Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Antioxidant and Antiproliferative Activity of Selected Medicinal Plants of Lower Assam, India: An In Vitro and In Silico Study

Author(s): Ananta Swargiary*, Akalesh K. Verma, Sweta Singh, Mritunjoy K. Roy and Manita Daimari

Volume 21, Issue 2, 2021

Published on: 18 July, 2020

Page: [267 - 277] Pages: 11

DOI: 10.2174/1871520620666200719000449

Price: $65

conference banner
Abstract

Background: The use of medicinal plants for general wellbeing and disease treatment is a common practice among tribal communities of Kokrajhar districts of Assam. However, little works have been done to study the pharmacological aspect of the plants.

Objectives: The present study intends to study the antioxidant and antiproliferative properties of selected medicinal plants used by the tribal communities of the Kokrajhar district of Assam since ancient times.

Methods: Five traditionally important medicinal plants, namely, Cassia fistula, Citrus grandis, Lindernia crustacea, Sacciolepis myosuroides, and Zingiber zerumbet were investigated for antioxidant, antiproliferative (cytotoxic) and apoptosis-inducing potential in the malignant cancer cell line. Phytochemical content, such as phenolic and flavonoid content, were estimated following standard protocol. The methanolic extract of plants was investigated following the phosphomolybdate method (TAC), FRAP, DPPH, ABTS, and TBARS assays. Antiproliferative activities of the plants were carried out by MTT assay in DL and PBMC cells. The apoptotic study was carried out following the acridine orange and ethidium bromide staining method and fluorescent microscopic imaging. Based on the significant (P≤0.05) high apoptotic inducing potential of the plant and to further dissect the molecular mode of action, including downstream biological action, major phytochemicals derived from L. crustacea were investigated for its prospective binding affinity with anti-apoptotic cancer target proteins.

Results: Antioxidant studies by FRAP, DPPH, ABTS, and TBARS assay revealed that all five plants contain considerable free radical scavenging activity. C. fistula showed the strongest free radical scavenging activity while the fruit peel extract of C. grandis showed poor activity. The overall antioxidant activities of plants such as TAC, FRAP, DPPH, ABTS, and TBARS may be arranged in decreasing activity as C. fistula > Z. zerumbet > L. crustacea > S. myosuroides > C. grandis. MTT based cell proliferation study showed that all the plants extract significantly (P≤0.05) inhibited cell viability with negligible cytotoxicity (~5-12%) in normal cells. Moreover, L. crustacea showed promising antiproliferative and apoptosis-inducing ability against Dalton’s lymphoma. It is worth mentioning that the major bioactive compounds of the most potent plant extract, L. crustacea interacted with anti-apoptotic proteins (cancer target) with higher affinity and the results are compared with reference inhibitors.

Conclusion: It is worth noting that these plants have the potential to consider for further scientific studies in different cell lines and animal models. Furthermore, isolation and characterization of bioactive compound(s) may promise the discovery of new and valuable drugs candidate to tackle various human diseases.

Keywords: Antioxidant, antiproliferative, apoptosis, docking, ethnomedicine, Kokrajhar.

Graphical Abstract

[1]
World Health Organization Soil-transmitted Helminth Infections, http://www.who.int/mediacentre/factsheets/fs366/en/
[2]
Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 2001, 109(Suppl. 1), 69-75.
[PMID: 11250806]
[3]
Tandon, V.; Yadav, A.K.; Roy, B.; Das, B. Phytochemicals as cure of worm infections in traditional medicine systems. In:Emerging Trends in Zoology; Srivastava, U.C., Ed.; Narendra Publishing House: New Delhi, 2011, pp. 1-27.
[4]
Verpoorte, R. Pharmacognosy in the new millennium: Lead finding and biotechnology. J. Pharm. Pharmacol., 2000, 52(3), 253-262.
[http://dx.doi.org/10.1211/0022357001773931] [PMID: 10757412]
[5]
Kumar, K.; Satish, S.; Sayeed, I.; Hedge, K. Therapeutic uses of Cassia fistula. Int. J. Pharma Chem. Res., 2017, 3(1), 38-43.
[6]
Rahmani, A.H. Cassia fistula Linn: Potential candidate in the health management. Pharmacogn. Rev., 2015, 7(3), 217-224.
[http://dx.doi.org/10.4103/0974-8490.157956] [PMID: 26130932]
[7]
Srividhya, M.; Hridya, H.; Shanthi, V.; Ramanathan, K. Bioactive Amento flavone isolated from Cassia fistula L. leaves exhibits therapeutic efficacy 3Biotech, 2017, 7-33.
[8]
Singh, A. Navneet. Citrus maxima (Burm.) Merr. A traditional medicine: its antimicrobial potential and pharmacological update for commercial exploitation in herbal drugs – A review. Int. J. Chemtech Res., 2017, 10(5), 642-651.
[9]
Gyawali, R.; Jeon, D.H.; Moon, J.Y.; Kim, H.; Song, Y.W.; Hyun, H.B.; Jeong, D.; Cho, S.K. Chemical composition and antiproliferative activity of supercritical extract of Citrus grandis (L.) Osbeck fruits from Korea. J. Essent. Oil Bear. Pl., 2013, 15(6), 915-925.
[http://dx.doi.org/10.1080/0972060X.2012.10662594]
[10]
Segun, P.A.; Ismail, F.M.D.; Ogbole, O.O.; Nahar, L.; Evans, A.R.; Ajaiyeoba, E.O.; Sarker, S.D. Acridone alkaloids from the stem bark of Citrus aurantium display selective cytotoxicity against breast, liver, lung and prostate human carcinoma cells. J. Ethnopharmacol., 2018, 227, 131-138.
[http://dx.doi.org/10.1016/j.jep.2018.08.039] [PMID: 30189240]
[11]
Das, S.R.C.; Ahmed, A.B.; Saha, D.; Chanda, I. Scientific evidence of Lindernia crustacea (L.) F. Muell, an indigenous plant: A folklore medicine used traditionally. Int. Res. J. Pharm., 2019, 10(1), 176-183.
[http://dx.doi.org/10.7897/2230-8407.100130]
[12]
Cheng, L.; Ye, Y.; Xiang, L.; Osada, H.; Qi, J. Lindersin B from Lindernia crustacea induces neuritogenesis by activation of tyrosine kinase A/phosphatidylinositol 3 kinase/extracellular signal-regulated kinase signaling pathway. Phytomedicine, 2017, 24, 31-38.
[http://dx.doi.org/10.1016/j.phymed.2016.11.011] [PMID: 28160859]
[13]
Chen, X.; Gu, N.; Xue, C.; Li, B.R. Plant flavonoid taxifolin inhibits the growth, migration and invasion of human osteosarcoma cells. Mol. Med. Rep., 2018, 17(2), 3239-3245.
[PMID: 29257319]
[14]
Razak, S.; Afsar, T.; Ullah, A.; Almajwal, A.; Alkholief, M.; Alshamsan, A.; Jahan, S. Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regression by activating Wnt/β-catenin signaling pathway. BMC Cancer, 2018, 18(1), 1043.
[http://dx.doi.org/10.1186/s12885-018-4959-4] [PMID: 30367624]
[15]
Barusrux, S.; Weerapreeyakul, N.; Phiboonchaiyanan, P.P.; Khamphio, M.; Tanthanuch, W.; Thummanu, K. Investigation of anticancer activity of Lindernia crustacea (L.) F. Muell. var. Crustacean. Walailak J. Sci. Tech., 2019, 16(5), 307-317.
[16]
Jang, D.S.; Han, A.R.; Park, G.; Jhon, G.J.; Seo, E.K. Flavonoids and aromatic compounds from the rhizomes of Zingiber zerumbet. Arch. Pharm. Res., 2004, 27(4), 386-389.
[http://dx.doi.org/10.1007/BF02980078] [PMID: 15180302]
[17]
Singh, C.B.; Nongalleima, K.; Brojendrosingh, S.; Ningombam, S.; Lokendrajit, N.; Singh, L.W. Biological and chemical properties of Zingiber zerumbet Smith: A review. Phytochem. Rev., 2012, 11, 113-125.
[http://dx.doi.org/10.1007/s11101-011-9222-4]
[18]
Koga, A.Y.; Beltrame, F.L.; Pereira, A.V. Several aspects of Zingiber zerumbet: A review. Rev. Bras. Farmacogn., 2016, 26, 385-391.
[http://dx.doi.org/10.1016/j.bjp.2016.01.006]
[19]
Tan, J.W.; Israf, D.A.; Tham, C.L. Major bioactive compounds in essential oils extracted from the rhizomes of Zingiber zerumbet (L) Smith: A mini-review on the anti-allergic and immunomodulatory properties. Front. Pharmacol., 2018, 9, 652.
[http://dx.doi.org/10.3389/fphar.2018.00652] [PMID: 29973880]
[20]
Swargiary, A.; Daimari, A.; Daimari, M.; Basumatary, N.; Narzary, E. Phytochemicals, antioxidant, and anthelmintic activity of selected traditional wild edible plants of lower Assam. Indian J. Pharmacol., 2016, 48(4), 418-423.
[http://dx.doi.org/10.4103/0253-7613.186212] [PMID: 27756954]
[21]
Daimari, M.; Roy, M.K.; Swargiary, A.; Baruah, S.; Basumatary, S. An ethnobotanical survey of antidiabetic medicinal plants used by the Bodo tribe of Kokrajhar district, Assam. Indian J. Tradit. Knowl., 2019, 18(3), 421-429.
[22]
Swargiary, A.; Roy, M.K.; Daimari, M. Survey and documentation of ethnobotanicals used in the traditional medicines system of tribal communities of Chirang district of Assam against helminthiasis. Biomed. Pharmacol. J., 2019, 12(4), 1923-1935.
[http://dx.doi.org/10.13005/bpj/1824]
[23]
Swargiary, A.; Roy, M.K.; Daimari, M. Survey and documentation of putative anthelmintic plants used in ethnomedicinal systems of tribal communities of Baksa District of Assam. Med. Plant, 2019, 11(4), 363-374.
[http://dx.doi.org/10.5958/0975-6892.2019.00048.0]
[24]
Swargiary, A.; Daimari, M.; Roy, M.K. Survey and documentation of anthelmintic plants used in traditional medicine system of tribal communities of Udalguri district of Assam, India. J. Appl. Pharm. Sci., 2020, 10(1), 46-54.
[http://dx.doi.org/10.7324/JAPS.2020.101006]
[25]
Sadasivam, S.; Manickam, A. Biochemical Methods, 3rd ed; New Age International: New Delhi, 2008.
[26]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[27]
Iloki-Assanga, S.B.I.; Lewis-Lujan, L.M.; Rivera-Castañeda, E.G.; Gil-Salido, A.A.; Acosta-Silva, A.L.; Rubio-Pino, J.L. Effect of maturity and harvest season on antioxidant activity, phenolic compounds and ascorbic acid of Morinda citrifolia L. (Noni) grown in Mexico. Afr. J. Biotechnol., 2013, 12, 4630-4639.
[28]
Ordonez, A.A.; Gomez, J.D.; Vattuone, M.A.; Isla, M.I. Antioxidant activities of Sechium edule (Jacq) Swartz extracts. Food Chem., 2006, 97, 452-458.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.024]
[29]
Huda-Faujan, N.; Noriham, A.; Norrakiah, A.S.; Babji, A.S. Antioxidant activity of plants methanolic extracts containing phenolic compounds. Afr. J. Biotechnol., 2009, 8, 484-489.
[30]
Iloki-Assanga, S.B.; Lewis-Luján, L.M.; Lara-Espinoza, C.L.; Gil-Salido, A.A.; Fernandez-Angulo, D.; Rubio-Pino, J.L.; Haines, D.D. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Res. Notes, 2015, 8, 396.
[http://dx.doi.org/10.1186/s13104-015-1388-1] [PMID: 26323940]
[31]
Mamta.; Mehrotra, S.; Amitabh.; Kirar, V.; Vats, P.; Nandi, S.P.; Negi, P.S.; Misra, K. Phytochemical and antimicrobial activities of Himalayan Cordyceps sinensis (Berk.). Sacc. Indian J. Exp. Biol., 2015, 53, 36-43.
[32]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[33]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[34]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[35]
Verma, A.K.; Prasad, S.B. Changes in glutathione, oxidative stress and mitochondrial membrane potential in apoptosis involving the anticancer activity of cantharidin isolated from redheaded blister beetles, Epicauta hirticornis. Anticancer. Agents Med. Chem., 2013, 13(7), 1096-1114.
[http://dx.doi.org/10.2174/18715206113139990131] [PMID: 23343079]
[36]
Squier, M.K.T.; Cohen, J.J. Standard quantitative assays for apoptosis. Mol. Biotechnol., 2001, 19(3), 305-312.
[http://dx.doi.org/10.1385/MB:19:3:305] [PMID: 11721626]
[37]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[38]
Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric., 2000, 80, 1744-1756.
[http://dx.doi.org/10.1002/1097-0010(20000915)80:12<1744:AID-JSFA725>3.0.CO;2-W]
[39]
Horwitt, M.K. Data supporting supplementation of humans with vitamin E. J. Nutr., 1991, 121(3), 424-429.
[http://dx.doi.org/10.1093/jn/121.3.424] [PMID: 1796936]
[40]
Serafini, M.; Ghiselli, A.; Ferro-Luzzi, A. In vivo antioxidant effect of green and black tea in man. Eur. J. Clin. Nutr., 1996, 50(1), 28-32.
[PMID: 8617188]
[41]
Stein, J.H.; Keevil, J.G.; Wiebe, D.A.; Aeschlimann, S.; Folts, J.D. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation, 1999, 100(10), 1050-1055.
[http://dx.doi.org/10.1161/01.CIR.100.10.1050] [PMID: 10477529]
[42]
Halliwell, B.; Gutteridge, J.M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 1984, 219(1), 1-14.
[http://dx.doi.org/10.1042/bj2190001] [PMID: 6326753]
[43]
Morris, D.; Khurasany, M.; Nguyen, T.; Kim, J.; Guilford, F.; Mehta, R.; Gray, D.; Saviola, B.; Venketaraman, V. Glutathione and infection. Biochim. Biophys. Acta, 2013, 1830(5), 3329-3349.
[http://dx.doi.org/10.1016/j.bbagen.2012.10.012] [PMID: 23089304]
[44]
Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol., 2018, 9, 477.
[http://dx.doi.org/10.3389/fphys.2018.00477] [PMID: 29867535]
[45]
Storz, P. Reactive oxygen species in tumor progression. Front. Biosci., 2005, 10, 1881-1896.
[http://dx.doi.org/10.2741/1667] [PMID: 15769673]
[46]
Gul, M.Z.; Ahmad, F.; Kondapi, A.K.; Qureshi, I.A.; Ghazi, I.A. Antioxidant and antiproliferative activities of Abrus precatorius leaf extracts--an in vitro study. BMC Complement. Altern. Med., 2013, 13, 53.
[http://dx.doi.org/10.1186/1472-6882-13-53] [PMID: 23452983]
[47]
Auddy, B.; Ferreira, M.; Blasina, F.; Lafon, L.; Arredondo, F.; Dajas, F.; Tripathi, P.C.; Seal, T.; Mukherjee, B. Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J. Ethnopharmacol., 2003, 84(2-3), 131-138.
[http://dx.doi.org/10.1016/S0378-8741(02)00322-7] [PMID: 12648805]
[48]
Irshad, M.; Zafaryab, M.; Singh, M.; Rizvi, M.M.A. Comparative analysis of the antioxidant activity of Cassia fistula extracts. Int. J. Med. Chem., 2012, 2012157125
[http://dx.doi.org/10.1155/2012/157125] [PMID: 25374682]
[49]
Divya, P.J.; Jamuna, P.; Jyothi, L.A. Antioxidant properties of fresh and processed Citrus aurantium fruit. Cogent Food Agric., 2016, 21184119
[http://dx.doi.org/10.1080/23311932.2016.1184119]]
[50]
Bhavesh, V.D.; Nayak, Y.; Jayashree, B.S. In vitro antioxidant and antiglycation activity of Zingiber zerumbet (wild zinger) rhizome extract. Int. J. Res. Pharm. Sci., 2013, 4(4), 482-489.
[51]
Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci., 2015, 11(8), 982-991.
[http://dx.doi.org/10.7150/ijbs.12096] [PMID: 26157352]
[52]
Teixeira, R.R.; Barbosa, L.C.; Maltha, C.R.A.; Rocha, M.E.; Bezerra, D.P.; Costa-Lotuf, L.V.; Pessoa, C.; Moraes, M.O. Synthesis and cytotoxic activity of some 3-benzyl-5-arylidenefuran-2(5H)-ones. Molecules, 2007, 12(5), 1101-1116.
[http://dx.doi.org/10.3390/12051101] [PMID: 17873844]
[53]
Jamalian, A.; Miri, R.; Firuzi, O.; Amini, M.; Moosavi-Movahedi, A.; Shafieea, A. Synthesis, cytotoxicity and calcium antagonist activity of novel imidazolyl derivatives of 1,8-acridinediones. J. Iran Chem. Soc., 2011, 8, 983-991.
[http://dx.doi.org/10.1007/BF03246554]
[54]
van Tonder, A.; Joubert, A.M.; Cromarty, A.D. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res. Notes, 2015, 8, 47.
[http://dx.doi.org/10.1186/s13104-015-1000-8] [PMID: 25884200]
[55]
Ciesielska, E.; Szulawska, A.; Studzian, K.; Ochocki, J.; Malinowska, K.; Kik, K.; Szmigiero, L. Comparative studies on the mechanism of cytotoxic action of novel platinum II complexes with pyrazole ligands. J. Inorg. Biochem., 2006, 100(10), 1579-1585.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.05.001] [PMID: 16842854]
[56]
Xu, X.; Gao, X.; Jin, L.; Bhadury, P.S.; Yuan, K.; Hu, D.; Song, B.; Yang, S. Antiproliferation and cell apoptosis inducing bioactivities of constituents from Dysosma versipellis in PC3 and Bcap-37 cell lines. Cell Div., 2011, 6(1), 14.
[http://dx.doi.org/10.1186/1747-1028-6-14] [PMID: 21676247]
[57]
Sun, J.; Chu, Y.F.; Wu, X.; Liu, R.H. Antioxidant and antiproliferative activities of common fruits. J. Agric. Food Chem., 2002, 50(25), 7449-7454.
[http://dx.doi.org/10.1021/jf0207530] [PMID: 12452674]
[58]
Tauchen, J.; Bortl, L.; Huml, L.; Miksatkova, P.; Doskocil, I.; Marsik, P.; Villegas, P.; Flores, Y.B.; Damme, P.V.; Lojka, B.; Havlik, J.; Lapcik, O.; Kokoska, L. Phenolic composition, antioxidant and anti-proliferative activities of edible and medicinal plants from the Peruvian Amazon. Rev. Bras. Farmacogn., 2016, 26, 728-737.
[http://dx.doi.org/10.1016/j.bjp.2016.03.016]
[59]
Bhattacharyya, M.K.; Dutta, D. Nashre-ul-Islam, S.M.; Frontera, A.; Sharma, P.; Verma, A.K.; Das, A. Energetically Significant antiparallel π-stacking contacts in Co(II), Ni(II) and Cu(II) coordination compounds of pyridine-2,6-dicarboxylates: Antiproliferative evaluation and theoretical studies. Inorg. Chim. Acta, 2019, 501119233
[http://dx.doi.org/10.1016/j.ica.2019.119233]]
[60]
Gogoi, A.; Dutta, D.; Verma, A.K.; Nath, H.; Frontera, A.; Guha, A.K.; Bhattacharyya, M.K. Energetically favorable anti-electrostatic hydrogen bonded cationic clusters in Ni (II) 3,5-dimethylpyrazole complexes: Anticancer evaluation and theoretical studies. Polyhedron, 2019, 168, 113-126.
[http://dx.doi.org/10.1016/j.poly.2019.04.043]
[61]
Wesarg, E.; Hoffarth, S.; Wiewrodt, R.; Kröll, M.; Biesterfeld, S.; Huber, C.; Schuler, M. Targeting BCL-2 family proteins to overcome drug resistance in non-small cell lung cancer. Int. J. Cancer, 2007, 121(11), 2387-2394.
[http://dx.doi.org/10.1002/ijc.22977] [PMID: 17688235]
[62]
Yip, K.W.; Reed, J.C. Bcl-2 family proteins and cancer. Oncogene, 2008, 27(50), 6398-6406.
[http://dx.doi.org/10.1038/onc.2008.307] [PMID: 18955968]
[63]
Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; Joseph, M.K.; Kitada, S.; Korsmeyer, S.J.; Kunzer, A.R.; Letai, A.; Li, C.; Mitten, M.J.; Nettesheim, D.G.; Ng, S.; Nimmer, P.M.; O’Connor, J.M.; Oleksijew, A.; Petros, A.M.; Reed, J.C.; Shen, W.; Tahir, S.K.; Thompson, C.B.; Tomaselli, K.J.; Wang, B.; Wendt, M.D.; Zhang, H.; Fesik, S.W.; Rosenberg, S.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005, 435(7042), 677-681.
[http://dx.doi.org/10.1038/nature03579] [PMID: 15902208]
[64]
Wenzel, U.; Kuntz, S.; Brendel, M.D.; Daniel, H. Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells. Cancer Res., 2000, 60(14), 3823-3831.
[PMID: 10919656]
[65]
Oi, N.; Chen, H.; Ok Kim, M.; Lubet, R.A.; Bode, A.M.; Dong, Z. Taxifolin suppresses UV-induced skin carcinogenesis by targeting EGFR and PI3K. Cancer Prev. Res. (Phila.), 2012, 5(9), 1103-1114.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0397] [PMID: 22805054]
[66]
Weidmann, A.E. Dihydroquercetin: More than just an impurity? Eur. J. Pharmacol., 2012, 684(1-3), 19-26.
[http://dx.doi.org/10.1016/j.ejphar.2012.03.035] [PMID: 22513183]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy