikman, G.; Efferth, T. Synergy and antagonism of active constituents of ADAPT-232 on transcriptional level of metabolic regulation of isolated neuroglial cells. Front. Neurosci., 2013, 7, 16.
[39]
Raffaitin, C.; Gin, H.; Empana, J.P.; Helmer, C.; Berr, C.; Tzourio, C.; Portet, F.; Dartigues, J.F.; Alperovitch, A.; Barberger-Gateau, P. Metabolic syndrome and risk for incident Alzheimer’s disease or vascular dementia: The Three-City Study. Diabetes Care, 2009, 32(1), 169-174.
[40]
Kroner, Z. The relationship between Alzheimer’s disease and diabetes: Type 3 diabetes? Altern. Med. Rev., 2009, 14(4), 373.
[41]
Lakka, H.M.; Laaksonen, D.E.; Lakka, T.A.; Niskanen, L.K.; Kumpusalo, E.; Tuomilehto, J.; Salonen, J.T. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA, 2002, 288(21), 2709-2716.
[42]
Alberti, K.G.; Zimmet, P.; Shaw, J.; Group, I.D.F.E.T.F.C. The metabolic syndrome--a new worldwide definition. Lancet, 2005, 366(9491), 1059-1062.
[43]
Libby, P.; Bornfeldt, K.E.; Tall, A.R. Atherosclerosis successes, surprises, and future challenges. Circ. Res., 2016, 118(4), 531-534.
[44]
Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ. Res., 2016, 118(4), 535-546.
[45]
Nanditha, A.; Ma, R.C.; Ramachandran, A.; Snehalatha, C.; Chan, J.C.; Chia, K.S.; Shaw, J.E.; Zimmet, P.Z. Diabetes in Asia and the Pacific: Implications for the global epidemic. Diabetes Care, 2016, 39(3), 472-485.
[46]
Bremer, A.A.; Mietus-Snyder, M.; Lustig, R.H. Toward a unifying hypothesis of metabolic syndrome. Pediatrics, 2012, 129(3), 557-570.
[47]
Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech., 2009, 2(5-6), 231-237.
[48]
Davies, M.J.; Lawrence, I.G. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction): Theory and practice. Diabetes Obes. Metab., 2002, 4(5), 289-295.
[49]
Cartee, G.D.; Wojtaszewski, J.F. Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl. Physiol. Nutr. Metab., 2007, 32(3), 557-566.
[50]
Saltiel, A.R. Series introduction: The molecular and physiological basis of insulin resistance: Emerging implications for metabolic and cardiovascular diseases. J. Clin. Invest., 2000, 106(2), 163-164.
[51]
Eckel, R.H. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N. Engl. J. Med., 1989, 320(16), 1060-1068.
[52]
Glass, C.K.; Olefsky, J.M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab., 2012, 15(5), 635-645.
[53]
Jornayvaz, F.R.; Shulman, G.I. Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance. Cell Metab., 2012, 15(5), 574-584.
[54]
Matthaei, S.; Stumvoll, M.; Kellerer, M.; Haring, H.U. Pathophysiology and pharmacological treatment of insulin resistance. Endocr. Rev., 2000, 21(6), 585-618.
[55]
Henriksen, E.J.; Diamond-Stanic, M.K.; Marchionne, E.M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med., 2011, 51(5), 993-999.
[56]
Basaranoglu, M.; Basaranoglu, G. Pathophysiology of insulin resistance and steatosis in patients with chronic viral hepatitis. World J. Gastroenterol., 2011, 17(36), 4055-4062.
[57]
Taniguchi, A.; Fukushima, M.; Kuroe, A.; Sakaguchi, K.; Hashimoto, H.; Yoshioka, I.; Kitatani, N.; Tsuji, T.; Ohya, M.; Ohgushi, M.; Nagasaka, S.; Isogai, O.; Nakai, Y.; Inagaki, N.; Seino, Y. Metabolic syndrome, insulin resistance, and atherosclerosis in Japanese type 2 diabetic patients. Metabolism, 2007, 56(8), 1099-1103.
[58]
Nigro, J.; Osman, N.; Dart, A.M.; Little, P.J. Insulin resistance and atherosclerosis. Endocr. Rev., 2006, 27(3), 242-259.
[59]
Semenkovich, C.F. Insulin resistance and atherosclerosis. J. Clin. Invest., 2006, 116(7), 1813-1822.
[60]
Barac, A.; Campia, U.; Panza, J.A. Methods for evaluating endothelial function in humans. Hypertension, 2007, 49(4), 748-760.
[61]
Muniyappa, R.; Sowers, J.R. Role of insulin resistance in endothelial dysfunction. Rev. Endocr. Metab. Disord., 2013, 14(1), 5-12.
