Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

The Role of Autophagy in Cancer Radiotherapy

Author(s): Lei Li, Wen-Ling Liu, Lei Su, Zhou-Cheng Lu and Xiu-Sheng He*

Volume 13, Issue 1, 2020

Page: [31 - 40] Pages: 10

DOI: 10.2174/1874467212666190809154518

Price: $65

Abstract

Background: Autophagy, a pathway for lysosomal-mediated cellular degradation, is a catabolic process that recycles intracellular components to maintain metabolism and survival. It is classified into three major types: macroautophagy, microautophagy, and the chaperone-mediated autophagy (CMA). Autophagy is a dynamic and multistep process that includes four stages: nucleation, elongation, autophagosome formation, and fusion. Interestingly, the influence of autophagy in cancer development is complex and paradoxical, suppressive, or promotive in different contexts. Autophagy in cancer has been demonstrated to serve as both a tumour suppressor and promoter. Radiotherapy is a powerful and common strategy for many different types of cancer and can induce autophagy, which has been shown to modulate sensitivity of cancer to radiotherapy. However, the role of autophagy in radiation treatment is controversial. Some reports showed that the upregulation of autophagy was cytoprotective for cancer cells. Others, in contrast, showed that the induction of autophagy was advantageous.

Here, we reviewed recent studies and attempted to discuss the various aspects of autophagy in response to radiotherapy of cancer. Thus, we could decrease the viability of cancer cell and increase the sensibility of cancer cells to radiation, providing a new basis for the application of autophagy in clinical tumor radiotherapy

Keywords: Autophagy, radiotherapy, radiosensitivity, induction, inhibition.

Graphical Abstract

[1]
Yao, K.C.; Komata, T.; Kondo, Y.; Kanzawa, T.; Kondo, S.; Germano, I.M. Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J. Neurosurg., 2003, 98(2), 378-384.
[http://dx.doi.org/10.3171/jns.2003.98.2.0378] [PMID: 12593626]
[2]
Kim, B.M.; Hong, Y.; Lee, S.; Liu, P.; Lim, J.H.; Lee, Y.H.; Lee, T.H.; Chang, K.T.; Hong, Y. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy. Int. J. Mol. Sci., 2015, 16(11), 26880-26913.
[http://dx.doi.org/10.3390/ijms161125991] [PMID: 26569225]
[3]
Mo, N.; Lu, Y.K.; Xie, W.M.; Liu, Y.; Zhou, W.X.; Wang, H.X.; Nong, L.; Jia, Y.X.; Tan, A.H.; Chen, Y.; Li, S.S.; Luo, B.H. Inhibition of autophagy enhances the radiosensitivity of nasopharyngeal carcinoma by reducing Rad51 expression. Oncol. Rep., 2014, 32(5), 1905-1912.
[http://dx.doi.org/10.3892/or.2014.3427] [PMID: 25175062]
[4]
Zou, YM; Hu, GY; Zhao, XQ; Lu, T; Zhu, F; Yu, SY Hypoxiainduced autophagy contributes to radioresistance via c-Junmediated Beclin1 expression in lung cancer cells Journal of Huazhong University of Science and Technology Medical sciences = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban, 2014, 34, 761-7.
[http://dx.doi.org/10.1007/s11596-014-1349-2]
[5]
Sun, Y.; Xing, X.; Liu, Q.; Wang, Z.; Xin, Y.; Zhang, P.; Hu, C.; Liu, Y. Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1α/miR-210/Bcl-2 pathway in colon cancer cells. Int. J. Oncol., 2015, 46(2), 750-756.
[http://dx.doi.org/10.3892/ijo.2014.2745] [PMID: 25385144]
[6]
Gozuacik, D.; Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 2004, 23(16), 2891-2906.
[http://dx.doi.org/10.1038/sj.onc.1207521] [PMID: 15077152]
[7]
Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999, 402(6762), 672-676.
[http://dx.doi.org/10.1038/45257] [PMID: 10604474]
[8]
Qu, X.; Yu, J.; Bhagat, G.; Furuya, N.; Hibshoosh, H.; Troxel, A.; Rosen, J.; Eskelinen, E.L.; Mizushima, N.; Ohsumi, Y.; Cattoretti, G.; Levine, B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest., 2003, 112(12), 1809-1820.
[http://dx.doi.org/10.1172/JCI20039] [PMID: 14638851]
[9]
Takamura, A.; Komatsu, M.; Hara, T.; Sakamoto, A.; Kishi, C.; Waguri, S.; Eishi, Y.; Hino, O.; Tanaka, K.; Mizushima, N. Autophagy-deficient mice develop multiple liver tumors. Genes Dev., 2011, 25(8), 795-800.
[http://dx.doi.org/10.1101/gad.2016211] [PMID: 21498569]
[10]
Amaravadi, R.; Kimmelman, A.C.; White, E. Recent insights into the function of autophagy in cancer. Genes Dev., 2016, 30(17), 1913-1930.
[http://dx.doi.org/10.1101/gad.287524.116] [PMID: 27664235]
[11]
Umemura, A.; He, F.; Taniguchi, K.; Nakagawa, H.; Yamachika, S.; Font-Burgada, J.; Zhong, Z.; Subramaniam, S.; Raghunandan, S.; Duran, A.; Linares, J.F.; Reina-Campos, M.; Umemura, S.; Valasek, M.A.; Seki, E.; Yamaguchi, K.; Koike, K.; Itoh, Y.; Diaz-Meco, M.T.; Moscat, J.; Karin, M. p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. Cancer Cell, 2016, 29(6), 935-948.
[http://dx.doi.org/10.1016/j.ccell.2016.04.006] [PMID: 27211490]
[12]
Liang, C.; Feng, P.; Ku, B.; Dotan, I.; Canaani, D.; Oh, B.H.; Jung, J.U. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol., 2006, 8(7), 688-699.
[http://dx.doi.org/10.1038/ncb1426] [PMID: 16799551]
[13]
Takahashi, Y.; Coppola, D.; Matsushita, N.; Cualing, H.D.; Sun, M.; Sato, Y.; Liang, C.; Jung, J.U.; Cheng, J.Q.; Mulé, J.J.; Pledger, W.J.; Wang, H.G. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol., 2007, 9(10), 1142-1151.
[http://dx.doi.org/10.1038/ncb1634] [PMID: 17891140]
[14]
Mariño, G.; Salvador-Montoliu, N.; Fueyo, A.; Knecht, E.; Mizushima, N.; López-Otín, C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J. Biol. Chem., 2007, 282(25), 18573-18583.
[http://dx.doi.org/10.1074/jbc.M701194200] [PMID: 17442669]
[15]
Yang, S.; Wang, X.; Contino, G.; Liesa, M.; Sahin, E.; Ying, H.; Bause, A.; Li, Y.; Stommel, J.M.; Dell’antonio, G.; Mautner, J.; Tonon, G.; Haigis, M.; Shirihai, O.S.; Doglioni, C.; Bardeesy, N.; Kimmelman, A.C. Pancreatic cancers require autophagy for tumor growth. Genes Dev., 2011, 25(7), 717-729.
[http://dx.doi.org/10.1101/gad.2016111] [PMID: 21406549]
[16]
Guo, J.Y.; Karsli-Uzunbas, G.; Mathew, R.; Aisner, S.C.; Kamphorst, J.J.; Strohecker, A.M.; Chen, G.; Price, S.; Lu, W.; Teng, X.; Snyder, E.; Santanam, U.; Dipaola, R.S.; Jacks, T.; Rabinowitz, J.D.; White, E. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev., 2013, 27(13), 1447-1461.
[http://dx.doi.org/10.1101/gad.219642.113] [PMID: 23824538]
[17]
Strohecker, A.M.; Guo, J.Y.; Karsli-Uzunbas, G.; Price, S.M.; Chen, G.J.; Mathew, R.; McMahon, M.; White, E. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov., 2013, 3(11), 1272-1285.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0397] [PMID: 23965987]
[18]
Ito, H.; Daido, S.; Kanzawa, T.; Kondo, S.; Kondo, Y. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int. J. Oncol., 2005, 26(5), 1401-1410.
[http://dx.doi.org/10.3892/ijo.26.5.1401] [PMID: 15809734]
[19]
Shao, C.J.; Wu, M.W.; Chen, F.R.; Li, C.; Xia, Y.F.; Chen, Z.P. Histone deacetylase inhibitor, 2-propylpentanoic acid, increases the chemosensitivity and radiosensitivity of human glioma cell lines in vitro. Chin. Med. J. (Engl.), 2012, 125(24), 4338-4343.
[PMID: 23253698]
[20]
Yuan, X.; Du, J.; Hua, S.; Zhang, H.; Gu, C.; Wang, J.; Yang, L.; Huang, J.; Yu, J.; Liu, F. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells. Exp. Cell Res., 2015, 330(2), 267-276.
[http://dx.doi.org/10.1016/j.yexcr.2014.09.006] [PMID: 25220423]
[21]
Hou, W.; Song, L.; Zhao, Y.; Liu, Q.; Zhang, S. Inhibition of Beclin-1-Mediated Autophagy by MicroRNA-17-5p Enhanced the Radiosensitivity of Glioma Cells. Oncol. Res., 2017, 25(1), 43-53.
[http://dx.doi.org/10.3727/096504016X14719078133285] [PMID: 28081732]
[22]
Shen, Y.; Liu, Y.; Sun, T.; Yang, W. LincRNA-p21 knockdown enhances radiosensitivity of hypoxic tumor cells by reducing autophagy through HIF-1/Akt/mTOR/P70S6K pathway. Exp. Cell Res., 2017, 358(2), 188-198.
[http://dx.doi.org/10.1016/j.yexcr.2017.06.016] [PMID: 28689810]
[23]
Bao, S.; Wu, Q.; McLendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444(7120), 756-760.
[http://dx.doi.org/10.1038/nature05236] [PMID: 17051156]
[24]
Lomonaco, S.L.; Finniss, S.; Xiang, C.; Decarvalho, A.; Umansky, F.; Kalkanis, S.N.; Mikkelsen, T.; Brodie, C. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int. J. Cancer, 2009, 125(3), 717-722.
[http://dx.doi.org/10.1002/ijc.24402] [PMID: 19431142]
[25]
Ye, H.; Chen, M.; Cao, F.; Huang, H.; Zhan, R.; Zheng, X. Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis. BMC Neurol., 2016, 16(1), 178.
[http://dx.doi.org/10.1186/s12883-016-0700-6] [PMID: 27644442]
[26]
Daido, S.; Yamamoto, A.; Fujiwara, K.; Sawaya, R.; Kondo, S.; Kondo, Y. Inhibition of the DNA-dependent protein kinase catalytic subunit radiosensitizes malignant glioma cells by inducing autophagy. Cancer Res., 2005, 65(10), 4368-4375.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4202] [PMID: 15899829]
[27]
Zhuang, W.; Li, B.; Long, L.; Chen, L.; Huang, Q.; Liang, Z.Q. Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy. Brain Res., 2011, 1371, 7-15.
[http://dx.doi.org/10.1016/j.brainres.2010.11.044] [PMID: 21108935]
[28]
Wang, W.J.; Long, L.M.; Yang, N.; Zhang, Q.Q.; Ji, W.J.; Zhao, J.H.; Qin, Z.H.; Wang, Z.; Chen, G.; Liang, Z.Q. NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, enhances the radiosensitivity of human glioma stem cells in vitro. Acta Pharmacol. Sin., 2013, 34(5), 681-690.
[http://dx.doi.org/10.1038/aps.2013.22] [PMID: 23603977]
[29]
Palumbo, S.; Pirtoli, L.; Tini, P.; Cevenini, G.; Calderaro, F.; Toscano, M.; Miracco, C.; Comincini, S. Different involvement of autophagy in human malignant glioma cell lines undergoing irradiation and temozolomide combined treatments. J. Cell. Biochem., 2012, 113(7), 2308-2318.
[http://dx.doi.org/10.1002/jcb.24102] [PMID: 22345070]
[30]
Palumbo, S.; Tini, P.; Toscano, M.; Allavena, G.; Angeletti, F.; Manai, F.; Miracco, C.; Comincini, S.; Pirtoli, L. Combined EGFR and autophagy modulation impairs cell migration and enhances radiosensitivity in human glioblastoma cells. J. Cell. Physiol., 2014, 229(11), 1863-1873.
[http://dx.doi.org/10.1002/jcp.24640] [PMID: 24691646]
[31]
Chang, E.T.; Adami, H.O. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol. Biomarkers Prev., 2006, 15(10), 1765-1777.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0353] [PMID: 17035381]
[32]
Schreiber, V.; Dantzer, F.; Ame, J.C.; de Murcia, G. Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol., 2006, 7(7), 517-528.
[http://dx.doi.org/10.1038/nrm1963] [PMID: 16829982]
[33]
Chen, Z.T.; Zhao, W.; Qu, S.; Li, L.; Lu, X.D.; Su, F.; Liang, Z.G.; Guo, S.Y.; Zhu, X.D. PARP-1 promotes autophagy via the AMPK/mTOR pathway in CNE-2 human nasopharyngeal carcinoma cells following ionizing radiation, while inhibition of autophagy contributes to the radiation sensitization of CNE-2 cells. Mol. Med. Rep., 2015, 12(2), 1868-1876.
[http://dx.doi.org/10.3892/mmr.2015.3604] [PMID: 25872765]
[34]
Zhou, Z.R.; Zhu, X.D.; Zhao, W.; Qu, S.; Su, F.; Huang, S.T.; Ma, J.L.; Li, X.Y. Poly(ADP-ribose) polymerase-1 regulates the mechanism of irradiation-induced CNE-2 human nasopharyngeal carcinoma cell autophagy and inhibition of autophagy contributes to the radiation sensitization of CNE-2 cells. Oncol. Rep., 2013, 29(6), 2498-2506.
[http://dx.doi.org/10.3892/or.2013.2382] [PMID: 23563481]
[35]
Song, L; Ma, L; Chen, G; Huang, Y; Sun, X Jiang C Autophagy inhibitor 3-methyladenine enhances the sensitivity of nasopharyngeal carcinoma cells to chemotherapy and radiotherapy Zhong nan da xue xue bao Yi xue ban = Journal of Central South University Medical sciences, 2016, 41, 9-18.
[36]
He, J.H.; Liao, X.L.; Wang, W.; Li, D.D.; Chen, W.D.; Deng, R.; Yang, D.; Han, Z.P.; Jiang, J.W.; Zhu, X.F. Apogossypolone, a small-molecule inhibitor of Bcl-2, induces radiosensitization of nasopharyngeal carcinoma cells by stimulating autophagy. Int. J. Oncol., 2014, 45(3), 1099-1108.
[http://dx.doi.org/10.3892/ijo.2014.2497] [PMID: 24919770]
[37]
Chakradeo, S.; Sharma, K.; Alhaddad, A.; Bakhshwin, D.; Le, N.; Harada, H.; Nakajima, W.; Yeudall, W.A.; Torti, S.V.; Torti, F.M.; Gewirtz, D.A. Yet another function of p53--the switch that determines whether radiation-induced autophagy will be cytoprotective or nonprotective: implications for autophagy inhibition as a therapeutic strategy. Mol. Pharmacol., 2015, 87(5), 803-814.
[http://dx.doi.org/10.1124/mol.114.095273] [PMID: 25667224]
[38]
Wu, SY; Liu, YW; Wang, YK; Lin, TH; Li, YZ; Chen, SH Ionizing radiation induces autophagy in human oral squamous cell carcinoma Journal of BUON : Official journal of the Balkan Union of Oncology, 2014, 19, 137-44.
[39]
Ding, L.; Wang, S.; Qu, X.; Wang, J. Tanshinone IIA sensitizes oral squamous cell carcinoma to radiation due to an enhanced autophagy. Environ. Toxicol. Pharmacol., 2016, 46, 264-269.
[http://dx.doi.org/10.1016/j.etap.2016.07.021] [PMID: 27521571]
[40]
Ko, A.; Kanehisa, A.; Martins, I.; Senovilla, L.; Chargari, C.; Dugue, D.; Mariño, G.; Kepp, O.; Michaud, M.; Perfettini, J.L.; Kroemer, G.; Deutsch, E. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ., 2014, 21(1), 92-99.
[http://dx.doi.org/10.1038/cdd.2013.124] [PMID: 24037090]
[41]
Toulany, M.; Mihatsch, J.; Holler, M.; Chaachouay, H.; Rodemann, H.P. Cisplatin-mediated radiosensitization of non-small cell lung cancer cells is stimulated by ATM inhibition. Radiother. Oncol., 2014, 111(2), 228-236.
[http://dx.doi.org/10.1016/j.radonc.2014.04.001] [PMID: 24857596]
[42]
Cheng, G.; Kong, D.; Hou, X.; Liang, B.; He, M.; Liang, N.; Ma, S.; Liu, X. The tumor suppressor, p53, contributes to radiosensitivity of lung cancer cells by regulating autophagy and apoptosis. Cancer Biother. Radiopharm., 2013, 28(2), 153-159.
[http://dx.doi.org/10.1089/cbr.2012.1297] [PMID: 23268708]
[43]
Karagounis, I.V.; Kalamida, D.; Mitrakas, A.; Pouliliou, S.; Liousia, M.V.; Giatromanolaki, A.; Koukourakis, M.I. Repression of the autophagic response sensitises lung cancer cells to radiation and chemotherapy. Br. J. Cancer, 2016, 115(3), 312-321.
[http://dx.doi.org/10.1038/bjc.2016.202] [PMID: 27380135]
[44]
Chen, X.; Wang, P.; Guo, F.; Wang, X.; Wang, J.; Xu, J.; Yuan, D.; Zhang, J.; Shao, C. Autophagy enhanced the radioresistance of non-small cell lung cancer by regulating ROS level under hypoxia condition. Int. J. Radiat. Biol., 2017, 93(8), 764-770.
[http://dx.doi.org/10.1080/09553002.2017.1325025] [PMID: 28463025]
[45]
Kim, K.W.; Hwang, M.; Moretti, L.; Jaboin, J.J.; Cha, Y.I.; Lu, B. Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer. Autophagy, 2008, 4(5), 659-668.
[http://dx.doi.org/10.4161/auto.6058] [PMID: 18424912]
[46]
Kim, KW; Moretti, L; Mitchell, LR; Jung, DK Lu B Combined Bcl-2/mammalian target of rapamycin inhibition leads to enhanced radiosensitization via induction of apoptosis and autophagy in nonsmall cell lung tumor xenograft model Clinical cancer research : an official journal of the American Association for Cancer Research, 2009, 15, 6096-105.
[47]
Kim, K.W.; Myers, C.J.; Jung, D.K.; Lu, B. NVP-BEZ-235 enhances radiosensitization via blockade of the PI3K/mTOR pathway in cisplatin-resistant non-small cell lung carcinoma. Genes Cancer, 2014, 5(7-8), 293-302.
[PMID: 25221647]
[48]
Choi, E.J.; Ryu, Y.K.; Kim, S.Y.; Wu, H.G.; Kim, J.S.; Kim, I.H.; Kim, I.A. Targeting epidermal growth factor receptor-associated signaling pathways in non-small cell lung cancer cells: implication in radiation response. Mol. Cancer Res., 2010, 8(7), 1027-1036.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0507] [PMID: 20587532]
[49]
Yu, L.; Shang, Z.F.; Hsu, F.M.; Zhang, Z.; Tumati, V.; Lin, Y.F.; Chen, B.P.; Saha, D. NSCLC cells demonstrate differential mode of cell death in response to the combined treatment of radiation and a DNA-PKcs inhibitor. Oncotarget, 2015, 6(6), 3848-3860.
[http://dx.doi.org/10.18632/oncotarget.2975] [PMID: 25714019]
[50]
Chaachouay, H.; Ohneseit, P.; Toulany, M.; Kehlbach, R.; Multhoff, G.; Rodemann, H.P. Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother. Oncol., 2011, 99(3), 287-292.
[http://dx.doi.org/10.1016/j.radonc.2011.06.002] [PMID: 21722986]
[51]
He, W-S.; Dai, X-F.; Jin, M.; Liu, C-W.; Rent, J.H. Hypoxia-induced autophagy confers resistance of breast cancer cells to ionizing radiation. Oncol. Res., 2012, 20(5-6), 251-258.
[http://dx.doi.org/10.3727/096504013X13589503483012] [PMID: 23581232]
[52]
Zhou, Z.R.; Yang, Z.Z.; Wang, S.J.; Zhang, L.; Luo, J.R.; Feng, Y.; Yu, X.L.; Chen, X.X.; Guo, X.M. The Chk1 inhibitor MK-8776 increases the radiosensitivity of human triple-negative breast cancer by inhibiting autophagy. Acta Pharmacol. Sin., 2017, 38(4), 513-523.
[http://dx.doi.org/10.1038/aps.2016.136] [PMID: 28042876]
[53]
Sun, Q.; Liu, T.; Yuan, Y.; Guo, Z.; Xie, G.; Du, S.; Lin, X.; Xu, Z.; Liu, M.; Wang, W.; Yuan, Q.; Chen, L. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int. J. Cancer, 2015, 136(5), 1003-1012.
[http://dx.doi.org/10.1002/ijc.29065] [PMID: 25044403]
[54]
Luo, J.; Chen, J.; He, L. mir-129-5p Attenuates Irradiation-Induced Autophagy and Decreases Radioresistance of Breast Cancer Cells by Targeting HMGB1. Med. Sci. Monit., 2015, 21, 4122-4129.
[http://dx.doi.org/10.12659/MSM.896661] [PMID: 26720492]
[55]
Albert, J.M.; Kim, K.W.; Cao, C.; Lu, B. Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Mol. Cancer Ther., 2006, 5(5), 1183-1189.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0400] [PMID: 16731750]
[56]
Moretti, L.; Kim, K.W.; Jung, D.K.; Willey, C.D.; Lu, B. Radiosensitization of solid tumors by Z-VAD, a pan-caspase inhibitor. Mol. Cancer Ther., 2009, 8(5), 1270-1279.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0893] [PMID: 19417149]
[57]
Chiu, H.W.; Yeh, Y.L.; Wang, Y.C.; Huang, W.J.; Ho, S.Y.; Lin, P.; Wang, Y.J. Combination of the novel histone deacetylase inhibitor YCW1 and radiation induces autophagic cell death through the downregulation of BNIP3 in triple-negative breast cancer cells in vitro and in an orthotopic mouse model. Mol. Cancer, 2016, 15(1), 46.
[http://dx.doi.org/10.1186/s12943-016-0531-5] [PMID: 27286975]
[58]
Wilson, E.N.; Bristol, M.L.; Di, X.; Maltese, W.A.; Koterba, K.; Beckman, M.J.; Gewirtz, D.A. A switch between cytoprotective and cytotoxic autophagy in the radiosensitization of breast tumor cells by chloroquine and vitamin D. Horm. Cancer, 2011, 2(5), 272-285.
[http://dx.doi.org/10.1007/s12672-011-0081-7] [PMID: 21887591]
[59]
Apel, A.; Herr, I.; Schwarz, H.; Rodemann, H.P.; Mayer, A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res., 2008, 68(5), 1485-1494.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0562] [PMID: 18316613]
[60]
Liang, N.; Jia, L.; Liu, Y.; Liang, B.; Kong, D.; Yan, M.; Ma, S.; Liu, X. ATM pathway is essential for ionizing radiation-induced autophagy. Cell. Signal., 2013, 25(12), 2530-2539.
[http://dx.doi.org/10.1016/j.cellsig.2013.08.010] [PMID: 23993957]
[61]
Song, L.; Liu, S.; Zhang, L.; Yao, H.; Gao, F.; Xu, D.; Li, Q. MiR-21 modulates radiosensitivity of cervical cancer through inhibiting autophagy via the PTEN/Akt/HIF-1α feedback loop and the Akt-mTOR signaling pathway. Tumour Biol., 2016, 37(9), 12161-12168.
[http://dx.doi.org/10.1007/s13277-016-5073-3] [PMID: 27220494]
[62]
Huang, Y.Y.; Sharma, S.K.; Carroll, J.; Hamblin, M.R. Biphasic dose response in low level light therapy - an update. Dose Response, 2011, 9(4), 602-618.
[http://dx.doi.org/10.2203/dose-response.11-009.Hamblin] [PMID: 22461763]
[63]
Djavid, G.E.; Bigdeli, B.; Goliaei, B.; Nikoofar, A.; Hamblin, M.R. Photobiomodulation leads to enhanced radiosensitivity through induction of apoptosis and autophagy in human cervical cancer cells. J. Biophotonics, 2017, 10(12), 1732-1742.
[http://dx.doi.org/10.1002/jbio.201700004] [PMID: 28464474]
[64]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[65]
Chang, L.; Graham, P.H.; Hao, J.; Ni, J.; Bucci, J.; Cozzi, P.J.; Kearsley, J.H.; Li, Y. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways Cell Death Dis, 2014, 5e1437.
[http://dx.doi.org/10.1038/cddis.2014.415] [PMID: 25275598]
[66]
Koukourakis, M.I.; Kalamida, D.; Mitrakas, A.; Pouliliou, S.; Kalamida, S.; Sivridis, E.; Giatromanolaki, A. Intensified autophagy compromises the efficacy of radiotherapy against prostate cancer. Biochem. Biophys. Res. Commun., 2015, 461(2), 268-274.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.014] [PMID: 25887800]
[67]
Lin, H.J.; Liu, H.H.; Lin, C.D.; Kao, M.C.; Chen, Y.A.; Chiang-Ni, C.; Jiang, Z.P.; Huang, M.Z.; Lin, C.J.; Lo, U.G.; Lin, L.C.; Lai, C.K.; Lin, H.; Hsieh, J.T.; Chiu, C.H.; Lai, C.H. Cytolethal Distending Toxin Enhances Radiosensitivity in Prostate Cancer Cells by Regulating Autophagy. Front. Cell. Infect. Microbiol., 2017, 7, 223.
[http://dx.doi.org/10.3389/fcimb.2017.00223] [PMID: 28642840]
[68]
Cao, C.; Subhawong, T.; Albert, J.M.; Kim, K.W.; Geng, L.; Sekhar, K.R.; Gi, Y.J.; Lu, B. Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res., 2006, 66(20), 10040-10047.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0802] [PMID: 17047067]
[69]
Gravina, G.L.; Marampon, F.; Sherris, D.; Vittorini, F.; Di Cesare, E.; Tombolini, V.; Lenzi, A.; Jannini, E.A.; Festuccia, C. Torc1/Torc2 inhibitor, Palomid 529, enhances radiation response modulating CRM1-mediated survivin function and delaying DNA repair in prostate cancer models. Prostate, 2014, 74(8), 852-868.
[http://dx.doi.org/10.1002/pros.22804] [PMID: 24715588]
[70]
Yang, Y.; Yang, Y.; Yang, X.; Zhu, H.; Guo, Q.; Chen, X.; Zhang, H.; Cheng, H.; Sun, X. Autophagy and its function in radiosensitivity. Tumour Biol., 2015, 36(6), 4079-4087.
[http://dx.doi.org/10.1007/s13277-015-3496-x] [PMID: 25946972]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy