Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Evaluation of the Anti-Tumor Activity of Niclosamide Nanoliposomes Against Colon Carcinoma

Author(s): Mahdi Hatamipour, Mahmoud R. Jaafari, Amir A. Momtazi-Borojeni, Mahin Ramezani and Amirhossein Sahebkar*

Volume 13, Issue 3, 2020

Page: [245 - 250] Pages: 6

DOI: 10.2174/1874467212666190821142721

Price: $65

Abstract

Background and Aims: Niclosamide is an established anti-helminthic drug, which has recently been shown to inhibit the growth of various cancer cells. To exploit the potential anti-tumor activity of this drug for systemic use, the problem of low aqueous solubility should be addressed. The present study tested the in vivo anti-tumor effects of a recently developed nanoliposomal preparation of niclosamide in an experimental model of colon carcinoma.

Methods: The cytotoxicity of nanoliposomal niclosamide on CT26 colon carcinoma cells was evaluated using the MTT test. Inhibition of tumor growth was investigated in BALB/c mice bearing CT26 colon carcinoma cells. The animals were randomly divided into 4 groups including: 1) untreated control, 2) liposomal doxorubicin (15 mg/kg; single intravenous dose), 3) liposomal niclosamide (1 mg/kg/twice a week; intravenously for 4 weeks), and 4) free niclosamide (1 mg/kg/twice a week; intravenously for 4 weeks). To study therapeutic efficacy, tumor size and survival were monitored in 2-day intervals for 40 days.

Results: In vitro results indicated that nanoliposomal and free niclosamide could exert cytotoxic effects with IC50 values of 4.5 and 2.5 μM, respectively. According to in vivo studies, nanoliposomal niclosamide showed a higher growth inhibitory activity against CT26 colon carcinoma cells compared with free niclosamide as revealed by delayed tumor growth and prolongation of survival.

Conclusion: Nnaoliposomal encapsulation enhanced anti-tumor properties of niclosamide in an experimental model of colon carcinoma.

Keywords: Liposome, niclosamide, remote-loading, colon carcinoma, cytotoxicity, in vivo study, anti-tumor efficacy.

Graphical Abstract

[1]
Li, Y.; Li, P-K.; Roberts, M.J.; Arend, R.C.; Samant, R.S.; Buchsbaum, D.J. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett., 2014, 349(1), 8-14.
[http://dx.doi.org/10.1016/j.canlet.2014.04.003] [PMID: 24732808]
[2]
Pan, J-X.; Ding, K.; Wang, C-Y. Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells. Chin. J. Cancer, 2012, 31(4), 178-184.
[http://dx.doi.org/10.5732/cjc.011.10290] [PMID: 22237038]
[3]
Chen, W.; Mook, R.A., Jr; Premont, R.T.; Wang, J. Niclosamide: Beyond an antihelminthic drug. Cell. Signal., 2018, 41, 89-96.
[http://dx.doi.org/10.1016/j.cellsig.2017.04.001] [PMID: 28389414]
[4]
Chen, H.; Yang, Z.; Ding, C.; Chu, L.; Zhang, Y.; Terry, K.; Liu, H.; Shen, Q.; Zhou, J. Discovery of O-alkylamino-tethered niclosamide derivatives as potent and orally bioavailable anticancer agents. ACS Med. Chem. Lett., 2013, 4(2), 180-185.
[http://dx.doi.org/10.1021/ml3003082] [PMID: 23459613]
[5]
Ye, Y.; Zhang, X.; Zhang, T.; Wang, H.; Wu, B. Design and evaluation of injectable niclosamide nanocrystals prepared by wet media milling technique. Drug Dev. Ind. Pharm., 2015, 41(9), 1416-1424.
[http://dx.doi.org/10.3109/03639045.2014.954585] [PMID: 25204767]
[6]
Sanphui, P.; Kumar, S.S.; Nangia, A. Pharmaceutical cocrystals of niclosamide. Cryst. Growth Des., 2012, 12(9), 4588-4599.
[http://dx.doi.org/10.1021/cg300784v]
[7]
Devarakonda, B.; Hill, R.A.; Liebenberg, W.; Brits, M.; de Villiers, M.M. Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. Int. J. Pharm., 2005, 304(1-2), 193-209.
[http://dx.doi.org/10.1016/j.ijpharm.2005.07.023] [PMID: 16198076]
[8]
Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm. Sin. B, 2015, 5(5), 442-453.
[http://dx.doi.org/10.1016/j.apsb.2015.07.003] [PMID: 26579474]
[9]
Maeda, H.; Bharate, G.Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm., 2009, 71(3), 409-419.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.010] [PMID: 19070661]
[10]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[11]
Jain, R.K. Transport of molecules across tumor vasculature. Cancer Metastasis Rev., 1987, 6(4), 559-593.
[http://dx.doi.org/10.1007/BF00047468] [PMID: 3327633]
[12]
Allen, T.M.; Cullis, P.R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[13]
Lasic, D.D.; Papahadjopoulos, D. Liposomes revisited. Science, 1995, 267(5202), 1275-1276.
[http://dx.doi.org/10.1126/science.7871422] [PMID: 7871422]
[14]
Hatamipour, M.; Jaafari, M.R.; Momtazi-Borojeni, A.A.; Ramezani, M.; Sahebkar, A. Nanoliposomal Encapsulation Enhances In Vivo Anti-Tumor Activity of Niclosamide against Melanoma. Anticancer. Agents Med. Chem., 2019, 19(13), 1618-1626.
[http://dx.doi.org/10.2174/1871520619666190705120011] [PMID: 31284876]
[15]
Schluep, T.; Hwang, J.; Cheng, J.; Heidel, J.D.; Bartlett, D.W.; Hollister, B.; Davis, M.E. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin. Cancer Res., 2006, 12(5), 1606-1614.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1566] [PMID: 16533788]
[16]
Huang, S.K.; Mayhew, E.; Gilani, S.; Lasic, D.D.; Martin, F.J.; Papahadjopoulos, D. Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma. Cancer Res., 1992, 52(24), 6774-6781.
[PMID: 1458465]
[17]
Huang, Z.; Szoka, F.C., Jr Sterol-modified phospholipids: cholesterol and phospholipid chimeras with improved biomembrane properties. J. Am. Chem. Soc., 2008, 130(46), 15702-15712.
[http://dx.doi.org/10.1021/ja8065557] [PMID: 18950160]
[18]
Huang, Z.; Jaafari, M.R.; Szoka, F.C., Jr Disterolphospholipids: nonexchangeable lipids and their application to liposomal drug delivery. Angew. Chem. Int. Ed. Engl., 2009, 48(23), 4146-4149.
[http://dx.doi.org/10.1002/anie.200900111] [PMID: 19425026]
[19]
Misra, S.K.; De, A.; Pan, D. Targeted Delivery of STAT-3 Modulator to Breast Cancer Stem-Like Cells Downregulates a Series of Stemness Genes. Mol. Cancer Ther., 2018, 17(1), 119-129.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0070] [PMID: 29138265]
[20]
Kim, M.O.; Choe, M.H.; Yoon, Y.N.; Ahn, J.; Yoo, M.; Jung, K-Y.; An, S.; Hwang, S.G.; Oh, J.S.; Kim, J.S. Antihelminthic drug niclosamide inhibits CIP2A and reactivates tumor suppressor protein phosphatase 2A in non-small cell lung cancer cells. Biochem. Pharmacol., 2017, 144, 78-89.
[http://dx.doi.org/10.1016/j.bcp.2017.08.009] [PMID: 28813646]
[21]
Bhattacharyya, J.; Ren, X-R.; Mook, R.A.; Wang, J.; Spasojevic, I.; Premont, R.T.; Li, X.; Chilkoti, A.; Chen, W. Niclosamide-conjugated polypeptide nanoparticles inhibit Wnt signaling and colon cancer growth. Nanoscale, 2017, 9(34), 12709-12717.
[http://dx.doi.org/10.1039/C7NR01973D] [PMID: 28828438]
[22]
Liu, C.; Armstrong, C.M.; Lou, W.; Lombard, A.P.; Cucchiara, V.; Gu, X.; Yang, J.C.; Nadiminty, N.; Pan, C.X.; Evans, C.P.; Gao, A.C. Niclosamide and Bicalutamide Combination Treatment Overcomes Enzalutamide- and Bicalutamide-Resistant Prostate Cancer. Mol. Cancer Ther., 2017, 16(8), 1521-1530.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0912] [PMID: 28500234]
[23]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(2), 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[24]
Gubernator, J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin. Drug Deliv., 2011, 8(5), 565-580.
[http://dx.doi.org/10.1517/17425247.2011.566552] [PMID: 21492058]
[25]
Barenholz, Y. Relevancy of drug loading to liposomal formulation therapeutic efficacy. J. Liposome Res., 2003, 13(1), 1-8.
[http://dx.doi.org/10.1081/LPR-120017482] [PMID: 12725720]
[26]
Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine, 2006, 1(3), 297-315.
[PMID: 17717971]
[27]
Matbou Riahi, M.; Sahebkar, A.; Sadri, K.; Nikoofal-Sahlabadi, S.; Jaafari, M.R. Stable and sustained release liposomal formulations of celecoxib: In vitro and in vivo anti-tumor evaluation. Int. J. Pharm., 2018, 540(1-2), 89-97.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.039] [PMID: 29371019]
[28]
Osada, T.; Chen, M.; Yang, X.Y.; Spasojevic, I.; Vandeusen, J.B.; Hsu, D.; Clary, B.M.; Clay, T.M.; Chen, W.; Morse, M.A.; Lyerly, H.K. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer Res., 2011, 71, 4172-4182.https://cancerres.aacrjournals.org/content/early/2011/04/28/0008-5472.CAN-10-3978
[29]
Lu, W.; Lin, C.; Roberts, M.J.; Waud, W.R.; Piazza, G.A.; Li, Y. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/β-catenin pathway. PLoS One, 2011, 6(12)e29290
[http://dx.doi.org/10.1371/journal.pone.0029290] [PMID: 22195040]
[30]
Londoño-Joshi, A.I.; Arend, R.C.; Aristizabal, L.; Lu, W.; Samant, R.S.; Metge, B.J.; Hidalgo, B.; Grizzle, W.E.; Conner, M.; Forero-Torres, A.; Lobuglio, A.F.; Li, Y.; Buchsbaum, D.J. Effect of niclosamide on basal-like breast cancers. Mol. Cancer Ther., 2013, 13, 800-811.
[31]
Wieland, A.; Trageser, D.; Gogolok, S.; Reinartz, R.; Höfer, H.; Keller, M.; Leinhaas, A.; Schelle, R.; Normann, S.; Klaas, L.; Waha, A.; Koch, P.; Fimmers, R.; Pietsch, T.; Yachnis, A.T.; Pincus, D.W.; Steindler, D.A.; Brüstle, O.; Simon, M.; Glas, M.; Scheffler, B. Anticancer effects of niclosamide in human glioblastoma. Clin. Cancer Res., 2013, 19(15), 4124-4136.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2895] [PMID: 23908450]
[32]
Sack, U.; Walther, W.; Scudiero, D.; Selby, M.; Kobelt, D.; Lemm, M.; Fichtner, I.; Schlag, P.M.; Shoemaker, R.H.; Stein, U. Novel effect of antihelminthic Niclosamide on S100A4-mediated metastatic progression in colon cancer. J. Natl. Cancer Inst., 2011, 103(13), 1018-1036.
[http://dx.doi.org/10.1093/jnci/djr190] [PMID: 21685359]
[33]
Ren, X.; Duan, L.; He, Q.; Zhang, Z.; Zhou, Y.; Wu, D.; Pan, J.; Pei, D.; Ding, K. Identification of niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway. ACS Med. Chem. Lett., 2010, 1(9), 454-459.
[http://dx.doi.org/10.1021/ml100146z] [PMID: 24900231]
[34]
Khanim, F.L.; Merrick, B.A.; Giles, H.V.; Jankute, M.; Jackson, J.B.; Giles, L.J.; Birtwistle, J.; Bunce, C.M.; Drayson, M.T. Redeployment-based drug screening identifies the anti-helminthic niclosamide as anti-myeloma therapy that also reduces free light chain production. Blood Cancer J., 2011, 1(10)e39
[http://dx.doi.org/10.1038/bcj.2011.38] [PMID: 22829072]
[35]
Li, R.; Hu, Z.; Sun, S.Y.; Chen, Z.G.; Owonikoko, T.K.; Sica, G.L.; Ramalingam, S.S.; Curran, W.J.; Khuri, F.R.; Deng, X. Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer. Mol. Cancer Ther., 2013, 12, 2200-2212.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0095]
[36]
Li, R.; You, S.; Hu, Z.; Chen, Z.G.; Sica, G.L.; Khuri, F.R.; Curran, W.J.; Shin, D.M.; Deng, X. Inhibition of STAT3 by niclosamide synergizes with erlotinib against head and neck cancer. PLoS One, 2013, 8(9)e74670
[http://dx.doi.org/10.1371/journal.pone.0074670] [PMID: 24019973]
[37]
You, S.; Li, R.; Park, D.; Xie, M.; Sica, G.L.; Cao, Y.; Xiao, Z.Q.; Deng, X. Disruption of STAT3 by niclosamide reverses radioresistance of human lung cancer. Mol. Cancer Ther., 2014, 13(3), 606-616.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0608] [PMID: 24362463]
[38]
Jin, Y.; Lu, Z.; Ding, K.; Li, J.; Du, X.; Chen, C.; Sun, X.; Wu, Y.; Zhou, J.; Pan, J. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res., 2010, 70, 2516-2527.
[39]
Oku, N. Innovations in liposomal DDS technology and its application for the treatment of various diseases. Biol. Pharm. Bull., 2017, 40(2), 119-127.
[http://dx.doi.org/10.1248/bpb.b16-00857] [PMID: 28154249]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy