Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Research Article

Colorectal Adenocarcinoma: Imaging using 5-Fluoracil Nanoparticles Labeled with Technetium 99 Metastable

Author(s): Julio Cezar de Almeida Junior, Edward Helal-Neto, Suyene R. Pinto, Sofia Nascimento Dos Santos, Emerson S. Bernardes, Mohammed Al-Qahtani, Fiammetta Nigro, Luciana M.R. Alencar, Eduardo Ricci-Junior and Ralph Santos-Oliveira*

Volume 25, Issue 30, 2019

Page: [3282 - 3288] Pages: 7

DOI: 10.2174/1381612825666190816235147

Price: $65

Abstract

Background: Adenocarcinoma of colon and rectum are one of the most common cancers worldwide, responsible for over 1,300,000 people diagnosed. Also, they are responsible for metastasis, which leads to death in less than 5 years.

Methods: In this study, we developed, characterized, and pre-clinically tested a new nano-radiopharmaceutical for early and differential detection of adenocarcinoma of colon and rectum.

Results and Conclusion: Results demonstrated the specificity of the developed nanosystem and the ability to reach the tumor with very specific targeting. Also, the imaging data support the use of this nano-agent as a nanoimaging- guided-radiopharmaceutical.

Keywords: Polymeric nanoparticles, adenocarcinoma, cancer, imaging, nano-radiopharmaceutical, radiopharmacy.

« Previous
[1]
Atak A, Khurana S, Gollapalli K, et al. Quantitative mass spectrometry analysis reveals a panel of nine proteins as diagnostic markers for colon adenocarcinomas. Oncotarget 2018; 9(17): 13530-44.
[http://dx.doi.org/10.18632/oncotarget.24418] [PMID: 29568375]
[2]
Ahmed D, Eide PW, Eilertsen IA, et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2013; 2 e71
[http://dx.doi.org/10.1038/oncsis.2013.35] [PMID: 24042735]
[3]
Fleming M, Ravula S, Tatishchev SF, Wang HL. Colorectal carcinoma: Pathologic aspects. J Gastrointest Oncol 2012; 3(3): 153-73.
[PMID: 22943008]
[4]
Teng A, Lee DY, Cai J, Patel SS, Bilchik AJ, Goldfarb MR. Patterns and outcomes of colorectal cancer in adolescents and young adults. J Surg Res 2016; 205(1): 19-27.
[http://dx.doi.org/10.1016/j.jss.2016.05.036] [PMID: 27620994]
[5]
Zhenghong ZZ, Zihua Zhu, Guoweijian, , et al. Retrospective study of predictors of bone metastasis in colorectal cancer patients. J Bone Oncol 2017; 9: 25-8.
[http://dx.doi.org/10.1016/j.jbo.2017.10.003] [PMID: 29234589]
[6]
Kim DY, Ryu CG, Jung EJ, Paik JH, Hwang DY. Brain metastasis from colorectal cancer: a single center experience. Ann Surg Treat Res 2018; 94(1): 13-8.
[http://dx.doi.org/10.4174/astr.2018.94.1.13] [PMID: 29333421]
[7]
Stintzing S, Tejpar S, Gibbs P, Thiebach L, Lenz HJ. Understanding the role of primary tumour localisation in colorectal cancer treatment and outcomes. Eur J Cancer 2017; 84: 69-80.
[http://dx.doi.org/10.1016/j.ejca.2017.07.016] [PMID: 28787661]
[8]
American Cancer Society.. Colorectal Cancer Facts & Figures 2017-2019.
[9]
Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 2013; 49(6): 1374-403.
[http://dx.doi.org/10.1016/j.ejca.2012.12.027] [PMID: 23485231]
[10]
Rabeneck L, Horton S, Zauber AG, Earle C. Colorectal Cancer. Cancer: Disease Control Priorities. 3rd ed.. 2015; Vol. 3.
[11]
Zhang N, Yin Y, Xu SJ, Chen WS. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 2008; 13(8): 1551-69.
[http://dx.doi.org/10.3390/molecules13081551] [PMID: 18794772]
[12]
Thomas DM, Zalcberg JR. 5-fluorouracil: a pharmacological paradigm in the use of cytotoxics. Clin Exp Pharmacol Physiol 1998; 25(11): 887-95.
[http://dx.doi.org/10.1111/j.1440-1681.1998.tb02339.x] [PMID: 9807659]
[13]
Noordhuis P, Holwerda U, Van der Wilt CL, et al. 5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers. Ann Oncol 2004; 15(7): 1025-32.
[http://dx.doi.org/10.1093/annonc/mdh264] [PMID: 15205195]
[14]
Bruni P, Minopoli G, Brancaccio T, et al. Fe65, a ligand of the Alzheimer’s beta-amyloid precursor protein, blocks cell cycle progression by down-regulating thymidylate synthase expression. J Biol Chem 2002; 277(38): 35481-8.
[http://dx.doi.org/10.1074/jbc.M205227200] [PMID: 12089154]
[15]
Chernyshev A, Fleischmann T, Kohen A. Thymidyl biosynthesis enzymes as antibiotic targets. Appl Microbiol Biotechnol 2007; 74(2): 282-9.
[http://dx.doi.org/10.1007/s00253-006-0763-1] [PMID: 17216455]
[16]
Zelikin AN, Becker AL, Johnston AP, Wark KL, Turatti F, Caruso F. A general approach for DNA encapsulation in degradable polymer microcapsules. ACS Nano 2007; 1(1): 63-9.
[http://dx.doi.org/10.1021/nn700063w] [PMID: 19203131]
[17]
Ball RL, Hajj KA, Vizelman J, Bajaj P, Whitehead KA. Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA. Nano Lett 2018; 18(6): 3814-22.
[http://dx.doi.org/10.1021/acs.nanolett.8b01101] [PMID: 29694050]
[18]
Noorbatcha IA, Jaswir I, Ahmad H. Nano-encapsulation of Proteins and Peptides. Curr Nanomater 2017; 2(2): 76-83.
[http://dx.doi.org/10.2174/2405461502666170912100212]
[19]
Biswaro LS, da Costa Sousa MG, Rezende TMB, Dias SC, Franco OL. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front Microbiol 2018; 9: 855.
[http://dx.doi.org/10.3389/fmicb.2018.00855] [PMID: 29867793]
[20]
Anu ME, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Series: Mat Sci Eng 2017; 263 032019
[http://dx.doi.org/10.1088/1757-899X/263/3/032019]
[21]
Pinto SR, Sarcinelle MA, de Souza Albernaz M, et al. In vivo studies: comparing the administration via and the impact on the biodistribution of radiopharmaceuticals. Nucl Med Biol 2014; 41(9): 772-4.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.05.141] [PMID: 25027865]
[22]
Portilho FL, Helal-Neto E, Cabezas SS, et al. Magnetic core mesoporous silica nanoparticles doped with dacarbazine and labelled with 99mTc for early and differential detection of metastatic melanoma by single photon emission computed tomography. Artif Cells Nanomed Biotechnol 2018; 46(sup1): 1080-7.
[http://dx.doi.org/10.1080/21691401.2018.1443941] [PMID: 29482360]
[23]
Helal-Neto E, Cabezas SS, Sancenón F, Martínez-Máñez R, Santos-Oliveira R. Indirect calculation of monoclonal antibodies in nanoparticles using the radiolabeling process with technetium 99 metastable as primary factor: alternative methodology for the entrapment efficiency. J Pharm Biomed Anal 2018; 153: 90-4.
[http://dx.doi.org/10.1016/j.jpba.2018.02.017] [PMID: 29471223]
[24]
Zhang B, Shi W, Jiang T, et al. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy. Oncotarget 2016; 7(38): 62607-18.
[http://dx.doi.org/10.18632/oncotarget.11546] [PMID: 27566585]
[25]
Sadat Tabatabaei Mirakabad F, Nejati-Koshki K, Akbarzadeh A, et al. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev 2014; 15(2): 517-35.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.517] [PMID: 24568455]
[26]
Braga TL, Cerqueira-Coutinho C, de Souza Albernaz M, et al. Diagnosing gastrointestinal stromal tumours by single photon emission computed tomography using nano-radiopharmaceuticals based on bevacizumab monoclonal antibody. Biomed Phys Eng Express 2016; 2(4)
[27]
da Costa E, Zamora PP, Zarbin AJG. Novel TiO2/C nanocomposites: synthesis, characterization, and application as a photocatalyst for the degradation of organic pollutants. J Colloid Interface Sci 2012; 368(1): 121-7.
[http://dx.doi.org/10.1016/j.jcis.2011.10.028] [PMID: 22056275]
[28]
Albernaz Mde S, Ospina CA, Rossi AM, Santos-Oliveira R. Radiolabelled nanohydroxyapatite with 99mTc: perspectives to nanoradiopharmaceuticals construction. Artif Cells Nanomed Biotechnol 2014; 42(2): 88-91.
[http://dx.doi.org/10.3109/21691401.2013.785954] [PMID: 23586417]
[29]
Nascimento SS, Rhaissa S, Paredes PL, et al. Avoiding the mononuclear phagocyte system using human albumin for mesoporous silica nanoparticle system. Microporous Mesoporous Mater 2017; 251: 181-9.
[30]
Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J Control Release 2016; 240: 332-48.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.020] [PMID: 26774224]
[31]
Zhou Y, Dai Z. New strategies in the design of nanomedicines to oppose uptake by the mononuclear phagocyte system and enhance cancer therapeutic efficacy. Chem Asian J 2018; 13(22): 3333-40. Epub ahead of print
[http://dx.doi.org/10.1002/asia.201800149] [PMID: 29441706]
[32]
Alter P, Herzum M, Soufi M, Schaefer JR, Maisch B. Cardiotoxicity of 5-fluorouracil. Cardiovasc Hematol Agents Med Chem 2006; 4(1): 1-5.
[http://dx.doi.org/10.2174/187152506775268785] [PMID: 16529545]
[33]
Sorrentino MF, Kim J, Foderaro AE, Truesdell AG. 5-fluorouracil induced cardiotoxicity: review of the literature. Cardiol J 2012; 19(5): 453-8.
[http://dx.doi.org/10.5603/CJ.2012.0084] [PMID: 23042307]
[34]
Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 2010; 76(3)(Suppl.): S10-9.
[http://dx.doi.org/10.1016/j.ijrobp.2009.07.1754] [PMID: 20171502]
[35]
von Roemeling C, Jiang W, Chan CK, Weissman IL, Kim BYS. Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol 2017; 35(2): 159-71.
[http://dx.doi.org/10.1016/j.tibtech.2016.07.006] [PMID: 27492049]
[36]
Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 2008; 3(5): 703-17.
[http://dx.doi.org/10.2217/17435889.3.5.703] [PMID: 18817471]
[37]
Choi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett 2009; 9(6): 2354-9.
[http://dx.doi.org/10.1021/nl900872r] [PMID: 19422261]
[38]
Thorley AJ, Ruenraroengsak P, Potter TE, Tetley TD. Critical determinants of uptake and translocation of nanoparticles by the human pulmonary alveolar epithelium. ACS Nano 2014; 8(11): 11778-89.
[http://dx.doi.org/10.1021/nn505399e] [PMID: 25360809]
[39]
Takenaka S, Karg E, Kreyling WG, et al. Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol 2006; 18(10): 733-40.
[http://dx.doi.org/10.1080/08958370600748281] [PMID: 16774862]
[40]
Sung JH, Ji JH, Park JD, et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 2009; 108(2): 452-61.
[http://dx.doi.org/10.1093/toxsci/kfn246] [PMID: 19033393]
[41]
Schürch S, Gehr P, Im Hof V, Geiser M, Green F. Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol 1990; 80(1): 17-32.
[http://dx.doi.org/10.1016/0034-5687(90)90003-H] [PMID: 2367749]
[42]
Semmler-Behnke M, Takenaka S, Fertsch S, et al. Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect 2007; 115(5): 728-33.
[http://dx.doi.org/10.1289/ehp.9685] [PMID: 17520060]
[43]
Gehr P, Schürch S, Berthiaume Y, Hof VI, Geiser M. Particle retention in airways by surfactant. J Aerosol Med Pulm Drug Deliv 2009; 3(1): 27-43.
[44]
Fytianos K, Drasler B, Blank F, et al. Current in vitro approaches to assess nanoparticle interactions with lung cells. Nanomedicine (Lond) 2016; 11(18): 2457-69.
[http://dx.doi.org/10.2217/nnm-2016-0199] [PMID: 27529369]
[45]
Hilmas DE, Gillette EL. Morphometric analyses of the microvasculature of tumors during growth and after x-irradiation. Cancer 1974; 33(1): 103-10.
[http://dx.doi.org/10.1002/1097-0142(197401)33:1<103:AID-CNCR2820330116>3.0.CO;2-7] [PMID: 4810083]
[46]
Zhan W, Gedroyc W, Xu XY. The effect of tumour size on drug transport and uptake in 3-D tumour models reconstructed from magnetic resonance images. PLoS One 2017; 12(2) e0172276
[http://dx.doi.org/10.1371/journal.pone.0172276] [PMID: 28212385]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy