Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Multilayered Nanostructure for Inducing a Large and Tunable Optical Field

Author(s): Jyoti Katyal*

Volume 10, Issue 6, 2020

Page: [840 - 848] Pages: 9

DOI: 10.2174/2210681209666190828201612

Price: $65

Abstract

Objective: The localized surface plasmon resonance (LSPR) and field enhancement of multilayered nanostructure over single and dimer configuration is studied using finite difference time domain (FDTD) method.

Experimental: In multilayered nanostructure, there exist concentric nanoshells and metallic core which are separated by a dielectric layer. Strong couplings between the core and nanoshell plasmon resonance modes show a shift in LSPR and enhancement in field around nanostructure. The calculation of the electric field enhancement shows a sharp increase in the electric field on the surface of inner core i.e., inside the dielectric layer of Metal-Dielectric-Metal (MDM) structure whereas smaller enhancement on the outer layer of MDM structure is observed.

Results: The Au-Air-Au mono MDM nanostructure shows strong near-field enhancement as compared to bare nanosphere in the infrared region, which have potential applications in surfaceenhanced spectroscopy, whereas Al-Air-Al and Ag-Air-Ag shows potential towards lower wavelength region. On coupling the MDM nanostructure forming a dimer configuration the field enhancement factor increases to 10^8.

Conclusion: As compared to other nanostructures, MDM nanostructure provides both strong field enhancement and wide wavelength tunability therefore promising for surface enhanced Raman spectroscopy (SERS) applications.

Keywords: Multilayered nanostructure, field enhancement, localized surface plasmon resonance, FDTD, MDM, nanoshell plasmon resonance.

Graphical Abstract

[1]
Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment. J. Phys. Chem. B, 2003, 107, 668-677.
[http://dx.doi.org/10.1021/jp026731y]
[2]
Kreibig, U.; Fragstein, C.V. The limitation of electron mean free path in small silver particles. Z. Phys., 1969, 224, 307-323.
[http://dx.doi.org/10.1007/BF01393059]
[3]
Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758), 189-193.
[http://dx.doi.org/10.1126/science.1114849] [PMID: 16410515]
[4]
Haynes, C.L.; McFarland, A.D.; Van Duyne, R.P. Surface enhanced Raman spectroscopy. Anal. Chem., 2005, 77, 338A-346A.
[http://dx.doi.org/10.1021/ac053456d]
[5]
Catchpole, K.R.; Polman, A. Plasmonic solar cells. Opt. Express, 2008, 16(26), 21793-21800.
[http://dx.doi.org/10.1364/OE.16.021793] [PMID: 19104612]
[6]
Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801), 977-980.
[http://dx.doi.org/10.1126/science.1133628] [PMID: 17053110]
[7]
Pissuwan, D.; Valenzuela, S.M.; Miller, C.M.; Cortie, M.B. A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods. Nano Lett., 2007, 7(12), 3808-3812.
[http://dx.doi.org/10.1021/nl072377+] [PMID: 18034505]
[8]
Bohren, C.F.; Huffman, D.R. Absorption and scattering of light by small particles; Wiley Interscience Publication: USA, 1998.
[9]
Schärtl, W. Current directions in core-shell nanoparticle design. Nanoscale, 2010, 2(6), 829-843.
[http://dx.doi.org/10.1039/c0nr00028k] [PMID: 20644772]
[10]
Large, N.; Aizpurua, J.; Lin, V.K.; Teo, S.L.; Marty, R.; Tripathy, S.; Mlayah, A. Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter. Opt. Express, 2011, 19(6), 5587-5595.
[http://dx.doi.org/10.1364/OE.19.005587] [PMID: 21445198]
[11]
Genç, A.; Patarroyo, J.; Sancho-Parramon, J.; Bastús, N.G.; Puntes, V.; Arbiol, J. Hollow metal nanostructures for enhanced plasmonics: Synthesis, local plasmonic properties and applications. Nanophotonics, 2016, 6, 196-213.
[http://dx.doi.org/10.1515/nanoph-2016-0124]
[12]
Yoon, K.H.; Shuler, M.L.; Kim, S.J. Design optimization of nano-grating surface plasmon resonance sensors. Opt. Express, 2006, 14(11), 4842-4849.
[http://dx.doi.org/10.1364/OE.14.004842] [PMID: 19516642]
[13]
Kim, S.Y.; Nunns, A.; Gwyther, J.; Davis, R.L.; Manners, I.; Chaikin, P.M.; Register, R.A. Large-area nanosquare arrays from shear-aligned block copolymer thin films. Nano Lett., 2014, 14(10), 5698-5705.
[http://dx.doi.org/10.1021/nl502416b] [PMID: 25211306]
[14]
Yang, A.; Hoang, T.B.; Dridi, M.; Deeb, C.; Mikkelsen, M.H.; Schatz, G.C.; Odom, T.W. Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun., 2015, 6, 6939.
[http://dx.doi.org/10.1038/ncomms7939] [PMID: 25891212]
[15]
Anandan, V.; Rao, Y.L.; Zhang, G. Nanopillar array structures for enhancing biosensing performance. Int. J. Nanomedicine, 2006, 1(1), 73-79.
[http://dx.doi.org/10.2147/nano.2006.1.1.73] [PMID: 17722264]
[16]
Najiminaini, M.; Vasefi, F.; Kaminska, B.; Carson, J.J. Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer. Opt. Express, 2011, 19(27), 26186-26197.
[http://dx.doi.org/10.1364/OE.19.026186] [PMID: 22274205]
[17]
Radloff, C.; Halas, N.J. Plasmonic properties of concentric nanoshells. Nano Lett., 2004, 4, 1323-1327.
[http://dx.doi.org/10.1021/nl049597x]
[18]
Prodan, E.; Radloff, C.; Halas, N.J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science, 2003, 302(5644), 419-422.
[http://dx.doi.org/10.1126/science.1089171] [PMID: 14564001]
[19]
Wu, D.; Liu, X. Tunable near-infrared optical properties of three-layered gold-silica-gold nanoparticles. Appl. Phys. B, 2009, 97, 193-206.
[http://dx.doi.org/10.1007/s00340-009-3432-0]
[20]
Peña-Rodríguez, O.; Pal, U. Geometrical tunability of linear optical response of silica-gold double concentric nanoshells. J. Phys. Chem. C, 2010, 114, 4414-4417.
[http://dx.doi.org/10.1021/jp1001034]
[21]
Dahal, P.; Chou, J.; Wang, Y.; Kim, S.G.; Viegas, J. Comparative study of multilayered nanostructures for enhanced solar optical absorption. Nanomaterials and Synthesis, 2016, 1, 839-845.
[http://dx.doi.org/10.1557/adv.2016.7]
[22]
Peña-Rodríguez, O.; Pal, U. Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres. Nanoscale Res. Lett., 2011, 6(1), 279.
[http://dx.doi.org/10.1186/1556-276X-6-279] [PMID: 21711793]
[23]
Katyal, J.; Soni, R.K. Localized surface plasmon resonances and refractive index sensitivity of metal-dielectric-metal multilayered nanostructures. Plasmonic, 2014, 9, 1171-1181.
[http://dx.doi.org/10.1007/s11468-014-9728-x]
[25]
Taflove, A.; Hagness, S.C. Computational electrodynamics: the finite-difference time-domain method; Artec House Publishers: Boston, MA, 2005.
[26]
Tanabe, K. Field enhancement around metal nanoparticles and nanoshells: A systematic investigation. J. Phys. Chem. C, 2008, 112, 15721-15728.
[http://dx.doi.org/10.1021/jp8060009]
[27]
Liu, C.; Mi, C.C.; Li, B.Q. The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications. IEEE Trans. NanoTechnol., 2011, 10, 797-805.
[http://dx.doi.org/10.1109/TNANO.2010.2079943]
[28]
Huo, Y.; Jia, T.; Zhang, Y.; Zhao, H.; Zhang, S.; Feng, D.; Sun, Z. Narrow and deep fano resonances in a rod and concentric square ring-disk nanostructures. Sensors (Basel), 2013, 13(9), 11350-11361.
[http://dx.doi.org/10.3390/s130911350] [PMID: 24064596]
[29]
Kall, M.; Xu, H.; Johansson, P. Field enhancement and molecular response in surface enhanced Raman scattering and fluorescence spectroscopy. J. Raman Spectrosc., 2005, 36, 510-514.
[http://dx.doi.org/10.1002/jrs.1357]
[30]
Søndergaard, T.; Bozhevolnyi, S.I.; Beermann, J.; Novikov, S.M.; Devaux, E.; Ebbesen, T.W. Resonant plasmon nanofocusing by closed tapered gaps. Nano Lett., 2010, 10(1), 291-295.
[http://dx.doi.org/10.1021/nl903563e] [PMID: 20028028]
[31]
Shalin, A.S.; Sukhov, S.V.; Krasnok, A.E.; Nikitov, S.A. Plasmonic nanostructures for local field enhancement in the UV region. Photon. Nanostruct. Fundament. Appl., 2014, 12, 2-8.
[32]
Katyal, J.; Soni, R.K. Field enhancement around Al nanostructures in UV-NIR region. Plasmonic, 2015, 10, 1729-1740.
[http://dx.doi.org/10.1007/s11468-015-9991-5]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy