Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Blood Brain Barrier Permeability Prediction Using Machine Learning Techniques: An Update

Author(s): Deeksha Saxena, Anju Sharma, Mohammed H. Siddiqui and Rajnish Kumar*

Volume 20, Issue 14, 2019

Page: [1163 - 1171] Pages: 9

DOI: 10.2174/1389201020666190821145346

Price: $65

Abstract

Blood Brain Barrier (BBB) is the collection of vessels of blood with special properties of permeability that allow a limited range of drug and compounds to pass through it. The BBB plays a vital role in maintaining balance between intracellular and extracellular environment for brain. Brain Capillary Endothelial Cells (BECs) act as vehicle for transport and the transport mechanisms across BBB involve active and passive diffusion of compounds. Efficient prediction models of BBB permeability can be vital at the preliminary stages of drug development. There have been persistent efforts in identifying the prediction of BBB permeability of compounds employing multiple machine learning methods in an attempt to minimize the attrition rate of drug candidates taking up preclinical and clinical trials. However, there is an urgent need to review the progress of such machine learning derived prediction models in the prediction of BBB permeability. In the current article, we have analyzed the recently developed prediction model for BBB permeability using machine learning.

Keywords: Blood brain barrier, machine learning, model, permeability, prediction, central nervous system.

Graphical Abstract

[1]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1)a020412
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[2]
Abbott, N.J.; Friedman, A. Overview and introduction: The bloodbrain barrier in health and disease. Epilepsia, 2012, 53(6), 1-6.
[3]
Sharif, Y.; Jumah, F.; Coplan, L.; Krosser, A.; Sharif, K.; Tubbs, R.S. The blood brain barrier: A review of its anatomy and physiology in health and disease. Clin. Anat., 2018, 31(6), 812-823.
[4]
Keaney, J.; Campbell, M. The dynamic blood-brain barrier. FEBS J., 2015, 282(21), 4067-4079.
[http://dx.doi.org/10.1111/febs.13412] [PMID: 26277326]
[5]
Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[6]
Hawkins, R.A.; O’Kane, R.L.; Simpson, I.A.; Viña, J.R. Structure of the blood-brain barrier and its role in the transport of amino acids. J. Nutr., 2006, 136(1), 218-226.
[7]
Abbott, N.J. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J. Inherit. Metab. Dis., 2013, 36(3), 437-449.
[8]
Haddad-Tóvolli, R.; Dragano, N.R.V.; Ramalho, A.F.S.; Velloso, L.A. development and function of the blood-brain barrier in the context of metabolic control. Front. Neurosci., 2017, 11, 224.
[9]
Obermeier, B.; Daneman, R.; Ransohoff, R.M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med., 2013, 19(12), 1584-1596.
[http://dx.doi.org/10.1038/nm.3407] [PMID: 24309662]
[10]
Chow, B.W.; Gu, C. The molecular constituents of the blood-brain barrier. Trends Neurosci., 2015, 38(10), 598-608.
[http://dx.doi.org/10.1016/j.tins.2015.08.003] [PMID: 26442694]
[11]
Banks, W.A.; Jaspan, J.B.; Kastin, A.J. Effect of diabetes mellitus on the permeability of the blood-brain barrier to insulin. Peptides, 1997, 18(10), 1577-1584.
[http://dx.doi.org/10.1016/S0196-9781(97)00238-6] [PMID: 9437719]
[12]
Peterson, D.; Barrier, R.B-B. Blood-Brain Barrier.In: eLS. , John Wiley & Sons Ltd, Chichester . 2012.http://www.els.net
[13]
Persidsky, Y.; Ramirez, S.H.; Haorah, J.; Kanmogne, G.D. Blood-brain barrier: Structural components and function under physiologic and pathologic conditions. J. Neuroimmune Pharmacol., 2006, 1(3), 223-236.
[http://dx.doi.org/10.1007/s11481-006-9025-3] [PMID: 18040800]
[14]
Kumar, R.; Sharma, A.; Tiwari, R.K. Can we predict blood brain barrier permeability of ligands using computational approaches? Interdiscip. Sci., 2013, 5(2), 95-101.
[http://dx.doi.org/10.1007/s12539-013-0158-9] [PMID: 23740390]
[15]
Zlokovic, B.V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 2008, 57(2), 178-201.
[http://dx.doi.org/10.1016/j.neuron.2008.01.003]
[16]
Kumar, R.; Sharma, A.; Siddiqui, M.H.; Tiwari, R.K. Prediction of metabolism of drugs using artificial intelligence: How far have we reached? Curr. Drug Metab., 2016, 17(2), 129-141.
[http://dx.doi.org/10.2174/1389200216666151103121352] [PMID: 26526829]
[17]
Shankar, P.; Lakhani, P.; Singh, D.K.; Tutu, S.; Sankhawar, S.N.; Sachan, A.K.; Dixit, R.K. Computational prediction of blood brain partitioning of drugs. Int. J. Pharm. Sci. Res., 2017, 8(1), 339-341.
[18]
Liu, H.; Dong, K.; Zhang, W.; Summerfield, S.G.; Terstappen, G.C. Prediction of brain: Blood unbound concentration ratios in CNS drug discovery employing in silico and in vitro model systems. Drug Discov. Today, 2018, 23(7), 1357-1372.
[http://dx.doi.org/10.1016/j.drudis.2018.03.002] [PMID: 29548981]
[19]
Saunders, N.R.; Habgood, M.D.; Møllgård, K.; Dziegielewska, K.M. The biological significance of brain barrier mechanisms: Help or hindrance in drug delivery to the central nervous system? F1000Res., 2016.5, pii: F1000 Faculty Rev-313..
[http://dx.doi.org/10.12688/f1000research.7378.1]
[20]
Toropov, A.A.; Toropova, A.P.; Beeg, M.; Gobbi, M.; Salmona, M. QSAR model for blood-brain barrier permeation. J. Pharmacol. Toxicol. Methods, 2017, 88(Pt 1), 7-18.
[http://dx.doi.org/10.1016/j.vascn.2017.04.014] [PMID: 28476566]
[21]
Kumar, R.; Sharma, A.; Siddiqui, M.H.; Tiwari, R.K. Prediction of human intestinal absorption of compounds using artificial intelligence techniques. Curr. Drug Discov. Technol., 2017, 14(4), 244-254.
[http://dx.doi.org/10.2174/1570163814666170404160911] [PMID: 28382857]
[22]
Kumar, R.; Sharma, A.; Varadwaj, P.; Ahmad, A.; Ashraf, G.M. Classification of oral bioavailability of drugs by machine learning approaches: A comparative study. J. Comput. Interdiscip. Sci., 2011, 2(9), 1-18.
[23]
Kumar, R.; Sharma, A.; Siddiqui, M.H.; Tiwari, R.K. Promises of machine learning approaches in prediction of absorption of compounds. Mini Rev. Med. Chem., 2018, 18(3), 196-207.
[http://dx.doi.org/10.2174/1389557517666170315150116] [PMID: 28302041]
[24]
Vapnik, V.N.; Vapnik, V. Statistical Learning Theory; Wiley, 1998.
[25]
Poorinmohammad, N.; Mohabatkar, H.; Behbahani, M.; Biria, D. Computational prediction of anti HIV-1 peptides and in vitro evaluation of anti HIV-1 activity of HIV-1 P24-derived peptides. J. Pept. Sci., 2015, 21(1), 10-16.
[http://dx.doi.org/10.1002/psc.2712] [PMID: 25407510]
[26]
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20, 273-297.
[http://dx.doi.org/10.1007/BF00994018]
[27]
Berhane, T.M.; Lane, C.R.; Wu, Q.; Autrey, B.C.; Anenkhonov, O.A.; Chepinoga, V.V.; Liu, H. Decision-tree, rule-based, and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory. Remote Sens., (Basel), 2018, 10(4), 580.
[http://dx.doi.org/10.3390/rs10040580] [PMID: 30147945]
[28]
Zhang, Z. Too much covariates in a multivariable model may cause the problem of overfitting. J. Thorac. Dis., 2014, 6(9), E196-E197.
[PMID: 25276398]
[29]
Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med., 2016, 4(11), 218.
[http://dx.doi.org/10.21037/atm.2016.03.37] [PMID: 27386492]
[30]
Lantz, B. Machine Learning with R, 2nd ed; Packt Publishing: Birmingham, 2015, p. 1.
[31]
Duarte, K.; Monnez, J.M.; Albuisson, E. Sequential linear regression with online standardized data. PLoS One, 2018, 13(1)e0191186
[http://dx.doi.org/10.1371/journal.pone.0191186] [PMID: 29346392]
[32]
Lihvantseva, V.G.; Afanasev, M.S.; Rudenko, E.A.; Karaulov, A.V.; Afanasev, S.S.; Korosteleva, E.V.; Vygodin, V.A. Prediction of activity and severity of endocrine ophthalmopathy by multidimensional linear regression modeling. Vestn. Oftalmol., 2018, 134(2), 23-31.
[http://dx.doi.org/10.17116/oftalma2018134223-30] [PMID: 29771881]
[33]
Belhumeur, P.N. Eigenfaces vs: Fisherfaces: Recognition using class specific linear projection. Eur. Conf. Comput. Vis., 1996, 19, 45-58.
[http://dx.doi.org/10.1007/BFb0015522]
[34]
Langarizadeh, M.; Moghbeli, F. Applying naive bayesian networks to disease prediction: A systematic review. Acta Inform. Med., 2016, 24(5), 364-369.
[http://dx.doi.org/10.5455/aim.2016.24.364-369] [PMID: 28077895]
[35]
Plisson, F.; Piggott, A.M. Predicting blood brain barrier permeability of marine-derived kinase inhibitors using ensemble classifiers reveals potential hits for neurodegenerative disorders. Mar. Drugs, 2019, 17(2)E81
[http://dx.doi.org/10.3390/md17020081] [PMID: 30699889]
[36]
Wang, Z.; Yang, H.; Wu, Z.; Wang, T.; Li, W.; Tang, Y.; Liu, G. In silico prediction of blood-brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem, 2018, 13(20), 2189-2201.
[http://dx.doi.org/10.1002/cmdc.201800533] [PMID: 30110511]
[37]
Yuan, Y.; Zheng, F.; Zhan, C.G. Improved prediction of blood-brain barrier permeability through machine learning with combined use of molecular property-based descriptors and fingerprints. AAPS J., 2018, 20(3), 54.
[http://dx.doi.org/10.1208/s12248-018-0215-8] [PMID: 29564576]
[38]
Fan, J.; Yang, J.; Jiang, Z. Prediction of central nervous system side effects through drug permeability to blood-brain barrier and recommendation algorithm. J. Comput. Biol., 2018, 25(4), 435-443.
[http://dx.doi.org/10.1089/cmb.2017.0149] [PMID: 29058464]
[39]
Zhang, X.; Liu, T.; Fan, X.; Ai, N. In silico modeling on ADME properties of natural products: Classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation. J. Mol. Graph. Model., 2017, 75, 347-354.
[http://dx.doi.org/10.1016/j.jmgm.2017.05.021] [PMID: 28628860]
[40]
Castillo-Garit, J.A.; Casanola-Martin, G.M.; Le-Thi-Thu, H.; Pham-The, H.; Barigye, S.J. A simple method to predict blood-brain barrier permeability of drug- like compounds using classification trees. Med. Chem., 2017, 13(7), 664-669.
[http://dx.doi.org/10.2174/1573406413666170209124302] [PMID: 28185535]
[41]
Gao, Z.; Chen, Y.; Cai, X.; Xu, R. Predict drug permeability to blood-brain-barrier from clinical phenotypes: drug side effects and drug indications. Bioinformatics, 2017, 33(6), 901-908.
[PMID: 27993785]
[42]
Dixon, S.L.; Duan, J.; Smith, E.; Von Bargen, C.D.; Sherman, W.; Repasky, M.P. AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling. Future Med. Chem., 2016, 8(15), 1825-1839.
[http://dx.doi.org/10.4155/fmc-2016-0093] [PMID: 27643715]
[43]
Jiang, L.; Chen, J.; He, Y.; Zhang, Y.; Li, G. A method to predict different mechanisms for blood-brain barrier permeability of CNS activity compounds in Chinese herbs using support vector machine. J. Bioinform. Comput. Biol., 2016, 14(1)1650005
[http://dx.doi.org/10.1142/S0219720016500050] [PMID: 26632324]
[44]
Zhang, D.; Xiao, J.; Zhou, N.; Zheng, M.; Luo, X.; Jiang, H.; Chen, K. A genetic algorithm based support vector machine model for blood-brain barrier penetration prediction. BioMed Res. Int., 2015.2015292683
[http://dx.doi.org/10.1155/2015/292683] [PMID: 26504797]
[45]
Brito-Sánchez, Y.; Marrero-Ponce, Y.; Barigye, S.J.; Yaber-Goenaga, I.; Morell Pérez, C.; Le-Thi-Thu, H.; Cherkasov, A. Towards better BBB passage prediction using an extensive and curated data set. Mol. Inform., 2015, 34(5), 308-330.
[http://dx.doi.org/10.1002/minf.201400118] [PMID: 27490276]
[46]
Kunwittaya, S.; Nantasenamat, C.; Treeratanapiboon, L. Srisarin, Apapan.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, V. Influence of log BB cut-off on the prediction of blood-brain barrier permeability. Biomed. Appl. Technol. J., 2013, 1, 16-34.
[47]
Yan, A.; Liang, H.; Chong, Y.; Nie, X.; Yu, C. In-silico prediction of blood-brain barrier permeability. SAR QSAR Environ. Res., 2013, 24(1), 61-74.
[http://dx.doi.org/10.1080/1062936X.2012.729224] [PMID: 23092117]
[48]
Martins, I.F.; Teixeira, A.L.; Pinheiro, L.; Falcao, A.O. A Bayesian approach to in silico blood-brain barrier penetration modeling. J. Chem. Inf. Model., 2012, 52(6), 1686-1697.
[http://dx.doi.org/10.1021/ci300124c] [PMID: 22612593]
[49]
Fan, Y.; Unwalla, R.; Denny, R.A.; Di, L.; Kerns, E.H.; Diller, D.J.; Humblet, C. Insights for predicting blood-brain barrier penetration of CNS targeted molecules using QSPR approaches. J. Chem. Inf. Model., 2010, 50(6), 1123-1133.
[http://dx.doi.org/10.1021/ci900384c] [PMID: 20578728]
[50]
Lanevskij, K.; Japertas, P.; Didziapetris, R.; Petrauskas, A. Ionization-specific prediction of blood-brain permeability. J. Pharm. Sci., 2009, 98(1), 122-134.
[http://dx.doi.org/10.1002/jps.21405] [PMID: 18481317]
[51]
Zhang, L.; Zhu, H.; Oprea, T.I.; Golbraikh, A.; Tropsha, A. QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Pharm. Res., 2008, 25(8), 1902-1914.
[http://dx.doi.org/10.1007/s11095-008-9609-0] [PMID: 18553217]
[52]
Kortagere, S.; Chekmarev, D.; Welsh, W.J.; Ekins, S. New predictive models for blood-brain barrier permeability of drug-like molecules. Pharm. Res., 2008, 25(8), 1836-1845.
[http://dx.doi.org/10.1007/s11095-008-9584-5] [PMID: 18415049]
[53]
Hemmateenejad, B.; Miri, R.; Safarpour, M.A.; Mehdipour, A.R. Accurate prediction of the blood-brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling. J. Comput. Chem., 2006, 27(11), 1125-1135.
[http://dx.doi.org/10.1002/jcc.20437] [PMID: 16721721]
[54]
Ma, X.L.; Chen, C.; Yang, J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol. Sin., 2005, 26(4), 500-512.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00068.x] [PMID: 15780201]
[55]
Winkler, D.A.; Burden, F.R. Modelling blood-brain barrier partitioning using Bayesian neural nets. J. Mol. Graph. Model., 2004, 22(6), 499-505.
[http://dx.doi.org/10.1016/j.jmgm.2004.03.010] [PMID: 15182809]
[56]
Subramanian, G.; Kitchen, D.B. Computational models to predict blood-brain barrier permeation and CNS activity. J. Comput. Aided Mol. Des., 2003, 17(10), 643-664.
[http://dx.doi.org/10.1023/B:JCAM.0000017372.32162.37] [PMID: 15068364]
[57]
Doniger, S.; Hofmann, T.; Yeh, J. Predicting CNS permeability of drug molecules: Comparison of neural network and support vector machine algorithms. J. Comput. Biol., 2002, 9(6), 849-864.
[http://dx.doi.org/10.1089/10665270260518317] [PMID: 12614551]
[58]
Platts, J.A.; Abraham, M.H.; Zhao, Y.H.; Hersey, A.; Ijaz, L.; Butina, D. Correlation and prediction of a large blood-brain distribution data set-an LFER study. Eur. J. Med. Chem., 2001, 36(9), 719-730.
[http://dx.doi.org/10.1016/S0223-5234(01)01269-7] [PMID: 11672881]
[59]
Miškovic, V. Machine Learning of Hybrid Classification Models for Decision Support; SINTEZA, 2014.
[60]
Shaikh, N.; Sharma, M.; Garg, P. Selective fusion of heterogeneous classifiers for predicting substrates of membrane transporters. J. Chem. Inf. Model., 2017, 57(3), 594-607.
[http://dx.doi.org/10.1021/acs.jcim.6b00508] [PMID: 28228010]
[61]
Ciura, K.; Belka, M.; Kawczak, P.; Bączek, T.; Markuszewski, M.J.; Nowakowska, J. Combined computational-experimental approach to predict blood-brain barrier (BBB) permeation based on “green” salting-out thin layer chromatography supported by simple molecular descriptors. J. Pharm. Biomed. Anal., 2017, 143, 214-221.
[http://dx.doi.org/10.1016/j.jpba.2017.05.041] [PMID: 28641198]
[62]
Zhang, Y.Y.; Liu, H.; Summerfield, S.G.; Luscombe, C.N.; Sahi, J. Integrating in silico and in vitro approaches to predict drug accessibility to the central nervous system. Mol. Pharm., 2016, 13(5), 1540-1550.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00031] [PMID: 27015243]
[63]
Miranda, A.; Cova, T.; Sousa, J.; Vitorino, C.; Pais, A. Computational modeling in glioblastoma: From the prediction of blood-brain barrier permeability to the simulation of tumor behavior. Future Med. Chem., 2018, 10(1), 121-131.
[http://dx.doi.org/10.4155/fmc-2017-0128] [PMID: 29235374]
[64]
Wang, W.; Kim, M.T.; Sedykh, A.; Zhu, H. Developing enhanced blood-brain barrier permeability models: Integrating external bio-assay data in QSAR modeling. Pharm. Res., 2015, 32(9), 3055-3065.
[http://dx.doi.org/10.1007/s11095-015-1687-1] [PMID: 25862462]
[65]
Eickholt, J.; Cheng, J. DNdisorder: Predicting protein disorder using boosting and deep networks. BMC Bioinformatics, 2013, 14, 88.
[http://dx.doi.org/10.1186/1471-2105-14-88] [PMID: 23497251]
[66]
Spencer, M.; Eickholt, J.; Cheng, J. A deep learning network approach to ab initio protein secondary structure prediction; 103-112. IEEE/ACM. Trans. Comput. Biol. Bioinform, 2015, 12, 103-112.
[http://dx.doi.org/10.1109/TCBB.2014.2343960]
[67]
Di Lena, P.; Nagata, K.; Baldi, P. Deep architectures for protein contact map prediction. Bioinformatics, 2012, 28(19), 2449-2457.
[http://dx.doi.org/10.1093/bioinformatics/bts475] [PMID: 22847931]
[68]
Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput., 2006, 18(7), 1527-1554.
[http://dx.doi.org/10.1162/neco.2006.18.7.1527] [PMID: 16764513]
[69]
Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res., 2003, 3, 1157-1182.
[70]
Zhou, J.; Troyanskaya, O.G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods, 2015, 12(10), 931-934.
[http://dx.doi.org/10.1038/nmeth.3547] [PMID: 26301843]
[71]
Alipanahi, B.; Delong, A.; Weirauch, M.T.; Frey, B.J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol., 2015, 33(8), 831-838.
[http://dx.doi.org/10.1038/nbt.3300] [PMID: 26213851]
[72]
Webb, S. Deep learning for biology. Nature, 2018, 554(7693), 555-557.
[http://dx.doi.org/10.1038/d41586-018-02174-z] [PMID: 29469107]
[73]
Sharma, A.; Kumar, R.; Aier, I.; Semwal, R.; Tyagi, P.; Varadwaj, P. Sense of smell: Structural, functional, mechanistic advancements and challenges in human olfactory research. Curr. Neuropharmacol., 2019, 17(9), 891-911.
[http://dx.doi.org/10.2174/1570159X17666181206095626] [PMID: 30520376]
[74]
Akkus, Z.; Galimzianova, A.; Hoogi, A.; Rubin, D.L.; Erickson, B.J. Deep learning for brain MRI segmentation: State of the art and future directions. J. Digit. Imaging, 2017, 30(4), 449-459.
[http://dx.doi.org/10.1007/s10278-017-9983-4] [PMID: 28577131]
[75]
Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine learning for medical imaging. Radiographics, 2017, 37(2), 505-515.
[http://dx.doi.org/10.1148/rg.2017160130] [PMID: 28212054]
[76]
Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.M.; Larochelle, H. Brain tumor segmentation with deep neural networks. Med. Image Anal., 2017, 35, 18-31.
[http://dx.doi.org/10.1016/j.media.2016.05.004]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy