Abstract
The prodrug design is a versatile, powerful method that can be applied to a wide range of parent drug molecules, administration routes, and formulations. Clinically, the majority of prodrugs are used with the aim of enhancing drug permeation by increasing lipophilicity, or by improving aqueous solubility. Prodrug design may improve the bioavailability of parent molecule, and thus can be integrated into the iterative process of lead optimization, rather than employing it as a post-hoc approach. The purpose of this review is to provide an update of advances and progress in the knowledge of current strategic approaches of prodrug design, along with their real-world utility in drug discovery and development. The review covers the type of prodrugs and functional groups that are amenable to prodrug design. Various prodrug approaches for improving oral drug delivery are discussed, with numerous examples of marketed prodrugs, including improved aqueous solubility, improved lipophilicity, transporter-mediated absorption, and prodrug design to achieve site-specific delivery. Tools employed for prodrug screening, and specific challenges in prodrug research and development are also elaborated. This article is intended to encourage discovery scientists to be creative and consider a rationally designed prodrug approach during the lead optimization phase of drug discovery programs, when the structure activity relationship (SAR) for the drug target is incompatible with pharmacokinetic or biopharmaceutical objectives.
Keywords: Absorption, bioavailability, carrier-mediated transport, drug targeting, permeability, prodrug, solubility, transporter, lipophilicity, transporter-mediated absorption, structure ac-tivity relationship (SAR), pharmacokinetic properties, intestinal epithelium, blood-brain barrier, distribution, metabolism, and excretion (ADME), Bioprecursor, sulindac, Losartan, Oxidative, cyclophosphamide, antiproliferative agent, neoplastic cells, hypoxia, antiparasitic, nitroarenes, metronidazol, antimicrobial prodrugs, antitubercular, nitroimidazooxazine, cytotoxic agents, Bopindolol, Dipivefrine, Glaucoma, Spirapril, Melevodapa, Mestranol, Nitazoxamide, Terfenadine, Viramidine, omeprazole action, Carrier-linked prodrugs, oseltamivir, bambuterol, bacampicillin, oximes, Quinapril, Enalapril, angiotensin-converting enzyme (ACE), Phosphate Ester Prodrugs, Acyloxyalkyl Prodrugs, Carbamate Prodrugs, Docarpamine, Schiff Base Prodrugs, γ-aminobutyric acid (GABA), P-glycoprotein, enterocyte, protease inhibitors, desglymidodrine, Gabapentin, colonic mucosa, Chemical delivey System (CDS), Sulfasalazine, Tumour Targeting, Capecitabine, antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT), Nitroreductase, nucleoside monophosphonate (NMP), 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA), Simvastatin, Lovastatin, Caco-2, nalbuphine, fosphenytoin, hydroxyethylnicotinamide, adefovir dipivoxil, polymorphism, tenofovir disoproxil, Acyclovir, Hepatic clearance, Gancyclovir
Current Medicinal Chemistry
Title: Prodrug Design to Improve Pharmacokinetic and Drug Delivery Properties: Challenges to the Discovery Scientists
Volume: 17 Issue: 32
Author(s): S. Jana, S. Mandlekar and P. Marathe
Affiliation:
Keywords: Absorption, bioavailability, carrier-mediated transport, drug targeting, permeability, prodrug, solubility, transporter, lipophilicity, transporter-mediated absorption, structure ac-tivity relationship (SAR), pharmacokinetic properties, intestinal epithelium, blood-brain barrier, distribution, metabolism, and excretion (ADME), Bioprecursor, sulindac, Losartan, Oxidative, cyclophosphamide, antiproliferative agent, neoplastic cells, hypoxia, antiparasitic, nitroarenes, metronidazol, antimicrobial prodrugs, antitubercular, nitroimidazooxazine, cytotoxic agents, Bopindolol, Dipivefrine, Glaucoma, Spirapril, Melevodapa, Mestranol, Nitazoxamide, Terfenadine, Viramidine, omeprazole action, Carrier-linked prodrugs, oseltamivir, bambuterol, bacampicillin, oximes, Quinapril, Enalapril, angiotensin-converting enzyme (ACE), Phosphate Ester Prodrugs, Acyloxyalkyl Prodrugs, Carbamate Prodrugs, Docarpamine, Schiff Base Prodrugs, γ-aminobutyric acid (GABA), P-glycoprotein, enterocyte, protease inhibitors, desglymidodrine, Gabapentin, colonic mucosa, Chemical delivey System (CDS), Sulfasalazine, Tumour Targeting, Capecitabine, antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT), Nitroreductase, nucleoside monophosphonate (NMP), 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA), Simvastatin, Lovastatin, Caco-2, nalbuphine, fosphenytoin, hydroxyethylnicotinamide, adefovir dipivoxil, polymorphism, tenofovir disoproxil, Acyclovir, Hepatic clearance, Gancyclovir
Abstract: The prodrug design is a versatile, powerful method that can be applied to a wide range of parent drug molecules, administration routes, and formulations. Clinically, the majority of prodrugs are used with the aim of enhancing drug permeation by increasing lipophilicity, or by improving aqueous solubility. Prodrug design may improve the bioavailability of parent molecule, and thus can be integrated into the iterative process of lead optimization, rather than employing it as a post-hoc approach. The purpose of this review is to provide an update of advances and progress in the knowledge of current strategic approaches of prodrug design, along with their real-world utility in drug discovery and development. The review covers the type of prodrugs and functional groups that are amenable to prodrug design. Various prodrug approaches for improving oral drug delivery are discussed, with numerous examples of marketed prodrugs, including improved aqueous solubility, improved lipophilicity, transporter-mediated absorption, and prodrug design to achieve site-specific delivery. Tools employed for prodrug screening, and specific challenges in prodrug research and development are also elaborated. This article is intended to encourage discovery scientists to be creative and consider a rationally designed prodrug approach during the lead optimization phase of drug discovery programs, when the structure activity relationship (SAR) for the drug target is incompatible with pharmacokinetic or biopharmaceutical objectives.
Export Options
About this article
Cite this article as:
Jana S., Mandlekar S. and Marathe P., Prodrug Design to Improve Pharmacokinetic and Drug Delivery Properties: Challenges to the Discovery Scientists, Current Medicinal Chemistry 2010; 17 (32) . https://dx.doi.org/10.2174/092986710793205426
DOI https://dx.doi.org/10.2174/092986710793205426 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Adrenomedullin in Hypertension
Current Hypertension Reviews Novel Therapeutic Targets in Neuropsychiatric Disorders: The Neuroepigenome
Current Pharmaceutical Design Selective Inhibition of SIRT2 Improves Outcomes in a Lethal Septic Model
Current Molecular Medicine Looking at Drug Resistance Mechanisms for Microtubule Interacting Drugs: Does TUBB3 Work?
Current Cancer Drug Targets Technological Barriers in the Use of Electrochemical Microsensors and Microbiosensors for in vivo Analysis of Neurological Relevant Substances
Current Neuropharmacology Role of the Peroxynitrite - Poly (ADP-Ribose) Polymerase Pathway in the Pathogenesis of Liver Injury
Current Pharmaceutical Design Near Infrared Optical Technologies to Illuminate the Status of the Neonatal Brain
Current Pediatric Reviews Scutellarin Attenuates Microglia-Mediated Neuroinflammation and Promotes Astrogliosis in Cerebral Ischemia - A Therapeutic Consideration
Current Medicinal Chemistry Paclitaxel Resistance: Molecular Mechanisms and Pharmacologic Manipulation
Current Cancer Drug Targets Experimental Brain Ischemic Preconditioning: A Concept to Putative Targets
CNS & Neurological Disorders - Drug Targets Nitric Oxide and Dietary Factors: Part V Summary/Conclusion and References
Vascular Disease Prevention (Discontinued) The Dual Role of Nitric Oxide in Glioma
Current Pharmaceutical Design Regulation of the Urokinase Receptor (uPAR) by LDL Receptor-related Protein-1 (LRP1)
Current Pharmaceutical Design Undermining Tumor Angiogenesis by Gene Therapy: An Emerging Field
Current Gene Therapy COX-2: Friend or Foe?
Current Pharmaceutical Design Recent Advances on Immunosuppressive Drugs and Remyelination Enhancers for the Treatment of Multiple Sclerosis
Current Pharmaceutical Design Therapeutic Efficacy of Selegiline in Neurodegenerative Disorders and Neurological Diseases
Current Drug Targets miR-15b Suppression of Bcl-2 Contributes to Cerebral Ischemic Injury and is Reversed by Sevoflurane Preconditioning
CNS & Neurological Disorders - Drug Targets 5-Aminoisoquinolin-1-one (5-AIQ), a Water-Soluble Inhibitor of the Poly(ADP-Ribose)Polymerases (PARPs)
Current Medicinal Chemistry Cross-Talk between Tumor Cells and the Microenvironment at the Metastatic Niche
Current Pharmaceutical Biotechnology