Abstract
Because the basic unit of biology is the cell, biological knowledge is rooted in the epistemology of the cell, and because life is the salient characteristic of the cell, its epistemology must be centered on its livingness, not its constituent components. The organization and regulation of these components in the pursuit of life constitute the fundamental nature of the cell. Thus, regulation sits at the heart of biological knowledge of the cell and the extraordinary complexity of this regulation conditions the kind of knowledge that can be obtained, in particular, the representation and intelligibility of that knowledge. This paper is essentially split into two parts. The first part discusses the inadequacy of everyday intelligibility and intuition in science and the consequent need for scientific theories to be expressed mathematically without appeal to commonsense categories of understanding, such as causality. Having set the backdrop, the second part addresses biological knowledge. It briefly reviews modern scientific epistemology from a general perspective and then turns to the epistemology of the cell. In analogy with a multi-faceted factory, the cell utilizes a highly parallel distributed control system to maintain its organization and regulate its dynamical operation in the face of both internal and external changes. Hence, scientific knowledge is constituted by the mathematics of stochastic dynamical systems, which model the overall relational structure of the cell and how these structures evolve over time, stochasticity being a consequence of the need to ignore a large number of factors while modeling relatively few in an extremely complex environment.
Keywords: Biology, causality, computational biology, epistemology, genomics, systems biology
Current Genomics
Title: Causality, Randomness, Intelligibility, and the Epistemology of the Cell
Volume: 11 Issue: 4
Author(s): Edward R. Dougherty and Michael L. Bittner
Affiliation:
Keywords: Biology, causality, computational biology, epistemology, genomics, systems biology
Abstract: Because the basic unit of biology is the cell, biological knowledge is rooted in the epistemology of the cell, and because life is the salient characteristic of the cell, its epistemology must be centered on its livingness, not its constituent components. The organization and regulation of these components in the pursuit of life constitute the fundamental nature of the cell. Thus, regulation sits at the heart of biological knowledge of the cell and the extraordinary complexity of this regulation conditions the kind of knowledge that can be obtained, in particular, the representation and intelligibility of that knowledge. This paper is essentially split into two parts. The first part discusses the inadequacy of everyday intelligibility and intuition in science and the consequent need for scientific theories to be expressed mathematically without appeal to commonsense categories of understanding, such as causality. Having set the backdrop, the second part addresses biological knowledge. It briefly reviews modern scientific epistemology from a general perspective and then turns to the epistemology of the cell. In analogy with a multi-faceted factory, the cell utilizes a highly parallel distributed control system to maintain its organization and regulate its dynamical operation in the face of both internal and external changes. Hence, scientific knowledge is constituted by the mathematics of stochastic dynamical systems, which model the overall relational structure of the cell and how these structures evolve over time, stochasticity being a consequence of the need to ignore a large number of factors while modeling relatively few in an extremely complex environment.
Export Options
About this article
Cite this article as:
R. Dougherty Edward and L. Bittner Michael, Causality, Randomness, Intelligibility, and the Epistemology of the Cell, Current Genomics 2010; 11 (4) . https://dx.doi.org/10.2174/138920210791233072
DOI https://dx.doi.org/10.2174/138920210791233072 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Peroxisome Proliferator-Activated Receptor-γ and Its Ligands in the Treatment of Tumors in the Nervous System
Current Stem Cell Research & Therapy Innate Immune Surveillance in the Central Nervous System Following Legionella pneumophila Infection
CNS & Neurological Disorders - Drug Targets Pharmacotherpy and Alzheimer’s Disease: The M-Drugs (Melatonin, Minocycline, Modafinil, and Memantine) Approach
Current Pharmaceutical Design The Role of ABC Transporters in Drug Resistance, Metabolism and Toxicity
Current Drug Delivery The Early Bird Catches the Worm – Can Evolution Teach us Lessons in Fighting HIV?
Current HIV Research A New Approach of Delivering siRNA to the Cornea and its Application for Inhibiting Herpes Simplex Keratitis
Current Molecular Medicine Enhanced Antioxidant and Protective Activities on Retinal Ganglion Cells of Carotenoids-Overexpressing Transgenic Carrot
Current Drug Targets A Step Further Towards Multitarget Drugs for Alzheimer and Neuronal Vascular Diseases: Targeting the Cholinergic System, Amyloid-β Aggregation and Ca2++ Dyshomeostasis
Current Medicinal Chemistry Yeast as a Humanized Model Organism for Biotransformation-Related Toxicity
Current Drug Metabolism Hypertension to Heart Failure: New Developmental Strategies do not Cross a Clinical and Therapeutic Divide
Current Pharmaceutical Design Somatic Genome Variations in Health and Disease
Current Genomics Therapeutic Potential of Indole Derivatives as Anti-HIV Agents: A Mini-review
Current Topics in Medicinal Chemistry Pathophysiogenesis of Mesial Temporal Lobe Epilepsy: Is Prevention of Damage Antiepileptogenic?
Current Medicinal Chemistry Recent Development of Peptide Drugs and Advance on Theory and Methodology of Peptide Inhibitor Design
Medicinal Chemistry Biodiversity as a Source of Bioactive Compounds Against Snakebites
Current Medicinal Chemistry Immunotherapy with Tumor Vaccines for the Treatment of Malignant Gliomas
Current Drug Discovery Technologies Pharmaceutical Applications of the Benzylisoquinoline Alkaloids from Argemone mexicana L.
Current Topics in Medicinal Chemistry Implications of the Dominant Role of Transporters in Drug Uptake by Cells
Current Topics in Medicinal Chemistry Retinoids in Cancer Chemoprevention
Current Cancer Drug Targets Apis mellifera Proteomics: Where Will the Future Bee?
Current Proteomics