[62]
Hardie, D.G. AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis. Curr. Opin. Cell Biol., 2015, 33(1), 1-7.
[63]
Ou, T.; Hou, X.; Guan, S.; Dai, J.; Han, W.; Li, R.; Wang, W.; Qu, X.; Zhang, M. Targeting AMPK signalling pathway with natural medicines for atherosclerosis therapy: An integration of in silico screening and in vitro assay. Nat. Prod. Res., 2015, 30(11), 1-8.
[64]
Zhang, B.B.; Zhou, G.; Li, C. AMPK: An emerging drug target for diabetes and the metabolic syndrome. Cell Metab., 2009, 9(5), 407-416.
[65]
Sanders, M.J.; Grondin, P.O.; Hegarty, B.D.; Snowden, M.A.; Carling, D. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J., 2007, 403(1), 139-148.
[66]
Ruderman, N.B.; Carling, D.; Prentki, M.; Cacicedo, J.M. AMPK, insulin resistance, and the metabolic syndrome. J. Clin. Invest., 2013, 123(7), 2764-2772.
[67]
Barhwal, K.; Das, S.K.; Kumar, A.; Hota, S.K.; Srivastava, R.B. Insulin receptor A and Sirtuin 1 synergistically improve learning and spatial memory following chronic salidroside treatment during hypoxia. J. Neurochem., 2015, 135(2), 332-346.
[68]
Lee, S.Y.; Lai, F.Y.; Shi, L.S.; Chou, Y.C.; Yen, I.C.; Chang, T.C. Rhodiola crenulata extract suppresses hepatic gluconeogenesis via activation of the AMPK pathway. Phytomedicine, 2015, 22(4), 477-486.
[69]
Lin, K-T.; Hsu, S-W.; Lai, F-Y.; Chang, T-C.; Shi, L-S.; Lee, S-Y. Rhodiola crenulata extract regulates hepatic glycogen and lipid metabolism via activation of the AMPK pathway. BMC Complement. Altern. Med., 2016, 16(1), 127.
[70]
Li, H.B.; Ge, Y.K.; Zheng, X.X.; Zhang, L. Salidroside stimulated glucose uptake in skeletal muscle cells by activating AMP-activated protein kinase. Eur. J. Pharmacol., 2008, 588(2-3), 165-169.
[71]
Zheng, T.; Yang, X.Y.; Wu, D.; Xing, S.S.; Bian, F.; Li, W.J.; Chi, J.Y.; Bai, X.L.; Wu, G.J.; Chen, X.Q.; Zhang, Y.H.; Jin, S. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3 pathway. Br. J. Pharmacol., 2015, 172(13), 3284-3301.
[72]
Wang, M.; Luo, L.; Yao, L.; Wang, C.; Jiang, K.; Liu, X.; Xu, M.; Shen, N.; Guo, S.; Sun, C.; Yang, Y. Salidroside improves glucose homeostasis in obese mice by repressing inflammation in white adipose tissues and improving leptin sensitivity in hypothalamus. Sci. Rep., 2016, 6(1), 25399.
[73]
Li, H.; Ying, H.; Hu, A.; Li, D.; Hu, Y. Salidroside Modulates insulin signaling in a rat model of nonalcoholic steatohepatitis. Evid. Based Complement. Alternat. Med., 2017, 20179651371
[74]
Wu, D.; Yang, X.; Zheng, T.; Xing, S.; Wang, J.; Chi, J.; Bian, F.; Li, W.; Xu, G.; Bai, X.; Wu, G.; Jin, S. A novel mechanism of
action for salidroside to alleviate diabetic albuminuria: Effects on
albumin transcytosis across glomerular endothelial cells. Am. J. Physiol. Endocrinol. Metab, 2015, ajpendo 00391, 2015.
[75]
Ouchi, N.; Kobayashi, H.; Kihara, S.; Kumada, M.; Sato, K.; Inoue, T.; Funahashi, T.; Walsh, K. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem., 2004, 279(2), 1304-1309.
[76]
Shen, W.; Fan, W.H.; Shi, H.M. Effects of rhodiola on expression of vascular endothelial cell growth factor and angiogenesis in aortic atherosclerotic plaque of rabbits. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2008, 28(11), 1022-1025.
[77]
Zhang, B.C.; Li, W.M.; Guo, R.; Xu, Y.W. Salidroside decreases atherosclerotic plaque formation in low-density lipoprotein receptor-deficient mice. Evid. Based Complement. Alternat. Med., 2012, 2012607508
[78]
Leung, S.B.; Zhang, H.N.; Lau, C.W.; Huang, Y.; Lin, Z.X. Salidroside improves homocysteine-Induced endothelial dysfunction by reducing oxidative stress. Evid. Based Complement. Alternat. Med, 2013, 2013
[79]
Xing, S.S.; Yang, X.Y.; Zheng, T.; Li, W.J.; Wu, D.; Chi, J.Y.; Bian, F.; Bai, X.L.; Wu, G.J.; Zhang, Y.Z.; Zhang, C.T.; Zhang, Y.H.; Li, Y.S.; Jin, S. Salidroside improves endothelial function and alleviates atherosclerosis by activating a mitochondria-related AMPK/PI3K/Akt/eNOS pathway. Vascul. Pharmacol., 2015, 72(1), 141-152.
[80]
Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol., 2015, 33(1), 111-118.
[81]
Kim, J.A.; Wei, Y.; Sowers, J.R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res., 2008, 102(4), 401-414.
[82]
Ren, J.; Pulakat, L.; Whaley-Connell, A.; Sowers, J.R. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J. Mol. Med. (Berl.), 2010, 88(10), 993-1001.
[83]
Chattopadhyay, M.; Khemka, V.K.; Chatterjee, G.; Ganguly, A.; Mukhopadhyay, S.; Chakrabarti, S. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol. Cell. Biochem., 2015, 399(1-2), 95-103.
[84]
Du Toit, A. Protein degradation: An alternative route for mitochondrial quality control. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 150-151.
[85]
Andreux, P.A.; Houtkooper, R.H.; Auwerx, J. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov., 2013, 12(6), 465-483.
[86]
Bray, N. Metabolic disorders: Pumping up muscle mitochondria. Nat. Rev. Drug Discov., 2014, 13(7), 496.
[87]
Litvinova, L.; Atochin, D.N.; Fattakhov, N.; Vasilenko, M.; Zatolokin, P.; Kirienkova, E. Nitric oxide and mitochondria in metabolic syndrome. Front. Physiol., 2015, 6(1), 20.
[88]
Sorriento, D.; Pascale, A.V.; Finelli, R.; Carillo, A.L.; Annunziata, R.; Trimarco, B.; Iaccarino, G. Targeting mitochondria as therapeutic strategy for metabolic disorders. Scientif. World J., 2014, 2014604685
[89]
Xing, S.; Yang, X.; Li, W.; Bian, F.; Wu, D.; Chi, J.; Xu, G.; Zhang, Y.; Jin, S. Salidroside stimulates mitochondrial biogenesis and protects against H(2)O(2)-induced endothelial dysfunction. Oxid. Med. Cell. Longev., 2014, 2014904834
[90]
Abidov, M.; Crendal, F.; Grachev, S.; Seifulla, R.; Ziegenfuss, T. Effect of extracts from Rhodiola rosea and Rhodiola crenulata (Crassulaceae) roots on ATP content in mitochondria of skeletal muscles. Bull. Exp. Biol. Med., 2003, 136(6), 585-587.
[91]
Ping, Z.; Zhang, L.-f.; Cui, Y.-j.; Chang, Y.-m.; Jiang, C.-w.; Meng, Z.-z.; Xu, P.; Liu, H.-y.; Wang, D.-y.; Cao, X.-b. The
protective effects of salidroside from exhaustive exercise-induced
heart injury by enhancing the PGC-1α–NRF1/NRF2 pathway and
mitochondrial respiratory function in rats. Oxid. Med. Cell. Longev, 2015, 2015.
[92]
Patten, I.S.; Arany, Z. PGC-1 coactivators in the cardiovascular system. Trends Endocrinol. Metab., 2012, 23(2), 90-97.
[93]
Scarpulla, R.C. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann. N. Y. Acad. Sci., 2008, 1147, 321-334.
[94]
Kadowaki, D.; Sakaguchi, S.; Miyamoto, Y.; Taguchi, K.; Muraya, N.; Narita, Y.; Sato, K.; Chuang, V.T.; Maruyama, T.; Otagiri, M.; Hirata, S. Direct radical scavenging activity of benzbromarone provides beneficial antioxidant properties for hyperuricemia treatment. Biol. Pharm. Bull., 2015, 38(3), 487-492.
[95]
Widlansky, M.E.; Gutterman, D.D. Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid. Redox Signal., 2011, 15(6), 1517-1530.
[96]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[97]
Chen, D.; Fan, J.; Wang, P.; Zhu, L.; Jin, Y.; Peng, Y.; Du, S. Isolation, identification and antioxidative capacity of water-soluble phenylpropanoid compounds from Rhodiola crenulata. Food Chem., 2012, 134(4), 2126-2133.
[98]
Ohsugi, M.; Fan, W.; Hase, K.; Xiong, Q.; Tezuka, Y.; Komatsu, K.; Namba, T.; Saitoh, T.; Tazawa, K.; Kadota, S. Active-oxygen scavenging activity of traditional nourishing-tonic herbal medicines and active constituents of Rhodiola sacra. J. Ethnopharmacol., 1999, 67(1), 111-119.
[99]
Lee, M.W.; Lee, Y.A.; Park, H.M.; Toh, S.H.; Lee, E.J.; Jang, H.D.; Kim, Y.H. Antioxidative phenolic compounds from the roots of Rhodiola sachalinensis A. Bor. Arch. Pharm. Res., 2000, 23(5), 455-458.
[100]
Schriner, S.E.; Avanesian, A.; Liu, Y.; Luesch, H.; Jafari, M. Protection of human cultured cells against oxidative stress by Rhodiola rosea without activation of antioxidant defenses. Free Radic. Biol. Med., 2009, 47(5), 577-584.
[101]
Calcabrini, C.; De Bellis, R.; Mancini, U.; Cucchiarini, L.; Potenza, L.; De Sanctis, R.; Patrone, V.; Scesa, C.; Dacha, M. Rhodiola rosea ability to enrich cellular antioxidant defences of cultured human keratinocytes. Arch. Dermatol. Res., 2010, 302(3), 191-200.
[102]
Qu, Z.Q.; Zhou, Y.; Zeng, Y.S.; Li, Y.; Chung, P. Pretreatment with Rhodiola rosea extract reduces cognitive impairment induced by intracerebroventricular streptozotocin in rats: Implication of anti-oxidative and neuroprotective effects. Biomed. Environ. Sci., 2009, 22(4), 318-326.
[103]
Senthilkumar, R.; Parimelazhagan, T.; Chaurasia, O.P.; Srivastava, R.B. Free radical scavenging property and antiproliferative activity of Rhodiola imbricata Edgew extracts in HT-29 human colon cancer cells. Asian Pac. J. Trop. Med., 2013, 6(1), 11-19.
[104]
Chen, C.H.C. H.C.; Chu, Y.T.; Ho, H.Y.; Chen, P.Y.; Lee, T.H.; Lee, C.K. Antioxidant activity of some plant extracts towards xanthine oxidase, lipoxygenase and tyrosinase. Molecule, 2009, 14(8), 12.
[105]
Kim, S.H.; Hyun, S.H.; Choung, S.Y. Antioxidative effects of Cinnamomi cassiae and Rhodiola rosea extracts in liver of diabetic mice. Biofactors, 2006, 26(3), 209-219.
[106]
Wang, Y.; Xu, P.; Wang, Y.; Liu, H.; Zhou, Y.; Cao, X. The protection of salidroside of the heart against acute exhaustive injury and molecular mechanism in rat. Oxid. Med. Cell. Longev., 2013, 2013507832
[107]
Zhang, J.; Zhen, Y.F.; Pu, B.C. R.; Song, L.G.; Kong, W.N.; Shao, T.M.; Li, X.; Chai, X.Q. Salidroside attenuates beta amyloid-induced cognitive deficits via modulating oxidative stress and inflammatory mediators in rat hippocampus. Behav. Brain Res., 2013, 244(1), 70-81.
[108]
Mao, G.X.; Wang, Y.; Qiu, Q.; Deng, H.B.; Yuan, L.G.; Li, R.G.; Song, D.Q.; Li, Y.Y.; Li, D.D.; Wang, Z. Salidroside protects human fibroblast cells from premature senescence induced by H2O2 partly through modulating oxidative status. Mech. Ageing Dev., 2010, 131(11-12), 723-731.
[109]
Shi, K.; Wang, X.; Zhu, J.; Cao, G.; Zhang, K.; Su, Z. Salidroside protects retinal endothelial cells against hydrogen peroxide-induced injury via modulating oxidative status and apoptosis. Biosci. Biotechnol. Biochem., 2015, 79(9), 1406-1413.
[110]
Burkle, A.; Virag, L. Poly(ADP-ribose): PARadigms and PARadoxes. Mol. Aspects Med., 2013, 34(6), 1046-1065.
[111]
Li, X.; Erden, O.; Li, L.; Ye, Q.; Wilson, A.; Du, W. Binding to WGR domain by salidroside activates PARP1 and protects hematopoietic stem cells from oxidative stress. Antioxid. Redox Signal., 2014, 20(12), 1853-1865.
[112]
Li, X.; Sipple, J.; Pang, Q.; Du, W. Salidroside stimulates DNA repair enzyme Parp-1 activity in mouse HSC maintenance. Blood, 2012, 119(18), 4162-4173.
[113]
Lee, Y.; Jung, J.C.; Jang, S.; Kim, J.; Ali, Z.; Khan, I.A.; Oh, S. Anti-Inflammatory and neuroprotective effects of constituents isolated from Rhodiola rosea. Evid. Based Complement. Alternat. Med., 2013, 2013514049
[114]
Pooja; Bawa, A.S.; Khanum, F. Anti-inflammatory activity of Rhodiola rosea--”a second-generation adaptogen. Phytother. Res., 2009, 23(8), 1099-1102.
[115]
Skopnska-Rozewska, E.; Wojcik, R.; Siwicki, A.K.; Sommer, E.; Wasiutynski, A.; Furmanowa, M.; Malinowski, M.; Mazurkiewicz, M. The effect of Rhodiola quadrifida extracts on cellular immunity in mice and rats. Pol. J. Vet. Sci., 2008, 11(2), 105-111.
[116]
Abidov, M.; Grachev, S.; Seifulla, R.D.; Ziegenfuss, T.N. Extract of Rhodiola rosea radix reduces the level of C-reactive protein and creatinine kinase in the blood. Bull. Exp. Biol. Med., 2004, 138(1), 63-64.
[117]
Dehghan, A.; Kardys, I.; de Maat, M.P.; Uitterlinden, A.G.; Sijbrands, E.J.; Bootsma, A.H.; Stijnen, T.; Hofman, A.; Schram, M.T.; Witteman, J.C. Genetic variation, C-reactive protein levels, and incidence of diabetes. Diabetes, 2007, 56(3), 872-878.
[118]
Bian, F.; Yang, X.; Zhou, F.; Wu, P.H.; Xing, S.; Xu, G.; Li, W.; Chi, J.; Ouyang, C.; Zhang, Y.; Xiong, B.; Li, Y.; Zheng, T.; Wu, D.; Chen, X.; Jin, S. C-reactive protein promotes atherosclerosis by increasing LDL transcytosis across endothelial cells. Br. J. Pharmacol., 2014, 171(10), 2671-2684.
[119]
Zhang, Y.; Yang, X.; Bian, F.; Wu, P.; Xing, S.; Xu, G.; Li, W.; Chi, J.; Ouyang, C.; Zheng, T.; Wu, D.; Zhang, Y.; Li, Y.; Jin, S. TNF-alpha promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: crosstalk between NF-kappaB and PPAR-gamma. J. Mol. Cell. Cardiol., 2014, 72(1), 85-94.
[120]
Zhu, L.; Wei, T.; Chang, X.; He, H.; Gao, J.; Wen, Z.; Yan, T. Effects of Salidroside on Myocardial Injury in vivo in vitro via Regulation of Nox/NF-kappaB/AP1 Pathway. Inflammation, 2015, 38(4), 1589-1598.
[121]
Guan, S.; Feng, H.; Song, B.; Guo, W.; Xiong, Y.; Huang, G.; Zhong, W.; Huo, M.; Chen, N.; Lu, J.; Deng, X. Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia. Int. Immunopharmacol., 2011, 11(12), 2194-2199.
[122]
Hu, H.; Li, Z.; Zhu, X.; Lin, R.; Chen, L. Salidroside reduces cell mobility via NF- kappa B and MAPK signaling in LPS-Induced BV2 microglial cells. Evid. Based Complement. Alternat. Med., 2014, 2014383821
[123]
Hong, Wu.; Wang, T.W Jun-ying Qi, Ya-qi Wang, Xiao-ping Luo, Qin Ning, Salidroside attenuates LPS-stimulated activation of THP-1 cell-derived macrophages through down-regulation of MAPK/ NF-kB signaling pathways. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2013, 33(4), 7.
[124]
Perreault, M.; Marette, A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat. Med., 2001, 7(10), 1138-1143.
[125]
Wu, D.; Yuan, P.; Ke, C.; Xiong, H.; Chen, J.; Guo, J.; Lu, M.; Ding, Y.; Fan, X.; Duan, Q. Salidroside suppresses solar ultraviolet-induced skin inflammation by targeting cyclooxygenase-2. Oncotarget, 2016, 7(18), 25971.
[126]
Kim, K.H.; Lee, M.S. Autophagy--a key player in cellular and body metabolism. Nat. Rev. Endocrinol., 2014, 10(6), 322-337.
[127]
Choi, A.M.K.; Ryter, S.W.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med., 2013, 368(7), 651-662.
[128]
De Meyer, G.R.; Grootaert, M.O.; Michiels, C.F.; Kurdi, A.; Schrijvers, D.M.; Martinet, W. Autophagy in vascular disease. Circ. Res., 2015, 116(3), 468-479.
[129]
Meijer, A.J.; Codogno, P. Autophagy: A sweet process in diabetes. Cell Metab., 2008, 8(4), 275-276.
[130]
Vindis, C. Autophagy: An emerging therapeutic target in vascular diseases. Br. J. Pharmacol., 2015, 172(9), 2167-2178.
[131]
Cuervo, A.M. Chaperone-mediated autophagy: Dice’s ‘wild’ idea about lysosomal selectivity. Nat. Rev. Mol. Cell Biol., 2011, 12(8), 535-541.
[132]
Lamb, C.A.; Yoshimori, T.; Tooze, S.A. The autophagosome: Origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol., 2013, 14(12), 759-774.
[133]
Tomic, T.; Botton, T.; Cerezo, M.; Robert, G.; Luciano, F.; Puissant, A.; Gounon, P.; Allegra, M.; Bertolotto, C.; Bereder, J.M.; Tartare-Deckert, S.; Bahadoran, P.; Auberger, P.; Ballotti, R.; Rocchi, S. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis., 2011, 2.
[134]
Kalender, A.; Selvaraj, A.; Kim, S.Y.; Gulati, P.; Brule, S.; Viollet, B.; Kemp, B.E.; Bardeesy, N.; Dennis, P.; Schlager, J.J.; Marette, A.; Kozma, S.C.; Thomas, G. Metformin, Independent of AMPK, Inhibits mTORC1 in a Rag GTPase-Dependent Manner. Cell Metab., 2010, 11(5), 390-401.
[135]
Fang, Y.M.; Westbrook, R.; Hill, C.; Boparai, R.K.; Arum, O.; Spong, A.; Wang, F.Y.; Javors, M.A.; Chen, J.; Sun, L.Y.; Bartke, A. Duration of rapamycin treatment has differential effects on metabolism in mice. Cell Metab., 2013, 17(3), 456-462.
[136]
Kim, K.H.; Jeong, Y.T.; Oh, H.; Kim, S.H.; Cho, J.M.; Kim, Y.N.; Kim, S.S.; Kim, D.H.; Hur, K.Y.; Kim, H.K.; Ko, T.; Han, J.; Kim, H.L.; Kim, J.; Back, S.H.; Komatsu, M.; Chen, H.C.; Chan, D.C.; Konishi, M.; Itoh, N.; Choi, C.S.; Lee, M.S. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med., 2013, 19(1), 83-92.
[137]
Inoki, K.; Zhu, T.; Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell, 2003, 115(5), 577-590.
[138]
Miyazaki, M.; McCarthy, J.J.; Esser, K.A. Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes. FEBS J., 2010, 277(9), 2180-2191.
[139]
Liu, Z.; Li, X.; Simoneau, A.R.; Jafari, M.; Zi, X. Rhodiola rosea extracts and salidroside decrease the growth of bladder cancer cell lines via inhibition of the mTOR pathway and induction of autophagy. Mol. Carcinog., 2012, 51(3), 257-267.
[140]
Mizushima, N.; Yoshimori, T. How to interpret LC3 immunoblotting. Autophagy, 2007, 3(6), 542-545.
[141]
Torello, C.O.; Joao, M-N.; Karla, P.V.; Maso, V.; Calgarotto, A.; Franchi-Junior, G.C.; Lazarini, M.; Queiroz, M.L.S.; Teresinha, S. Rhodiola Rosea extract reduces autophagy in acute myeloid leukemia transformed from myelodysplastic syndromes tumor xenograft model. Blood, 2013, 122(21), 1.
[142]
Galluzzi, L.; Aaronson, S.A.; Abrams, J.; Alnemri, E.S.; Andrews, D.W.; Baehrecke, E.H.; Bazan, N.G.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Bredesen, D.E.; Brenner, C.; Castedo, M.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; De Laurenzi, V.; De Maria, R.; Deshmukh, M.; Dynlacht, B.D.; El-Deiry, W.S.; Flavell, R.A.; Fulda, S.; Garrido, C.; Golstein, P.; Gougeon, M.L.; Green, D.R.; Gronemeyer, H.; Hajnoczky, G.; Hardwick, J.M.; Hengartner, M.O.; Ichijo, H.; Jaattela, M.; Kepp, O.; Kimchi, A.; Klionsky, D.J.; Knight, R.A.; Kornbluth, S.; Kumar, S.; Levine, B.; Lipton, S.A.; Lugli, E.; Madeo, F.; Malorni, W.; Marine, J.C.W.; Martin, S.J.; Medema, J.P.; Mehlen, P.; Melino, G.; Moll, U.M.; Morselli, E.; Nagata, S.; Nicholson, D.W.; Nicotera, P.; Nunez, G.; Oren, M.; Penninger, J.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Scorrano, L.; Simon, H.U.; Steller, H.; Tschopp, J.; Tsujimoto, Y.; Vandenabeele, P.; Vitale, I.; Vousden, K.H.; Youle, R.J.; Yuan, J.; Zhivotovsky, B.; Kroemer, G. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ., 2009, 16(8), 1093-1107.
[143]
Majewska, A.; Mirosława, F.; Natalia, U.; Agnieszka, P.; Alicja, Z.; Kuraś, M. Antiproliferative and antimitotic effect, S phase accumulation and induction of apoptosis and necrosis after treatment of extract from Rhodiola rosea rhizomes on HL-60 cells. J. Ethnopharmacol., 2006, 103(1), 43-52.
[144]
Tu, Y.; Roberts, L.; Shetty, K.; Schneider, S.S. Rhodiola crenulata induces death and inhibits growth of breast cancer cell lines. J. Med. Food, 2008, 11(3), 413-423.
[145]
Hu, X.; Zhang, X.; Qiu, S.; Yu, D.; Lin, S. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells. Biochem. Biophys. Res. Commun., 2010, 398(1), 62-67.
[146]
Zhang, L.; Yu, H.; Sun, Y.; Lin, X.; Chen, B.; Tan, C.; Cao, G.; Wang, Z. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur. J. Pharmacol., 2007, 564(1), 18-25.
[147]
Cai, L.; Wang, H.; Li, Q.; Qian, Y.; Yao, W. Salidroside inhibits H2O2‐induced apoptosis in PC 12 cells by preventing cytochrome c release and inactivating of caspase cascade. Acta Biochim. Biophys. Sin., 2008, 40(9), 796-802.
[148]
Chen, X.; Zhang, Q.; Cheng, Q.; Ding, F. Protective effect of salidroside against H2O2-induced cell apoptosis in primary culture of rat hippocampal neurons. Mol. Cell. Biochem., 2009, 332(1-2), 85-93.
[149]
Qu, Z-q.; Zhou, Y.; Zeng, Y-s.; Lin, Y-k.; Li, Y.; Zhong, Z-q.; Chan, W.Y. Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. PLoS One, 2012, 7e29641
[150]
Palumbo, D.R.; Occhiuto, F.; Spadaro, F.; Circosta, C. Rhodiola rosea extract protects human cortical neurons against glutamate and hydrogen peroxide-induced cell death through reduction in the accumulation of intracellular calcium. Phytother. Res., 2012, 26(6), 878-883.
[151]
Chen, X.; Liu, J.; Gu, X.; Ding, F. Salidroside attenuates glutamate-induced apoptotic cell death in primary cultured hippocampal neurons of rats. Brain Res., 2008, 1238, 189-198.
[152]
Qian, E.W.; Ge, D.T.; Kong, S-K. Salidroside protects human erythrocytes against hydrogen peroxide-induced apoptosis. J. Nat. Prod., 2012, 75(4), 531-537.
[153]
Liu, M-W.; Su, M-X.; Zhang, W.; Zhang, L-M.; Wang, Y-H.; Qian, C-Y. Rhodiola rosea suppresses thymus T-lymphocyte apoptosis by downregulating tumor necrosis factor-α-induced protein 8-like-2 in septic rats. Int. J. Mol. Med., 2015, 36(2), 386-398.
[154]
Palumbo, D.R.; Occhiuto, F.; Spadaro, F.; Circosta, C. Rhodiola rosea extract protects human cortical neurons against glutamate and hydrogen peroxide-induced cell death through reduction in the accumulation of intracellular calcium. Phytother. Res., 2012, 26(6), 878-883.
[155]
Uyeturk, U.; Terzi, E.H.; Kemahli, E.; Gucuk, A.; Tosun, M.; Cetinkaya, A. Alleviation of kidney damage induced by unilateral ureter obstruction in rats by Rhodiola rosea. J. Endourol., 2013, 27(10), 1272-1276.
[156]
Tan, C.B.; Gao, M.; Xu, W.R.; Yang, X.Y.; Zhu, X.M.; Du, G.H. Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride. Biol. Pharm. Bull., 2009, 32(8), 1359-1363.
[157]
Sun, L.; Isaak, C.K.; Zhou, Y.; Petkau, J.C.; Karmin, O.; Liu, Y.; Siow, Y.L. Salidroside and tyrosol from Rhodiola protect H9c2 cells from ischemia/reperfusion-induced apoptosis. Life Sci., 2012, 91(5), 151-158.
[158]
Lai, M.C.; Lin, J.G.; Pai, P.Y.; Lai, M.H.; Lin, Y.M.; Yeh, Y.L.; Cheng, S.M.; Liu, Y.F.; Huang, C.Y.; Lee, S.D. Protective effect of salidroside on cardiac apoptosis in mice with chronic intermittent hypoxia. Int. J. Cardiol., 2014, 174(3), 565-573.
[159]
Zhong, H.; Xin, H.; Wu, L.X.; Zhu, Y.Z. Salidroside attenuates apoptosis in ischemic cardiomyocytes: A mechanism through a mitochondria-dependent pathway. J. Pharmacol. Sci., 2010, 114(4), 399-408.
[160]
Tang, Y.; Vater, C.; Jacobi, A.; Liebers, C.; Zou, X.; Stiehler, M. Salidroside exerts angiogenic and cytoprotective effects on human bone marrow-derived endothelial progenitor cells via Akt/mTOR/ p70S6K and MAPK signalling pathways. Br. J. Pharmacol., 2014, 171(9), 2440-2456.
[161]
Zhang, L.; Yu, H.; Sun, Y.; Lin, X.; Chen, B.; Tan, C.; Cao, G.; Wang, Z. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur. J. Pharmacol., 2007, 564(1-3), 18-25.
[162]
Zhao, C-h.; Zhu, Z-h.; Wang, Y-l.; Reiser, G.; Tang, L. Protection of salidroside on primary astrocytes from cell death by attenuating oxidative stress. Chin. Herb. Med., 2015, 7(4), 303-309.
[163]
Chen, X.; Liu, J.; Gu, X.; Ding, F. Salidroside attenuates glutamate-induced apoptotic cell death in primary cultured hippocampal neurons of rats. Brain Res., 2008, 1238(1), 189-198.
[164]
Huang, X.; Zou, L.; Yu, X.; Chen, M.; Guo, R.; Cai, H.; Yao, D.; Xu, X.; Chen, Y.; Ding, C.; Cai, X.; Wang, L. Salidroside attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2a receptor related mitochondria-dependent apoptosis pathway. J. Mol. Cell. Cardiol., 2015, 82(1), 153-166.
[165]
Van Vre, E.A.; Ait-Oufella, H.; Tedgui, A.; Mallat, Z. Apoptotic cell death and efferocytosis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(4), 887-893.
[166]
Kockx, M.M.; Herman, A.G. Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc. Res., 2000, 45(3), 736-746.
[167]
Marino, G.; Niso-Santano, M.; Baehrecke, E.H.; Kroemer, G. Self-consumption: The interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2014, 15(2), 81-94.
[168]
Zhang, S.; Shang, G.; Li, Z.; Wang, A.; Cai, M. A new approach to synthesis of solidroside. Chin. J. Med. Chem., 1997, 48(16), 2881-2885.
[169]
Li, Y.; Kang, Y.; Qi, C.; Ji, Z. Synthesis of 2-(N-arylaminomethyl)-5-(E) Pentylidene cyclopentanoe derivatives and studies on their antiinflammatory activity. Chin. J. Med. Chem., 1996, 6(1), 136-138.
[170]
Troshchenko, A.T.; Yuodvirshis, A.M. Synthesis of glycosides of 2-(p-hydroxyphenyl)ethanol(tyrosol). Chem. Nat. Compd., 1969, 5(4), 217-220.
[171]
Shi, T.; Chen, H.; Jing, L.; Liu, X.; Sun, X.; Jiang, R. Development of a kilogram-scale synthesis of salidroside and its analogs. Synth. Commun., 2010, 41(17), 2594-2600.
[172]
Potocká, E.; Mastihubová, M.; Mastihuba, V. Enzymatic synthesis of tyrosol glycosides. J. Mol. Catal., B Enzym., 2015, 113, 23-28.
[173]
Zhao, Y.; Ling, Y.; Zhao, J.; Yuan, Y.; Guo, Y.; Liu, Q.; Wu, B.; Ding, Z.; Yang, Y. Synthesis and protective effects of novel salidroside analogues on glucose and serum depletion induced apoptosis in PC12 cells. Arch. Pharm. (Weinheim), 2013, 346(4), 300-307.
[174]
Guo, Y.; Zheng, C.; Xu, W.; Si, Y.; Dou, S.; Yang, Y. Free radical scavenging and hepatoprotective effects of salidroside analogs on CCl 4 -induced cytotoxicity in LO2 cells. Med. Chem. Res., 2013, 22(5), 2524-2530.