Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Antibody Therapy for the Control of Viral Diseases: An Update

Author(s): Miriam Dibo, Eduardo C. Battocchio, Lucas M. dos Santos Souza, Matheus D. Veloso da Silva, Bruna K. Banin-Hirata, Milena M.M. Sapla, Poliana Marinello, Sérgio P.D. Rocha and Lígia C. Faccin-Galhardi*

Volume 20, Issue 13, 2019

Page: [1108 - 1121] Pages: 14

DOI: 10.2174/1389201020666190809112704

Price: $65

Abstract

The epidemiological impact of viral diseases, combined with the emergence and reemergence of some viruses, and the difficulties in identifying effective therapies, have encouraged several studies to develop new therapeutic strategies for viral infections. In this context, the use of immunotherapy for the treatment of viral diseases is increasing. One of the strategies of immunotherapy is the use of antibodies, particularly the monoclonal antibodies (mAbs) and multi-specific antibodies, which bind directly to the viral antigen and bring about activation of the immune system. With current advancements in science and technology, several such antibodies are being tested, and some are already approved and are undergoing clinical trials. The present work aims to review the status of mAb development for the treatment of viral diseases.

Keywords: Immunotherapy, monoclonal antibodies, viral diseases, treatment, emerging viruses, immunotherapeutics.

Graphical Abstract

[1]
Negi, V.S.; Elluru, S.; Sibéril, S.; Graff-Dubois, S.; Mouthon, L.; Kazatchkine, M.D.; Lacroix-Desmazes, S.; Bayry, J.; Kaveri, S.V. Intravenous immunoglobulin: An update on the clinical use and mechanisms of action. J. Clin. Immunol., 2007, 27(3), 233-245.
[http://dx.doi.org/10.1007/s10875-007-9088-9] [PMID: 17351760]
[2]
Fenner, M.; Siegmann, K.; Binz, H. Monoclonal antibodies specific for Sendai virus. II. Production of monoclonal anti-idiotypic antibodies. Scand. J. Immunol., 1986, 24(3), 341-349.
[http://dx.doi.org/10.1111/j.1365-3083.1986.tb02103.x] [PMID: 3018920]
[3]
Berger, M.; Shankar, V.; Vafai, A. Therapeutic applications of monoclonal antibodies. Am. J. Med. Sci., 2002, 324(1), 14-30.
[http://dx.doi.org/10.1097/00000441-200207000-00004] [PMID: 12120821]
[4]
Kaplon, H.; Reichert, J.M. Antibodies to watch in 2019. MAbs, 2018.
[PMID: 30516432]
[5]
Mehlhorn, H. Behring, Emil Adolf von (1854–1917).Encyclopedia of Parasitology; Mehlhorn, H., Ed.; Springer: Berlin, 2015.
[http://dx.doi.org/10.1007/978-3-642-27769-6_3730-1]
[6]
Salazar, G.; Zhang, N.; Fu, T.M.; Na, Z. Antibody therapies for the prevention and treatment of viral infections. NPJ Vaccines, 2017, 2, 19.
[http://dx.doi.org/10.1038/s41541-017-0019-3]
[7]
Costa, W.A. Manual técnico do Instituto Pasteur 4. Profilaxia da raiva humana; Instituto Pasteur: São Paulo, 2000.
[8]
Beigel, J.H. Polyclonal and monoclonal antibodies for the treatment of influenza. Curr. Opin. Infect. Dis., 2018, 31(6), 527-534.
[http://dx.doi.org/10.1097/QCO.0000000000000499] [PMID: 30299360]
[9]
Pelegrin, M.; Naranjo-Gomez, M.; Piechaczyk, M. Antiviral monoclonal antibodies: Can they be more than simple neutralizing agents? Trends Microbiol., 2015, 23(10), 653-665.
[http://dx.doi.org/10.1016/j.tim.2015.07.005] [PMID: 26433697]
[10]
Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975, 256(5517), 495-497.
[http://dx.doi.org/10.1038/256495a0] [PMID: 1172191]
[11]
da Silva Cordeiro, M.L.; da Silva, N.L.; Vaz, M.R.; de Farias Nóbrega, F.F. Anticorpos monoclonais: Implicações terapêuticas no câncer. Revista Saúde Ciência Online, 2014, 3(3), 253-265.
[12]
dos Santos, R.V.; de Lima, P.M.; Nitsche, A.; Harth, F.M.; de Melo, F.Y.; Akamatsu, H.T.; Lima, H.C. Aplicações terapêuticas dos anticorpos monoclonais. Rev. Bras. Alerg. Imunopatol., 2006, 29, 77-85.
[13]
Roque, A.C.; Lowe, C.R.; Taipa, M.Â. Antibodies and genetically engineered related molecules: Production and purification. Biotechnol. Prog., 2004, 20(3), 639-654.
[http://dx.doi.org/10.1021/bp030070k] [PMID: 15176864]
[14]
Nyakatura, E.K.; Soare, A.Y.; Lai, J.R. Bispecific antibodies for viral immunotherapy. Hum. Vaccin. Immunother., 2017, 13(4), 836-842.
[http://dx.doi.org/10.1080/21645515.2016.1251536] [PMID: 27786606]
[15]
Wu, X.; Demarest, S.J. Building blocks for bispecific and trispecific antibodies. Methods, 2019, 154, 3-9.
[PMID: 30172007]
[16]
Linke, R.; Klein, A.; Seimetz, D. Catumaxomab: Clinical development and future directions. MAbs, 2010, 2(2), 129-136.
[http://dx.doi.org/10.4161/mabs.2.2.11221] [PMID: 20190561]
[17]
Turner, J.; Schneider, S.M. Blinatumomab: A new treatment for adults with relapsed acute lymphocytic leukemia. Clin. J. Oncol. Nurs., 2016, 20(2), 165-168.
[http://dx.doi.org/10.1188/16.CJON.165-168] [PMID: 26991709]
[18]
Kaplon, H.; Reichert, J.M. Antibodies to watch in 2018. MAbs, 2018, 10(2), 183-203.
[http://dx.doi.org/10.1080/19420862.2018.1415671] [PMID: 29300693]
[19]
Kügler, M.; Stein, C.; Kellner, C.; Mentz, K.; Saul, D.; Schwenkert, M.; Schubert, I.; Singer, H.; Oduncu, F.; Stockmeyer, B.; Mackensen, A.; Fey, G.H. A recombinant trispecific single-chain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting. Br. J. Haematol., 2010, 150(5), 574-586.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08300.x] [PMID: 20636437]
[20]
Roskopf, C.C.; Braciak, T.A.; Fenn, N.C.; Kobold, S.; Fey, G.H.; Hopfner, K.P.; Oduncu, F.S. Dual-targeting triplebody 33-3-19 mediates selective lysis of biphenotypic CD19+ CD33+ leukemia cells. Oncotarget, 2016, 7(16), 22579-22589.
[http://dx.doi.org/10.18632/oncotarget.8022] [PMID: 26981773]
[21]
Wagner, K.; Kwakkenbos, M.J.; Claassen, Y.B.; Maijoor, K.; Böhne, M.; van der Sluijs, K.F.; Witte, M.D.; van Zoelen, D.J.; Cornelissen, L.A.; Beaumont, T.; Bakker, A.Q.; Ploegh, H.L.; Spits, H. Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity. Proc. Natl. Acad. Sci. USA, 2014, 111(47), 16820-16825.
[http://dx.doi.org/10.1073/pnas.1408605111] [PMID: 25385586]
[22]
Asokan, M.; Rudicell, R.S.; Louder, M.; McKee, K.; O’Dell, S.; Stewart-Jones, G.; Wang, K.; Xu, L.; Chen, X.; Choe, M.; Chuang, G.; Georgiev, I.S.; Joyce, M.G.; Kirys, T.; Ko, S.; Pegu, A.; Shi, W.; Todd, J.P.; Yang, Z.; Bailer, R.T.; Rao, S.; Kwong, P.D.; Nabel, G.J.; Mascola, J.R. Bispecific antibodies targeting different epitopes on the HIV-1 envelope exhibit broad and potent neutralization. J. Virol., 2015, 89(24), 12501-12512.
[http://dx.doi.org/10.1128/JVI.02097-15] [PMID: 26446600]
[23]
Tan, W.; Meng, Y.; Li, H.; Chen, Y.; Han, S.; Zeng, J.; Huang, A.; Li, B.; Zhang, Y.; Guo, Y. A bispecific antibody against two different epitopes on hepatitis B surface antigen has potent hepatitis B virus neutralizing activity. MAbs, 2013, 5(6), 946-955.
[http://dx.doi.org/10.4161/mabs.26390] [PMID: 24492346]
[24]
Nyakatura, E.K.; Zak, S.E.; Wec, A.Z.; Hofmann, D.; Shulenin, S.; Bakken, R.R.; Aman, M.J.; Chandran, K.; Dye, J.M.; Lai, J.R. Design and evaluation of bi- and trispecific antibodies targeting multiple filovirus glycoproteins. J. Biol. Chem., 2018, 293(16), 6201-6211.
[http://dx.doi.org/10.1074/jbc.RA117.001627] [PMID: 29500195]
[25]
Taylor, R.P.; Martin, E.N.; Reinagel, M.L.; Nardin, A.; Craig, M.; Choice, Q.; Schlimgen, R.; Greenbaum, S.; Incardona, N.L.; Ochs, H.D. Bispecific monoclonal antibody complexes facilitate erythrocyte binding and liver clearance of a prototype particulate pathogen in a monkey model. J. Immunol., 1997, 159(8), 4035-4044.
[PMID: 9378993]
[26]
Hahn, C.S.; French, O.G.; Foley, P.; Martin, E.N.; Taylor, R.P. Bispecific monoclonal antibodies mediate binding of dengue virus to erythrocytes in a monkey model of passive viremia. J. Immunol., 2001, 166, 1057-1065.
[http://dx.doi.org/10.4049/jimmunol.166.2.1057]
[27]
Nardin, A.; Sutherland, W.M.; Hevey, M.; Schmaljohn, A.; Taylor, R.P. Quantitative studies of heteropolymer-mediated binding of inactivated Marburg virus to the complement receptor on primate erythrocytes. J. Immunol. Methods, 1998, 211(1-2), 21-31.
[http://dx.doi.org/10.1016/S0022-1759(97)00168-3] [PMID: 9617828]
[28]
Shi, X.; Deng, Y.; Wang, H.; Ji, G.; Tan, W.; Jiang, T.; Li, X.; Zhao, H.; Xia, T.; Meng, Y.; Wang, C.; Yu, X.; Yang, Y.; Li, B.; Qin, E.D.; Dai, J.; Qin, C.F.; Guo, Y. A bispecific antibody effectively neutralizes all four serotypes of dengue virus by simultaneous blocking virus attachment and fusion. MAbs, 2016, 8(3), 574-584.
[http://dx.doi.org/10.1080/19420862.2016.1148850] [PMID: 26905804]
[29]
Wang, J.; Bardelli, M.; Espinosa, D.A.; Pedotti, M.; Ng, T.S.; Bianchi, S.; Simonelli, L.; Lim, E.X.Y.; Foglierini, M.; Zatta, F.; Jaconi, S.; Beltramello, M.; Cameroni, E.; Fibriansah, G.; Shi, J.; Barca, T.; Pagani, I.; Rubio, A.; Broccoli, V.; Vicenzi, E.; Graham, V.; Pullan, S.; Dowall, S.; Hewson, R.; Jurt, S.; Zerbe, O.; Stettler, K.; Lanzavecchia, A.; Sallusto, F.; Cavalli, A.; Harris, E.; Lok, S.M.; Varani, L.; Corti, D. A human bi-specific antibody against Zika virus with high therapeutic potential. Cell, 2017, 171(1), 229-241.e15.
[http://dx.doi.org/10.1016/j.cell.2017.09.002] [PMID: 28938115]
[30]
Zhou, B.; Xu, L.; Zhu, R.; Tang, J.; Wu, Y.; Su, R.; Yin, Z.; Liu, D.; Jiang, Y.; Wen, C.; You, M.; Dai, L.; Lin, Y.; Chen, Y.; Yang, H.; An, Z.; Fan, C.; Cheng, T.; Luo, W.; Xia, N. A bispecific broadly neutralizing antibody against enterovirus 71 and coxsackievirus A16 with therapeutic potential. Antiviral Res., 2019, 161, 28-35.
[http://dx.doi.org/10.1016/j.antiviral.2018.11.001] [PMID: 30419253]
[31]
Labrijn, A.F.; Meesters, J.I.; de Goeij, B.E.; van den Bremer, E.T.; Neijssen, J.; van Kampen, M.D.; Strumane, K.; Verploegen, S.; Kundu, A.; Gramer, M.J.; van Berkel, P.H.; van de Winkel, J.G.; Schuurman, J.; Parren, P.W. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc. Natl. Acad. Sci. USA, 2013, 110(13), 5145-5150.
[http://dx.doi.org/10.1073/pnas.1220145110] [PMID: 23479652]
[32]
Mabry, R.; Lewis, K.E.; Moore, M.; McKernan, P.A.; Bukowski, T.R.; Bontadelli, K.; Brender, T.; Okada, S.; Lum, K.; West, J.; Kuijper, J.L.; Ardourel, D.; Franke, S.; Lockwood, L.; Vu, T.; Frank, A.; Appleby, M.W.; Wolf, A.; Reardon, B.; Hamacher, N.B.; Stevens, B.; Lewis, P.; Lewis, K.B.; Gilbertson, D.G.; Lantry, M.; Julien, S.H.; Ostrander, C.; Chan, C.; Byrnes-Blake, K.; Brody, J.; Presnell, S.; Meengs, B.; Levin, S.D.; Snavely, M. Engineering of stable bispecific antibodies targeting IL-17A and IL-23. Protein Eng. Des. Sel., 2010, 23(3), 115-127.
[http://dx.doi.org/10.1093/protein/gzp073] [PMID: 20022918]
[33]
Chen, X.; Zaro, J.L.; Shen, W.C. Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev., 2013, 65(10), 1357-1369.
[http://dx.doi.org/10.1016/j.addr.2012.09.039] [PMID: 23026637]
[34]
Demarest, S.J.; Glaser, S.M. Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr. Opin. Drug Discov. Devel., 2008, 11(5), 675-687.
[PMID: 18729019]
[35]
Kelley, B. Industrialization of mAb production technology: The bioprocessing industry at a crossroads. MAbs, 2009, 1(5), 443-452.
[http://dx.doi.org/10.4161/mabs.1.5.9448] [PMID: 20065641]
[36]
Luna, M.S.; Manzoni, P.; Paes, B.; Baraldi, E.; Cossey, V.; Kugelman, A.; Chawla, R.; Dotta, A.; Rodríguez Fernández, R.; Resch, B.; Carbonell-Estrany, X. Expert consensus on palivizumab use for respiratory syncytial virus in developed countries. Paediatr. Respir. Rev., 2018. S1526-0542(18)30139-8.
[PMID: 31060948]
[37]
Huang, K.; Incognito, L.; Cheng, X.; Ulbrandt, N.D.; Wu, H. Respiratory syncytial virus-neutralizing monoclonal antibodies motavizumab and palivizumab inhibit fusion. J. Virol., 2010, 84(16), 8132-8140.
[http://dx.doi.org/10.1128/JVI.02699-09] [PMID: 20519399]
[38]
Young, J. Development of a potent respiratory syncytial virus-specific monoclonal antibody for the prevention of serious lower respiratory tract disease in infants. Respir. Med., 2002, 96(Suppl. B), S31-S35.
[http://dx.doi.org/10.1053/rmed.2002.1298] [PMID: 11996402]
[39]
Robbie, G.J.; Criste, R.; Dall’Acqua, W.F.; Jensen, K.; Patel, N.K.; Losonsky, G.A.; Griffin, M.P. A novel investigational Fc modified humanized monoclonal antibody, Motavizumab-YTE, has an extended half-life in healthy adults: A randomized study. Antimicrob. Agents Chemother., 2013.AAC-01285
[http://dx.doi.org/10.1128/AAC.01285-13]
[40]
Resch, B. Product review on the monoclonal antibody palivizumab for prevention of respiratory syncytial virus infection. Hum. Vaccin. Immunother., 2017, 13(9), 2138-2149.
[http://dx.doi.org/10.1080/21645515.2017.1337614]
[41]
Domachowske, J.B.; Khan, A.A.; Esser, M.T.; Jensen, K.; Takas, T.; Villafana, T.; Dubovsky, F.; Griffin, M.P. Safety, Tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion f-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatr. Infect. Dis. J., 2018, 37(9), 886-892.
[http://dx.doi.org/10.1097/INF.0000000000001916] [PMID: 29373476]
[42]
Caidi, H.; Harcourt, J.L.; Tripp, R.A.; Anderson, L.J.; Haynes, L.M. Combination therapy using monoclonal antibodies against Respiratory Syncytial Virus (RSV) G glycoprotein protects from RSV disease in BALB/c mice. PLoS One, 2012, 7(12)e51485
[http://dx.doi.org/10.1371/journal.pone.0051485] [PMID: 23300550]
[43]
Han, J.; Takeda, K.; Wang, M.; Zeng, W.; Jia, Y.; Shiraishi, Y.; Okamoto, M.; Dakhama, A.; Gelfand, E.W. Effects of anti-g and anti-f antibodies on airway function after respiratory syncytial virus infection. Am. J. Respir. Cell Mol. Biol., 2014, 51(1), 143-154.
[http://dx.doi.org/10.1165/rcmb.2013-0360OC] [PMID: 24521403]
[44]
Caidi, H.; Miao, C.; Thornburg, N.J.; Tripp, R.A.; Anderson, L.J.; Haynes, L.M. Anti-respiratory syncytial virus (RSV) G monoclonal antibodies reduce lung inflammation and viral lung titers when delivered therapeutically in a BALB/c mouse model. Antiviral Res., 2018, 154, 149-157.
[http://dx.doi.org/10.1016/j.antiviral.2018.04.014] [PMID: 29678551]
[45]
Davey, R.T., Jr; Dodd, L.; Proschan, M.A.; Neaton, J.; Neuhaus Nordwall, J.; Koopmeiners, J.S.; Beigel, J.; Tierney, J.; Lane, H.C.; Fauci, A.S.; Massaquoi, M.B.F.; Sahr, F.; Malvy, D. PREVAIL II Writing Group Multi-National PREVAIL II Study Team. A randomized, controlled trial of ZMapp for Ebola virus infection. N. Engl. J. Med., 2016, 375(15), 1448-1456.
[http://dx.doi.org/10.1056/NEJMoa1604330] [PMID: 27732819]
[46]
Moekotte, A.L.; Huson, M.A.M.; van der Ende, A.J.; Agnandji, S.T.; Huizenga, E.; Goorhuis, A.; Grobusch, M.P. Monoclonal antibodies for the treatment of Ebola virus disease. Expert Opin. Investig. Drugs, 2016, 25(11), 1325-1335.
[http://dx.doi.org/10.1080/13543784.2016.1240785] [PMID: 27676206]
[47]
Qiu, X.; Wong, G.; Audet, J.; Bello, A.; Fernando, L.; Alimonti, J.B.; Fausther-Bovendo, H.; Wei, H.; Aviles, J.; Hiatt, E.; Johnson, A.; Morton, J.; Swope, K.; Bohorov, O.; Bohorova, N.; Goodman, C.; Kim, D.; Pauly, M.H.; Velasco, J.; Pettitt, J.; Olinger, G.G.; Whaley, K.; Xu, B.; Strong, J.E.; Zeitlin, L.; Kobinger, G.P. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature, 2014, 514(7520), 47-53.
[http://dx.doi.org/10.1038/nature13777] [PMID: 25171469]
[48]
Corti, D.; Misasi, J.; Mulangu, S.; Stanley, D.A.; Kanekiyo, M.; Wollen, S.; Ploquin, A.; Doria-Rose, N.A.; Staupe, R.P.; Bailey, M.; Shi, W.; Choe, M.; Marcus, H.; Thompson, E.A.; Cagigi, A.; Silacci, C.; Fernandez-Rodriguez, B.; Perez, L.; Sallusto, F.; Vanzetta, F.; Agatic, G.; Cameroni, E.; Kisalu, N.; Gordon, I.; Ledgerwood, J.E.; Mascola, J.R.; Graham, B.S.; Muyembe-Tamfun, J.J.; Trefry, J.C.; Lanzavecchia, A.; Sullivan, N.J. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science, 2016, 351(6279), 1339-1342.
[http://dx.doi.org/10.1126/science.aad5224] [PMID: 26917593]
[49]
Wilson, J.A.; Hevey, M.; Bakken, R.; Guest, S.; Bray, M.; Schmaljohn, A.L.; Hart, M.K. Epitopes involved in antibody-mediated protection from Ebola virus. Science, 2000, 287(5458), 1664-1666.
[http://dx.doi.org/10.1126/science.287.5458.1664] [PMID: 10698744]
[50]
Davidson, E.; Bryan, C.; Fong, R.H.; Barnes, T.; Pfaff, J.M.; Mabila, M.; Rucker, J.B.; Doranz, B.J. Mechanism of binding to ebola virus glycoprotein by the ZMapp, ZMAb, and MB-003 cocktail antibodies. J. Virol., 2015, 89(21), 10982-10992.
[http://dx.doi.org/10.1128/JVI.01490-15] [PMID: 26311869]
[51]
Qiu, X.; Alimonti, J.B.; Melito, P.L.; Fernando, L.; Ströher, U.; Jones, S.M. Characterization of Zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clin. Immunol., 2011, 141(2), 218-227.
[http://dx.doi.org/10.1016/j.clim.2011.08.008] [PMID: 21925951]
[52]
Qiu, X.; Audet, J.; Lv, M.; He, S.; Wong, G.; Wei, H.; Luo, L.; Fernando, L.; Kroeker, A.; Fausther Bovendo, H.; Bello, A.; Li, F.; Ye, P.; Jacobs, M.; Ippolito, G.; Saphire, E.O.; Bi, S.; Shen, B.; Gao, G.F.; Zeitlin, L.; Feng, J.; Zhang, B.; Kobinger, G.P. Two-mAb cocktail protects macaques against the Makona variant of Ebola virus. Sci. Transl. Med., 2016, 8(329)329ra33
[http://dx.doi.org/10.1126/scitranslmed.aad9875] [PMID: 26962157]
[53]
Food and Drug Administration (U.S.). Palivizumab Product Approval Information., https://www.accessdata.fda.gov/drugsatfda_docs/appletter/1998/palimed061998L.htm (Accessed January 12, 2018).
[54]
Emu, B.; Fessel, J.; Schrader, S.; Kumar, P.; Richmond, G.; Win, S.; Weinheimer, S.; Marsolais, C.; Lewis, S. Phase 3 study of ibalizumab for multidrug-resistant HIV-1. N. Engl. J. Med., 2018, 379(7), 645-654.
[http://dx.doi.org/10.1056/NEJMoa1711460] [PMID: 30110589]
[55]
Iacob, S.A.; Iacob, D.G. Ibalizumab targeting CD4 receptors, an emerging molecule in HIV therapy. Front. Microbiol., 2017, 8, 2323.
[http://dx.doi.org/10.3389/fmicb.2017.02323] [PMID: 29230203]
[56]
Caskey, M.; Klein, F.; Lorenzi, J.C.; Seaman, M.S.; West, P., Jr; Buckley, N.; Kremer, G.; Nogueira, L.; Braunschweig, M.; Scheid, J.F.; Horwitz, J.A. 3BNC117 a broadly neutralizing antibody suppresses viremia in HIV-1-infected humans. Nature, 2015, 522(7557), 487-491.
[http://dx.doi.org/10.1038/nature14411] [PMID: 25855300]
[57]
AIDSinfo. https://aidsinfo.nih.gov/drugs/584/3bnc117/0/professio-nal (Accessed January 19, 2019).
[58]
Gaudinski, M.R.; Coates, E.E.; Houser, K.V.; Chen, G.L.; Yamshchikov, G.; Saunders, J.G.; Holman, L.A.; Gordon, I.; Plummer, S.; Hendel, C.S.; Conan-Cibotti, M.; Lorenzo, M.G.; Sitar, S.; Carlton, K.; Laurencot, C.; Bailer, R.T.; Narpala, S.; McDermott, A.B.; Namboodiri, A.M.; Pandey, J.P.; Schwartz, R.M.; Hu, Z.; Koup, R.A.; Capparelli, E.; Graham, B.S.; Mascola, J.R.; Ledgerwood, J.E. VRC 606 study team. safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adults. PLoS Med., 2018, 15(1)e1002493
[http://dx.doi.org/10.1371/journal.pmed.1002493] [PMID: 29364886]
[59]
Nogales, A.; Piepenbrink, M.S.; Wang, J.; Ortega, S.; Basu, M.; Fucile, C.F.; Treanor, J.J.; Rosenberg, A.F.; Zand, M.S.; Keefer, M.C.; Martinez-Sobrido, L.; Kobie, J.J. A highly potent and broadly neutralizing H1 influenza-specific human monoclonal antibody. Sci. Rep., 2018, 8(1), 4374.
[http://dx.doi.org/10.1038/s41598-018-22307-8] [PMID: 29531320]
[60]
Koszalka, P.; Tilmanis, D.; Hurt, A.C. Influenza antivirals currently in late‐phase clinical trial. Influenza Respirat. Viruses, 2017, 11(3), 240-246.
[61]
Throsby, M.; van den Brink, E.; Jongeneelen, M.; Poon, L.L.; Alard, P.; Cornelissen, L.; Bakker, A.; Cox, F.; van Deventer, E.; Guan, Y.; Cinatl, J.; ter Meulen, J.; Lasters, I.; Carsetti, R.; Peiris, M.; de Kruif, J.; Goudsmit, J. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One, 2008, 3(12)e3942
[http://dx.doi.org/10.1371/journal.pone.0003942] [PMID: 19079604]
[62]
Friesen, R.H.; Koudstaal, W.; Koldijk, M.H.; Weverling, G.J.; Brakenhoff, J.P.; Lenting, P.J.; Stittelaar, K.J.; Osterhaus, A.D.; Kompier, R.; Goudsmit, J. New class of monoclonal antibodies against severe influenza: Prophylactic and therapeutic efficacy in ferrets. PLoS One, 2010, 5(2)e9106
[http://dx.doi.org/10.1371/journal.pone.0009106] [PMID: 20161706]
[63]
Tharakaraman, K.; Subramanian, V.; Cain, D.; Sasisekharan, V.; Sasisekharan, R. Broadly neutralizing influenza hemagglutinin stem-specific antibody CR8020 targets residues that are prone to escape due to host selection pressure. Cell Host Microbe, 2014, 15(5), 644-651.
[http://dx.doi.org/10.1016/j.chom.2014.04.009] [PMID: 24832457]
[64]
Kallewaard, N.L.; Corti, D.; Collins, P.J.; Neu, U.; McAuliffe, J.M.; Benjamin, E.; Wachter-Rosati, L.; Palmer-Hill, F.J.; Yuan, A.Q.; Walker, P.A.; Vorlaender, M.K.; Bianchi, S.; Guarino, B.; De Marco, A.; Vanzetta, F.; Agatic, G.; Foglierini, M.; Pinna, D.; Fernandez-Rodriguez, B.; Fruehwirth, A.; Silacci, C.; Ogrodowicz, R.W.; Martin, S.R.; Sallusto, F.; Suzich, J.A.; Lanzavecchia, A.; Zhu, Q.; Gamblin, S.J.; Skehel, J.J. Structure and function analysis of an antibody recognizing all influenza A subtypes. Cell, 2016, 166(3), 596-608.
[http://dx.doi.org/10.1016/j.cell.2016.05.073] [PMID: 27453466]
[65]
Baranovich, T.; Jones, J.C.; Russier, M.; Vogel, P.; Szretter, K.J.; Sloan, S.E.; Seiler, P.; Trevejo, J.M.; Webby, R.J.; Govorkova, E.A. The hemagglutinin stem‐binding monoclonal antibody VIS410 controls influenza virus‐induced acute respiratory distress syndrome. Antimicrob. Agents Chemother., 2016, 60(4), 2118-2131.
[http://dx.doi.org/10.1128/AAC.02457-15] [PMID: 26787699]
[66]
Lim, J.J.; Derby, M.A.; Zhang, Y.; Deng, R.; Larouche, R.; Anderson, M.; Maia, M.; Carrier, S.; Pelletier, I.; Girard, J.; Kulkarni, P.; Newton, E.; Tavel, J.A. A Phase 1, Randomized, double-blind, placebo-controlled, single-ascending-dose study to investigate the safety, tolerability, and pharmacokinetics of an anti-influenza B virus monoclonal antibody, MHAB5553A, in healthy volunteers. Antimicrob. Agents Chemother., 2017, 61(8)AAC-00279
[http://dx.doi.org/10.1128/AAC.00279-17] [PMID: 28559255]
[67]
Grandea, A.G., III; Olsen, O.A.; Cox, T.C.; Renshaw, M.; Hammond, P.W.; Chan-Hui, P.Y.; Mitcham, J.L.; Cieplak, W.; Stewart, S.M.; Grantham, M.L.; Pekosz, A.; Kiso, M.; Shinya, K.; Hatta, M.; Kawaoka, Y.; Moyle, M. Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses. Proc. Natl. Acad. Sci. USA, 2010, 107(28), 12658-12663.
[http://dx.doi.org/10.1073/pnas.0911806107] [PMID: 20615945]
[68]
Ramos, E.L.; Mitcham, J.L.; Koller, T.D.; Bonavia, A.; Usner, D.W.; Balaratnam, G.; Fredlund, P.; Swiderek, K.M. Efficacy and safety of treatment with an anti-m2e monoclonal antibody in experimental human influenza. J. Infect. Dis., 2015, 211(7), 1038-1044.
[http://dx.doi.org/10.1093/infdis/jiu539] [PMID: 25281755]
[69]
Ohlin, M.; Söderberg-Nauclér, C. Human antibody technology and the development of antibodies against cytomegalovirus. Mol. Immunol., 2015, 67(2 Pt A), 153-170.
[http://dx.doi.org/10.1016/j.molimm.2015.02.026] [PMID: 25802091]
[70]
Borucki, M.J.; Spritzler, J.; Asmuth, D.M.; Gnann, J.; Hirsch, M.S.; Nokta, M.; Aweeka, F.; Nadler, P.I.; Sattler, F.; Alston, B.; Nevin, T.T.; Owens, S.; Waterman, K.; Hubbard, L.; Caliendo, A.; Pollard, R.B. AACTG 266 Team. A phase II, double-masked, randomized, placebo-controlled evaluation of a human monoclonal anti-Cytomegalovirus antibody (MSL-109) in combination with standard therapy versus standard therapy alone in the treatment of AIDS patients with Cytomegalovirus retinitis. Antiviral Res., 2004, 64(2), 103-111.
[http://dx.doi.org/10.1016/j.antiviral.2004.06.012] [PMID: 15498605]
[71]
Ishida, J.H.; Patel, A.; Mehta, A.K.; Gatault, P.; McBride, J.M.; Burgess, T.; Derby, M.A.; Snydman, D.R.; Emu, B.; Feierbach, B.; Fouts, A.E.; Maia, M.; Deng, R.; Rosenberger, C.M.; Gennaro, L.A.; Striano, N.S.; Liao, X.C.; Tavel, J.A. Phase 2 randomized, double-blind, placebo-controlled trial of RG7667, a combination monoclonal antibody, for prevention of cytomegalovirus infection in high-risk kidney transplant recipients. Antimicrob. Agents Chemother., 2017, 61(2), e01794-e16.
[PMID: 27872061]
[72]
Theraclone Sciences Inc., 2013. Theraclone Sciences Announces Positive TopLine Data from Phase 1 Trial of Therapeutic Antibody for the Treatment of Cytomegalovirus Infection. http://www.theraclone-sciences.com/pdf/Theraclone Press Release-4-2-13.pdf (Accessed January 19, 2019)
[73]
Kauvar, L.M.; Liu, K.; Park, M.; DeChene, N.; Stephenson, R.; Tenorio, E.; Ellsworth, S.L.; Tabata, T.; Petitt, M.; Tsuge, M.; Fang-Hoover, J.; Adler, S.P.; Cui, X.; McVoy, M.A.; Pereira, L. A high-affinity native human antibody neutralizes human cytomegalovirus infection of diverse cell types. Antimicrob. Agents Chemother., 2015, 59(3), 1558-1568.
[http://dx.doi.org/10.1128/AAC.04295-14] [PMID: 25534746]
[74]
Zydek, M.; Petitt, M.; Fang-Hoover, J.; Adler, B.; Kauvar, L.M.; Pereira, L.; Tabata, T. HCMV infection of human trophoblast progenitor cells of the placenta is neutralized by a human monoclonal antibody to glycoprotein B and not by antibodies to the pentamer complex. Viruses, 2014, 6(3), 1346-1364.
[http://dx.doi.org/10.3390/v6031346] [PMID: 24651029]
[75]
Dole, K.; Segal, F.P.; Feire, A.; Magnusson, B.; Rondon, J.C.; Vemula, J.; Yu, J.; Pang, Y.; Pertel, P. A first-in-human study to assess the safety and pharmacokinetics of monoclonal antibodies against human cytomegalovirus in healthy volunteers. Antimicrob. Agents Chemother., 2016, 60(5), 2881-2887.
[http://dx.doi.org/10.1128/AAC.02698-15] [PMID: 26926639]
[76]
McVoy, M.M.; Tenorio, E.; Kauvar, L.M. A Native Human Monoclonal Antibody Targeting HCMV gB (AD-2 Site I). Int. J. Mol. Sci., 2018, 19(12), 3982.
[http://dx.doi.org/10.3390/ijms19123982] [PMID: 30544903]
[77]
Magnani, D.M.; Rogers, T.F.; Beutler, N.; Ricciardi, M.J.; Bailey, V.K.; Gonzalez-Nieto, L.; Briney, B.; Sok, D.; Le, K.; Strubel, A.; Gutman, M.J.; Pedreño-Lopez, N.; Grubaugh, N.D.; Silveira, C.G.T.; Maxwell, H.S.; Domingues, A.; Martins, M.A.; Lee, D.E.; Okwuazi, E.E.; Jean, S.; Strobert, E.A.; Chahroudi, A.; Silvestri, G.; Vanderford, T.H.; Kallas, E.G.; Desrosiers, R.C.; Bonaldo, M.C.; Whitehead, S.S.; Burton, D.R.; Watkins, D.I. Neutralizing human monoclonal antibodies prevent Zika virus infection in macaques. Sci. Transl. Med., 2017, 9(410)eaan8184
[http://dx.doi.org/10.1126/scitranslmed.aan8184] [PMID: 28978754]
[78]
Sapparapu, G.; Fernandez, E.; Kose, N.; Bin, C.; Fox, J.M.; Bombardi, R.G.; Zhao, H.; Nelson, C.A.; Bryan, A.L.; Barnes, T.; Davidson, E.; Mysorekar, I.U.; Fremont, D.H.; Doranz, B.J.; Diamond, M.S.; Crowe, J.E. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature, 2016, 540(7633), 443-447.
[http://dx.doi.org/10.1038/nature20564] [PMID: 27819683]
[79]
Keeffe, J.R.; Van Rompay, K.K.A.; Olsen, P.C.; Wang, Q.; Gazumyan, A.; Azzopardi, S.A.; Schaefer-Babajew, D.; Lee, Y.E.; Stuart, J.B.; Singapuri, A.; Watanabe, J.; Usachenko, J.; Ardeshir, A.; Saeed, M.; Agudelo, M.; Eisenreich, T.; Bournazos, S.; Oliveira, T.Y.; Rice, C.M.; Coffey, L.L.; MacDonald, M.R.; Bjorkman, P.J.; Nussenzweig, M.C.; Robbiani, D.F. A combination of two human monoclonal antibodies prevents zika virus escape mutations in non-human primates. Cell Rep., 2018, 25(6), 1385-1394.e7.
[http://dx.doi.org/10.1016/j.celrep.2018.10.031] [PMID: 30403995]
[80]
Safety and Tolerability of an Antibody Against Zika Virus (Tyzivumab) in Humans.https://clinicaltrials.gov/ct2/show/ NCT03443830 (Accessed January 19, 2019).
[81]
Tychan’s first-in-class Zika monoclonal antibody therapeutics ready for human trial after 9 months of development.https://www.tychan.com/Tychan_Press_Release.pdf (Accessed January 19, 2019).
[82]
The New York Times. Inovio's DNA-Encoded Monoclonal Antibody (dMAb™) Platform Leaps Forward with First-in-Human Trial. Published: January 7. 2019.https://markets.on.nytimes.com/research/stocks/news/press_release.asp?docTag=201901070800PR_NEWS_USPRX-PH15873&feedID=600&press_symbol=136927
[83]
Fibriansah, G.; Lok, S.M. The development of therapeutic antibodies against dengue virus. Antiviral Res., 2016, 128, 7-19.
[http://dx.doi.org/10.1016/j.antiviral.2016.01.002] [PMID: 26794397]
[84]
Williams, K.L.; Sukupolvi-Petty, S.; Beltramello, M.; Johnson, S.; Sallusto, F.; Lanzavecchia, A.; Harris, E. Therapeutic efficacy of antibodies lacking FcγR against lethal dengue virus infection is due to neutralizing potency and blocking of enhancing antibodies. PLoS Pathog., 2013, 9(2)e1003157
[http://dx.doi.org/10.1371/journal.ppat.1003157] [PMID: 23459315]
[85]
Screaton, G.; Mongkolsapaya, J.; Yacoub, S.; Roberts, C. New insights into the immunopathology and control of dengue virus infection. Nat. Rev. Immunol., 2015, 15(12), 745-759.
[http://dx.doi.org/10.1038/nri3916] [PMID: 26603900]
[86]
Gerlich, W. Structure and molecular virology. Viral hepatitis; Zucker-mann, A.J; Thomas, H.C., Ed.; Churchill Livingstone: New York, 1993, pp. 83-112.
[87]
van Nunen, A.B.; Baumann, M.; Manns, M.P.; Reichen, J.; Spengler, U.; Marschner, J.P.; de Man, R.A. International Study Group. Efficacy and safety of an intravenous monoclonal anti-HBs in chronic hepatitis B patients. Liver, 2001, 21(3), 207-212.
[http://dx.doi.org/10.1034/j.1600-0676.2001.021003207.x] [PMID: 11422784]
[88]
Akamatsu, Y.; Pakabunto, K.; Xu, Z.; Zhang, Y.; Tsurushita, N. Whole IgG surface display on mammalian cells: Application to isolation of neutralizing chicken monoclonal anti-IL-12 antibodies. J. Immunol. Methods, 2007, 327(1-2), 40-52.
[http://dx.doi.org/10.1016/j.jim.2007.07.007] [PMID: 17719061]
[89]
A Phase 2 Study of GC1102 (Recombinant Hepatitis B Immunoglobulin) in HBV-related Liver Transplant Recipients. https://clinicaltrials.gov/ct2/show/study/NCT02304315
[90]
Chaudhuri, S.; Symons, J.A.; Deval, J. Innovation and trends in the development and approval of antiviral medicines: 1987-2017 and beyond. Antiviral Res., 2018, 155, 76-88.
[http://dx.doi.org/10.1016/j.antiviral.2018.05.005] [PMID: 29758235]
[91]
Galun, E.; Eren, R.; Safadi, R.; Ashour, Y.; Terrault, N.; Keeffe, E.B.; Matot, E.; Mizrachi, S.; Terkieltaub, D.; Zohar, M.; Lubin, I.; Gopher, J.; Shouval, D.; Dagan, S. Clinical evaluation (phase I) of a combination of two human monoclonal antibodies to HBV: safety and antiviral properties. Hepatology, 2002, 35(3), 673-679.
[http://dx.doi.org/10.1053/jhep.2002.31867] [PMID: 11870383]
[92]
Schiano, T.D.; Charlton, M.; Younossi, Z.; Galun, E.; Pruett, T.; Tur-Kaspa, R.; Eren, R.; Dagan, S.; Graham, N.; Williams, P.V.; Andrews, J. Monoclonal antibody HCV-AbXTL68 in patients undergoing liver transplantation for HCV: Results of a phase 2 randomized study. Liver Transpl., 2006, 12(9), 1381-1389.
[http://dx.doi.org/10.1002/lt.20876] [PMID: 16933235]
[93]
Chung, R.T.; Gordon, F.D.; Curry, M.P.; Schiano, T.D.; Emre, S.; Corey, K.; Markmann, J.F.; Hertl, M.; Pomposelli, J.J.; Pomfret, E.A.; Florman, S.; Schilsky, M.; Broering, T.J.; Finberg, R.W.; Szabo, G.; Zamore, P.D.; Khettry, U.; Babcock, G.J.; Ambrosino, D.M.; Leav, B.; Leney, M.; Smith, H.L.; Molrine, D.C. Human monoclonal antibody MBL-HCV1 delays HCV viral rebound following liver transplantation: A randomized controlled study. Am. J. Transplant., 2013, 13(4), 1047-1054.
[http://dx.doi.org/10.1111/ajt.12083] [PMID: 23356386]
[94]
Peregrine Pharmaceuticals. Peregrine Initiates Randomized Phase II Trial of Bavituximab in Chronic Hepatitis C. Peregrine Initiates Randomized Phase II Trial of Bavituximab in Chronic Hepatitis C., https://www.clinicaltrials.gov/ct2/show/NCT01273948?term=bavituximab&draw=2&rank=12 (Accessed January 19, 2019).
[95]
Shivalingaiah, A.H.; Shankaraiah, R.H.; Hanumanthaiah, A.N.D. Safety of new indigenous human Rabies Monoclonal Antibody (RMAb) for post exposure prophylaxis. Indian J. Community Health, 2018, 30(3), 196-201.
[96]
Sparrow, E.; Torvaldsen, S.; Newall, A.T.; Wood, J.G.; Sheikh, M.; Kieny, M.P.; Abela-Ridder, B. Recent advances in the development of monoclonal antibodies for rabies post exposure prophylaxis: A review of the current status of the clinical development pipeline. Vaccine, 2018.VS0264-410X(18)31503-2..
[http://dx.doi.org/10.1016/j.vaccine.2018.11.004] [PMID: 30503659]
[97]
Chao, T.Y.; Ren, S.; Shen, E.; Moore, S.; Zhang, S.F.; Chen, L.; Rupprecht, C.E.; Tsao, E. SYN023, a novel humanized monoclonal antibody cocktail, for post-exposure prophylaxis of rabies. PLoS Negl. Trop. Dis., 2017, 11(12)e0006133
[http://dx.doi.org/10.1371/journal.pntd.0006133] [PMID: 29261658]
[98]
Bakker, A.B.; Python, C.; Kissling, C.J.; Pandya, P.; Marissen, W.E.; Brink, M.F.; Lagerwerf, F.; Worst, S.; van Corven, E.; Kostense, S.; Hartmann, K.; Weverling, G.J.; Uytdehaag, F.; Herzog, C.; Briggs, D.J.; Rupprecht, C.E.; Grimaldi, R.; Goudsmit, J. First administration to humans of a monoclonal antibody cocktail against rabies virus: Safety, tolerability, and neutralizing activity. Vaccine, 2008, 26(47), 5922-5927.
[http://dx.doi.org/10.1016/j.vaccine.2008.08.050] [PMID: 18804136]
[99]
Pan, X.; Wu, Y.; Wang, W.; Zhang, L.; Xiao, G. Novel neutralizing monoclonal antibodies against Junin virus. Antiviral Res., 2018, 156, 21-28.
[http://dx.doi.org/10.1016/j.antiviral.2018.06.002] [PMID: 29870772]
[100]
Lu, X.; Xiao, H.; Li, S.; Pang, X.; Song, J.; Liu, S.; Cheng, H.; Li, Y.; Wang, X.; Huang, C.; Guo, T.; Ter Meulen, J.; Daffis, S.; Yan, J.; Dai, L.; Rao, Z.; Klenk, H.D.; Qi, J.; Shi, Y.; Gao, G.F. Double lock of a human neutralizing and protective monoclonal antibody targeting the yellow fever virus envelope. Cell Rep., 2019, 26(2), 438-446.e5.
[http://dx.doi.org/10.1016/j.celrep.2018.12.065] [PMID: 30625326]
[101]
Ozawa, T.; Masaki, H.; Takasaki, T.; Aoyama, I.; Yumisashi, T.; Yamanaka, A.; Konishi, E.; Ohnuki, Y.; Muraguchi, A.; Kishi, H. Human monoclonal antibodies against West Nile virus from Japanese encephalitis-vaccinated volunteers. Antiviral Res., 2018, 154, 58-65.
[http://dx.doi.org/10.1016/j.antiviral.2018.04.011] [PMID: 29665373]
[102]
Levstik, M.; Wong, P.; Greanya, E.D.; Yoshida, E.M. The role of hepatitis B immunoglobulin in hepatitis B related liver transplantation: Canadian Transplant Centre Position Paper. Ann. Hepatol., 2011, 10(4), 441-444.
[http://dx.doi.org/10.1016/S1665-2681(19)31510-8] [PMID: 21911883]
[103]
Cytomegalovirus Intravenous Immune Globulin (CMV-IG; Cytogam ®) Literature Review. https://www.nebraskamed.com/sites/default/files/documents/for-providers/asp/cmv-ig-lit-review-mar-2012.pdf (Accessed January 19, 2019).
[104]
Hershberger, E.; Sloan, S.; Narayan, K.; Hay, C.A.; Smith, P.; Engler, F.; Jeeninga, R.; Smits, S.; Trevejo, J.; Shriver, Z.; Oldach, D. Safety and efficacy of monoclonal antibody VIS410 in adults with uncomplicated influenza A infection: Results from a randomized, double-blind, phase-2, placebo-controlled study. EBioMedicine, 2019, 40, 574-582.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.051] [PMID: 30638863]
[105]
Beck, A.; Wurch, T.; Bailly, C.; Corvaia, N. Strategies and challenges for the next generation of therapeutic antibodies. Nat. Rev. Immunol., 2010, 10(5), 345-352.
[http://dx.doi.org/10.1038/nri2747] [PMID: 20414207]
[106]
Reichert, J.M. Antibodies to watch in 2015. MAbs, 2015, 7(1), 1-8.
[http://dx.doi.org/10.4161/19420862.2015.988944] [PMID: 25484055]
[107]
Vacchelli, E.; Eggermont, A.; Galon, J.; Sautès-Fridman, C.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: Monoclonal antibodies in cancer therapy. OncoImmunology, 2013, 2(1)e22789
[http://dx.doi.org/10.4161/onci.22789] [PMID: 23482847]
[108]
Cox, K.S.; Tang, A.; Chen, Z.; Horton, M.S.; Yan, H.; Wang, X.M.; Dubey, S.A.; DiStefano, D.J.; Ettenger, A.; Fong, R.H.; Doranz, B.J.; Casimiro, D.R.; Vora, K.A. Rapid isolation of dengue-neutralizing antibodies from single cell-sorted human antigen-specific memory B-cell cultures. MAbs, 2016, 8(1), 129-140.
[http://dx.doi.org/10.1080/19420862.2015.1109757] [PMID: 26491897]
[109]
Scherer, E.M.; Smith, R.A.; Simonich, C.A.; Niyonzima, N.; Carter, J.J.; Galloway, D.A. Characteristics of memory B cells elicited by a highly efficacious HPV vaccine in subjects with no pre-existing immunity. PLoS Pathog., 2014, 10(10)e1004461
[http://dx.doi.org/10.1371/journal.ppat.1004461] [PMID: 25330199]
[110]
Wang, Q.; Yang, H.; Liu, X.; Dai, L.; Ma, T.; Qi, J.; Li, S. Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Sci. Translatl. Med, 2016.8(369), 369ra179-369ra179..
[http://dx.doi.org/10.1126/scitranslmed.aai8336]
[111]
Gilman, M.S.; Castellanos, C.A.; Chen, M.; Ngwuta, J.O.; Goodwin, E.; Moin, S.M.; Mas, V.; Melero, J.A.; Wright, P.F.; Graham, B.S.; McLellan, J.S.; Walker, L.M. Rapid profiling of RSV antibody repertoires from the memory B cells of naturally infected adult donors. Sci. Immunol, 2016.1(6), eaaj1879..
[http://dx.doi.org/10.1126/sciimmunol.aaj1879] [PMID: 28111638]
[112]
Meng, W.; Pan, W.; Zhang, A.J.; Li, Z.; Wei, G.; Feng, L.; Dong, Z.; Li, C.; Hu, X.; Sun, C.; Luo, Q.; Yuen, K.Y.; Zhong, N.; Chen, L. Rapid generation of human-like neutralizing monoclonal antibodies in urgent preparedness for influenza pandemics and virulent infectious diseases. PLoS One, 2013, 8(6)e66276
[http://dx.doi.org/10.1371/journal.pone.0066276] [PMID: 23824680]
[113]
Miller, M.D.; Geleziunas, R.; Bianchi, E.; Lennard, S.; Hrin, R.; Zhang, H.; Lu, M.; An, Z.; Ingallinella, P.; Finotto, M.; Mattu, M.; Finnefrock, A.C.; Bramhill, D.; Cook, J.; Eckert, D.M.; Hampton, R.; Patel, M.; Jarantow, S.; Joyce, J.; Ciliberto, G.; Cortese, R.; Lu, P.; Strohl, W.; Schleif, W.; McElhaugh, M.; Lane, S.; Lloyd, C.; Lowe, D.; Osbourn, J.; Vaughan, T.; Emini, E.; Barbato, G.; Kim, P.S.; Hazuda, D.J.; Shiver, J.W.; Pessi, A. A human monoclonal antibody neutralizes diverse HIV-1 isolates by binding a critical gp41 epitope. Proc. Natl. Acad. Sci. USA, 2005, 102(41), 14759-14764.
[http://dx.doi.org/10.1073/pnas.0506927102] [PMID: 16203977]
[114]
Mao, S.; Gao, C.; Lo, C.H.L.; Wirsching, P.; Wong, C.H.; Janda, K.D. Phage-display library selection of high-affinity human single-chain antibodies to tumor-associated carbohydrate antigens sialyl Lewisx and Lewisx. Proc. Natl. Acad. Sci. USA, 1999, 96(12), 6953-6958.
[http://dx.doi.org/10.1073/pnas.96.12.6953] [PMID: 10359820]
[115]
Huang, J.; Doria-Rose, N.A.; Longo, N.S.; Laub, L.; Lin, C.L.; Turk, E.; Kang, B.H.; Migueles, S.A.; Bailer, R.T.; Mascola, J.R.; Connors, M. Isolation of human monoclonal antibodies from peripheral blood B cells. Nat. Protoc., 2013, 8(10), 1907-1915.
[http://dx.doi.org/10.1038/nprot.2013.117] [PMID: 24030440]
[116]
Corti, D.; Voss, J.; Gamblin, S.J.; Codoni, G.; Macagno, A.; Jarrossay, D.; Vachieri, S.G.; Pinna, D.; Minola, A.; Vanzetta, F.; Silacci, C.; Fernandez-Rodriguez, B.M.; Agatic, G.; Bianchi, S.; Giacchetto-Sasselli, I.; Calder, L.; Sallusto, F.; Collins, P.; Haire, L.F.; Temperton, N.; Langedijk, J.P.; Skehel, J.J.; Lanzavecchia, A. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinin. Science, 2011, 333(6044), 850-856.
[http://dx.doi.org/10.1126/science.1205669] [PMID: 21798894]
[117]
Sato, S.; Beausoleil, S.A.; Popova, L.; Beaudet, J.G.; Ramenani, R.K.; Zhang, X.; Wieler, J.S.; Schieferl, S.M.; Cheung, W.C.; Polakiewicz, R.D. Proteomics-directed cloning of circulating antiviral human monoclonal antibodies. Nat. Biotechnol., 2012, 30(11), 1039-1043.
[http://dx.doi.org/10.1038/nbt.2406] [PMID: 23138294]
[118]
Boutz, D.R.; Horton, A.P.; Wine, Y.; Lavinder, J.J.; Georgiou, G.; Marcotte, E.M. Proteomic identification of monoclonal antibodies from serum. Anal. Chem., 2014, 86(10), 4758-4766.
[http://dx.doi.org/10.1021/ac4037679] [PMID: 24684310]
[119]
Cheung, W.C.; Beausoleil, S.A.; Zhang, X.; Sato, S.; Schieferl, S.M.; Wieler, J.S.; Beaudet, J.G.; Ramenani, R.K.; Popova, L.; Comb, M.J.; Rush, J.; Polakiewicz, R.D. A proteomics approach for the identification and cloning of monoclonal antibodies from serum. Nat. Biotechnol., 2012, 30(5), 447-452.
[http://dx.doi.org/10.1038/nbt.2167] [PMID: 22446692]
[120]
Wine, Y.; Boutz, D.R.; Lavinder, J.J.; Miklos, A.E.; Hughes, R.A.; Hoi, K.H.; Jung, S.T.; Horton, A.P.; Murrin, E.M.; Ellington, A.D.; Marcotte, E.M.; Georgiou, G. Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proc. Natl. Acad. Sci. USA, 2013, 110(8), 2993-2998.
[http://dx.doi.org/10.1073/pnas.1213737110] [PMID: 23382245]
[121]
Baccam, P.; Beauchemin, C.; Macken, C.A.; Hayden, F.G.; Perelson, A.S. Kinetics of influenza A virus infection in humans. J. Virol., 2006, 80(15), 7590-7599.
[http://dx.doi.org/10.1128/JVI.01623-05] [PMID: 16840338]
[122]
de Oliveira Poersch, C.; Pavoni, D.P.; Queiroz, M.H.; de Borba, L.; Goldenberg, S.; dos Santos, C.N.; Krieger, M.A. Dengue virus infections: Comparison of methods for diagnosing the acute disease. J. Clin. Virol., 2005, 32(4), 272-277.
[http://dx.doi.org/10.1016/j.jcv.2004.08.008] [PMID: 15780804]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy