Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Host Plant Strategies to Combat Against Viruses Effector Proteins

Author(s): Avinash Marwal and Rajarshi Kumar Gaur*

Volume 21, Issue 6, 2020

Page: [401 - 410] Pages: 10

DOI: 10.2174/1389202921999200712135131

Price: $65

Abstract

Viruses are obligate parasites that exist in an inactive state until they enter the host body. Upon entry, viruses become active and start replicating by using the host cell machinery. All plant viruses can augment their transmission, thus powering their detrimental effects on the host plant. To diminish infection and diseases caused by viruses, the plant has a defence mechanism known as pathogenesis- related biochemicals, which are metabolites and proteins. Proteins that ultimately prevent pathogenic diseases are called R proteins. Several plant R genes (that confirm resistance) and avirulence protein (Avr) (pathogen Avr gene-encoded proteins [effector/elicitor proteins involved in pathogenicity]) molecules have been identified. The recognition of such a factor results in the plant defence mechanism. During plant viral infection, the replication and expression of a viral molecule lead to a series of a hypersensitive response (HR) and affect the host plant’s immunity (pathogen-associated molecular pattern–triggered immunity and effector-triggered immunity). Avr protein renders the host RNA silencing mechanism and its innate immunity, chiefly known as silencing suppressors towards the plant defensive machinery. This is a strong reply to the plant defensive machinery by harmful plant viruses. In this review, we describe the plant pathogen resistance protein and how these proteins regulate host immunity during plant–virus interactions. Furthermore, we have discussed regarding ribosome- inactivating proteins, ubiquitin proteasome system, translation repression (nuclear shuttle protein interacting kinase 1), DNA methylation, dominant resistance genes, and autophagy-mediated protein degradation, which are crucial in antiviral defences.

Keywords: PAMPs (Pathogen Associated Molecular Patterns), plant defense, RNA silencing, PTGS (Post Transcriptional Gene Silencing), Avirulence Protein (AVR), innate immunity.

Graphical Abstract

[1]
Chauhan, R.D.; Beyene, G.; Taylor, N.J. Multiple morphogenic culture systems cause loss of resistance to cassava mosaic disease. BMC Plant Biol., 2018, 18(1), 132.
[http://dx.doi.org/10.1186/s12870-018-1354-x] [PMID: 29940871]
[2]
Nehela, Y.; Killiny, N. Infection with phytopathogenic bacterium inhibits melatonin biosynthesis, decreases longevity of its vector, and suppresses the free radical-defense. J. Pineal Res., 2018, 65(3)e12511
[http://dx.doi.org/10.1111/jpi.12511] [PMID: 29786865]
[3]
Colditz, F.; Krajinski, F.; Niehaus, K. Plant proteomics upon fungal attack. Plant Proteomics; Šamaj, J.; Thelen, J.J., Eds.; Springer: Berlin, Heidelberg, 2007, pp. 283-309.
[http://dx.doi.org/10.1007/978-3-540-72617-3_18]
[4]
Purohit, A.; Ganguly, S.; Chaudhuri, R.K.; Chakraborti, D. Under-standing the interaction of molecular factors during the crosstalk between drought and biotic stresses in plants. Molecular Plant Abi-otic Stress: Biology and Biotechnology, Roychoudhury, A.; Tripa-thi, D.K., Eds.; , 2019; pp. 427-446.
[5]
Nagar, S.; Pedersen, T.J.; Carrick, K.M.; Hanley-Bowdoin, L.; Robertson, D. A geminivirus induces expression of a host DNA synthesis protein in terminally differentiated plant cells. Plant Cell 1995, 7(6), 705-719.
[PMID: 7647562]
[6]
Jaiswal, V.; Gahlaut, V.; Dubey, M.; Ramchiary, N. Genes/quantitative trait loci and associated molecular mechanismsidentified in capsicum genome for tolerance to abiotic and bioticstresses. The Capsicum Genome; Ramchiary, N.; Kole, C., Eds.;Springer: Cham, , 2019; pp. 121-138.
[http://dx.doi.org/10.1007/978-3-319-97217-6_7]
[7]
Partida-Martínez, L.P.; Heil, M. The microbe-free plant: fact or artifact? Front. Plant Sci., 2011, 2, 100.
[http://dx.doi.org/10.3389/fpls.2011.00100] [PMID: 22639622]
[8]
Rybakova, D.; Mancinelli, R.; Wikström, M.; Birch-Jensen, A.S.; Postma, J.; Ehlers, R.U.; Goertz, S.; Berg, G. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome, 2017, 5(1), 104.
[http://dx.doi.org/10.1186/s40168-017-0310-6] [PMID: 28859671]
[9]
Prasad, A.; Sharma, N.; Muthamilarasan, M.; Rana, S.; Prasad, M. Recent advances in small RNA mediated plant-virus interactions. Crit. Rev. Biotechnol., 2019, 39(4), 587-601.
[http://dx.doi.org/10.1080/07388551.2019.1597830] [PMID: 30947560]
[10]
Maisonneuve, B.; Pitrat, M.; Gognalons, P.; Moury, B. Growth stage‐dependent resistance to the potyviruses lettuce Italian necrotic virus and Lettuce mosaic virus displayed by Lactuca sativa introgression lines carrying the Mo3 locus from L. virosa. Plant Pathol., 2018, 67(9), 2013-2018.
[http://dx.doi.org/10.1111/ppa.12909]
[11]
Lei, R.; Jiang, H.; Hu, F.; Yan, J.; Zhu, S. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection. Plant Cell Rep., 2017, 36(2), 327-341.
[http://dx.doi.org/10.1007/s00299-016-2083-y] [PMID: 27904946]
[12]
Agbeci, M.; Grangeon, R.; Nelson, R.S.; Zheng, H.; Laliberté, J.F. Contribution of host intracellular transport machineries to intercellular movement of turnip mosaic virus. PLoS Pathog., 2013, 9(10), e1003683.
[http://dx.doi.org/10.1371/journal.ppat.1003683] [PMID: 24098128]
[13]
Boualem, A.; Dogimont, C.; Bendahmane, A. The battle for survival between viruses and their host plants. Curr. Opin. Virol., 2016, 17, 32-38.
[http://dx.doi.org/10.1016/j.coviro.2015.12.001] [PMID: 26800310]
[14]
Núñez-Farfán, J.; Fornoni, J.; Valverde, P.L. The evolution of resistance and tolerance to herbivores. Annu. Rev. Ecol. Evol. Syst., 2007, 38, 541-566.
[http://dx.doi.org/10.1146/annurev.ecolsys.38.091206.095822]
[15]
Sarma, B.K.; Yadav, S.K.; Singh, S.; Singh, H.B. Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol. Biochem., 2015, 87, 25-33.
[http://dx.doi.org/10.1016/j.soilbio.2015.04.001]
[16]
Fraile, A.; García-Arenal, F. The coevolution of plants and viruses: resistance and pathogenicity. Advances in virus research; Acade-mic Press.,, 2010, 76, pp. 1-32.
[17]
da Cunha, L.; McFall, A.J.; Mackey, D. Innate immunity in plants: a continuum of layered defenses. Microbes Infect., 2006, 8(5), 1372-1381.
[http://dx.doi.org/10.1016/j.micinf.2005.12.018] [PMID: 16697674]
[18]
Darrasse, A.; Darsonval, A.; Boureau, T.; Brisset, M.N.; Durand, K.; Jacques, M.A. Transmission of plant-pathogenic bacteria by nonhost seeds without induction of an associated defense reaction at emergence. Appl. Environ. Microbiol., 2010, 76(20), 6787-6796.
[http://dx.doi.org/10.1128/AEM.01098-10] [PMID: 20729326]
[19]
Makarovsky, D.; Fadeev, L.; Salam, B.B.; Zelinger, E.; Matan, O.; Inbar, J.; Jurkevitch, E.; Gozin, M.; Burdman, S. Silver nanoparticles complexed with bovine submaxillary mucin possess strong antibacterial activity and protect against seedling infection. Appl. Environ. Microbiol., 2018, 84(4), e02212-e02217.
[PMID: 29180363]
[20]
Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res., 2018, 46(D1), D708-D717.
[http://dx.doi.org/10.1093/nar/gkx932] [PMID: 29040670]
[21]
Rybicki, E.P. A top ten list for economically important plant viruses. Arch. Virol., 2015, 160(1), 17-20.
[http://dx.doi.org/10.1007/s00705-014-2295-9] [PMID: 25430908]
[22]
Scholthof, K.B.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P.; Hemenway, C.; Foster, G.D. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol., 2011, 12(9), 938-954.
[http://dx.doi.org/10.1111/j.1364-3703.2011.00752.x] [PMID: 22017770]
[23]
Verhoeven, J.T.; Vullings, G.W.; Voogd, J.G.; Janssen, F.J.; Roenhorst, J.W. Potato germplasm poses the highest risk of introducing potato spindle tuber viroid in potatoes in the Netherlands: analysis and evaluation of an outbreak in potato breeding. Eur. J. Plant Pathol., 2018, 151(1), 201-211.
[24]
Flores, R.; Gago-Zachert, S.; Serra, P.; De la Peña, M.; Navarro, B. Chrysanthemum chlorotic mottle viroid. Viroids and Satellites; Hadidi, A.; Flores, R.; Randles, J.W; Palukaitis, P., Ed.; Academic Press, 2017, pp. 331-338.
[http://dx.doi.org/10.1016/B978-0-12-801498-1.00031-0]
[25]
Patiño-Galindo, J.Á.; González-Candelas, F.; Pybus, O.G. The effect of RNA substitution models on viroid and RNA virus phylogenies. Genome Biol. Evol., 2018, 10(2), 657-666.
[http://dx.doi.org/10.1093/gbe/evx273] [PMID: 29325030]
[26]
Serra, P.; Messmer, A.; Sanderson, D.; James, D.; Flores, R. Apple hammerhead viroid-like RNA is a bona fide viroid: Autonomous replication and structural features support its inclusion as a new member in the genus Pelamoviroid. Virus Res., 2018, 249, 8-15.
[http://dx.doi.org/10.1016/j.virusres.2018.03.001] [PMID: 29510173]
[27]
Jang, C.; Wang, R.; Wells, J.; Leon, F.; Farman, M.; Hammond, J.; Goodin, M.M. Genome sequence variation in the constricta strain dramatically alters the protein interaction and localization map of Potato yellow dwarf virus. J. Gen. Virol., 2017, 98(6), 1526-1536.
[http://dx.doi.org/10.1099/jgv.0.000771] [PMID: 28635588]
[28]
Shrestha, N.; Weber, P.H.; Burke, S.V.; Wysocki, W.P.; Duvall, M.R.; Bujarski, J.J. Next generation sequencing reveals packaging of host RNAs by brome mosaic virus. Virus Res., 2018, 252, 82-90.
[http://dx.doi.org/10.1016/j.virusres.2018.05.011] [PMID: 29753892]
[29]
Macovei, A.; Sevilla, N.R.; Cantos, C.; Jonson, G.B.; Slamet-Loedin, I.; Čermák, T.; Voytas, D.F.; Choi, I.R.; Chadha-Mohanty, P. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol. J., 2018, 16(11), 1918-1927.
[http://dx.doi.org/10.1111/pbi.12927] [PMID: 29604159]
[30]
López-Gresa, M.P.; Lisón, P.; Yenush, L.; Conejero, V.; Rodrigo, I.; Bellés, J.M. Salicylic acid is involved in the basal resistance of tomato plants to citrus exocortis viroid and tomato spotted wilt vi-rus. PLoS One, 2016, 11(11), e0166938.
[http://dx.doi.org/10.1371/journal.pone.0166938] [PMID: 27893781]
[31]
Pogany, J.; Nagy, P.D. Activation of Tomato bushy stunt virus RNA-dependent RNA polymerase by cellular heat shock protein 70 is enhanced by phospholipids in vitro. J. Virol., 2015, 89(10), 5714-5723.
[http://dx.doi.org/10.1128/JVI.03711-14] [PMID: 25762742]
[32]
McQualter, R.B.; Dale, J.L.; Harding, R.M.; McMahon, J.A.; Smith, G.R. Production and evaluation of transgenic sugarcane containing a Fiji disease virus (FDV) genome segment S9-derived synthetic resistance gene. Aust. J. Agric. Res., 2004, 55(2), 139-145.
[http://dx.doi.org/10.1071/AR03131]
[33]
Albittar, L.; Ismail, M.; Lohaus, G.; Ameline, A.; Visser, B.; Bragard, C.; Hance, T. Bottom-up regulation of a tritrophic system by Beet yellows virus infection: consequences for aphid-parasitoid foraging behaviour and development. Oecologia, 2019, 191(1), 113-125.
[http://dx.doi.org/10.1007/s00442-019-04467-0] [PMID: 31342255]
[34]
Becker, R.; Ulrich, A. Improved detection and quantification of cauliflower mosaic virus in food crops: assessing false positives in GMO screening based on the 35S promoter. Eur. Food Res. Technol., 2018, 244(10), 1861-1871.
[http://dx.doi.org/10.1007/s00217-018-3099-z]
[35]
Ni, F.; Wu, L.; Wang, Q.; Hong, J.; Qi, Y.; Zhou, X. Turnip yellow mosaic virus P69 interacts with and suppresses GLK transcription factors to cause pale-green symptoms in Arabidopsis. Mol. Plant, 2017, 10(5), 764-766.
[http://dx.doi.org/10.1016/j.molp.2016.12.003] [PMID: 27964999]
[36]
Wainaina, J.M.; Kubatko, L.; Harvey, J.; Ateka, E.; Makori, T.; Karanja, D.; Boykin, L.M.; Kehoe, M.A. Evolutionary insights of Bean common mosaic necrosis virus and Cowpea aphid-borne mosaic virus. Peer J., 2019, 7e, 6297.
[http://dx.doi.org/10.7717/peerj.6297] [PMID: 30783563]
[37]
Baldodiya, G.M.; Baruah, G.; Borah, B.K.; Modi, M.K.; Nath, P.D. Molecular characterization and sequence analyses of Banana bunchy top virus infecting banana cultivar Jahaji (Dwarf Caven-dish) in Assam, India. 3 Biotech., 2019, 9(3), 110.
[38]
Dalton, D.T.; Hilton, R.J.; Kaiser, C.; Daane, K.M.; Sudarshana, M.R.; Vo, J.; Zalom, F.G.; Buser, J.Z.; Walton, V.M. Spatial associations of vines infected with grapevine red blotch virus in Oregon vineyards. plant disease 2019. 25, pdis-08.
[http://dx.doi.org/10.1094/pdis-08-18-1306-re]
[39]
Morelli, M.; Chiumenti, M.; De Stradis, A.; La Notte, P.; Minafra, A. Discovery and molecular characterization of a new cryptovirus dsRNA genome from Japanese persimmon through conventional cloning and high-throughput sequencing. Virus Genes, 2015, 50(1), 160-164.
[http://dx.doi.org/10.1007/s11262-014-1127-z] [PMID: 25315633]
[40]
De La Torre-Almaráz, R.; Pallás, V.; Sánchez-Navarro, J.A. First Report of Carnation mottle virus (CarMV) and Carnation etched ring virus (CERV) in Carnation From Mexico. Plant Dis., 2015, 99(8), 1191.
[http://dx.doi.org/10.1094/PDIS-01-15-0039-PDN]
[41]
Paulmann, M.K.; Kunert, G.; Zimmermann, M.R.; Theis, N.; Ludwig, A.; Meichsner, D.; Oelmüller, R.; Gershenzon, J.; Habekuss, A.; Ordon, F.; Furch, A.C.U.; Will, T. Barley yellow dwarf virus infection leads to higher chemical defense signals and lower electrophysiological reactions in susceptible compared to tolerant barley genotypes. Front. Plant Sci., 2018, 9, 145.
[http://dx.doi.org/10.3389/fpls.2018.00145] [PMID: 29563918]
[42]
Li, H.; Kondo, H.; Kühne, T.; Shirako, Y. Barley yellow mosaic virus VPg is the determinant protein for breaking eIF4E-mediated recessive resistance in barley plants. Front. Plant Sci., 2016, 30(7), 1449.
[43]
Gassmann, W.; Bhattacharjee, S. Effector-triggered immunity signaling: from gene-for-gene pathways to protein-protein interaction networks. Mol. Plant Microbe Interact., 2012, 25(7), 862-868.
[http://dx.doi.org/10.1094/MPMI-01-12-0024-IA] [PMID: 22414439]
[44]
Singh, A.; Singh, I.K. Molecular Aspects of Plant-Pathogen Interaction; Springer, 2018.
[http://dx.doi.org/10.1007/978-981-10-7371-7]
[45]
Sarma, B.K.; Singh, H.B.; Fernando, D.; Silva, R.N.; Gupta, V.K. Enhancing plant disease resistance without R genes. Trends Biotechnol., 2016, 34(7), 523-525.
[http://dx.doi.org/10.1016/j.tibtech.2016.04.002] [PMID: 27113633]
[46]
Kourelis, J.; van der Hoorn, R.A.L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell, 2018, 30(2), 285-299.
[http://dx.doi.org/10.1105/tpc.17.00579] [PMID: 29382771]
[47]
Jayaraman, J.; Halane, M.K.; Choi, S.; McCann, H.C.; Sohn, K.H. Using bioinformatics and molecular biology to streamline construction of effector libraries for phytopathogenic Pseudomonas syringae strains. Plant Innate Immunity; Gassmann, W., Ed.; Humana: New York, NY, 2019, pp. 1-12.
[http://dx.doi.org/10.1007/978-1-4939-9458-8_1]
[48]
Luderer, R.; Joosten, M.H. Avirulence proteins of plant pathogens: determinants of victory and defeat. Mol. Plant Pathol., 2001, 2(6), 355-364.
[http://dx.doi.org/10.1046/j.1464-6722.2001.00086.x] [PMID: 20573025]
[49]
Jain, D.; Khurana, J.P. Role of pathogenesis-related (PR) proteins in plant defense mechanism. Molecular aspects of plant-pathogen interaction; Singh, A; Singh, I., Ed.; Springer: Singapore, 2018, pp. 265-281.
[http://dx.doi.org/10.1007/978-981-10-7371-7_12]
[50]
Singh, A.; Lim, G.H.; Kachroo, P. Transport of chemical signals in systemic acquired resistance. J. Integr. Plant Biol., 2017, 59(5), 336-344.
[http://dx.doi.org/10.1111/jipb.12537] [PMID: 28304135]
[51]
Petit-Houdenot, Y.; Fudal, I. Complex interactions between fungal avirulence genes and their corresponding plant resistance genes and consequences for disease resistance management. Front. Plant Sci., 2017, 8, 1072.
[http://dx.doi.org/10.3389/fpls.2017.01072] [PMID: 28670324]
[52]
Postel, S.; Kemmerling, B. Plant systems for recognition of pathogen-associated molecular patterns. Semin. Cell Dev. Biol., 2009, 20(9), 1025-1031.
[http://dx.doi.org/10.1016/j.semcdb.2009.06.002] [PMID: 19540353]
[53]
Kushalappa, A.C.; Gunnaiah, R. Metabolo-proteomics to discover plant biotic stress resistance genes. Trends Plant Sci., 2013, 18(9), 522-531.
[http://dx.doi.org/10.1016/j.tplants.2013.05.002] [PMID: 23790252]
[54]
Thoen, M.P.; Davila Olivas, N.H.; Kloth, K.J.; Coolen, S.; Huang, P.P.; Aarts, M.G.; Bac-Molenaar, J.A.; Bakker, J.; Bouwmeester, H.J.; Broekgaarden, C.; Bucher, J.; Busscher-Lange, J.; Cheng, X.; Fradin, E.F.; Jongsma, M.A.; Julkowska, M.M.; Keurentjes, J.J.; Ligterink, W.; Pieterse, C.M.; Ruyter-Spira, C.; Smant, G.; Testerink, C.; Usadel, B.; van Loon, J.J.; van Pelt, J.A.; van Schaik, C.C.; van Wees, S.C.; Visser, R.G.; Voorrips, R.; Vosman, B.; Vreugdenhil, D.; Warmerdam, S.; Wiegers, G.L.; van Heerwaarden, J.; Kruijer, W.; van Eeuwijk, F.A.; Dicke, M. Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. New Phytol., 2017, 213(3), 1346-1362.
[http://dx.doi.org/10.1111/nph.14220] [PMID: 27699793]
[55]
Hake, K.; Romeis, T. Protein kinase-mediated signalling in priming: immune signal initiation, propagation, and establishment of long-term pathogen resistance in plants. Plant Cell Environ., 2019, 42(3), 904-917.
[http://dx.doi.org/10.1111/pce.13429] [PMID: 30151921]
[56]
Wang, M.B.; Metzlaff, M. RNA silencing and antiviral defense in plants. Curr. Opin. Plant Biol., 2005, 8(2), 216-222.
[http://dx.doi.org/10.1016/j.pbi.2005.01.006] [PMID: 15753004]
[57]
Muthamilarasan, M.; Prasad, M. Plant innate immunity: an updated insight into defense mechanism. J. Biosci., 2013, 38(2), 433-449.
[http://dx.doi.org/10.1007/s12038-013-9302-2] [PMID: 23660678]
[58]
Tsuda, K.; Mine, A.; Bethke, G.; Igarashi, D.; Botanga, C.J.; Tsuda, Y.; Glazebrook, J.; Sato, M.; Katagiri, F. Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLoS Genet., 2013, 9(12), e1004015.
[http://dx.doi.org/10.1371/journal.pgen.1004015] [PMID: 24348271]
[59]
Tao, X.; Zhou, X. A modified viral satellite DNA that suppresses gene expression in plants. Plant J., 2004, 38(5), 850-860.
[http://dx.doi.org/10.1111/j.1365-313X.2004.02087.x] [PMID: 15144385]
[60]
Okamoto, H.; Hirochika, H. Silencing of transposable elements in plants. Trends Plant Sci., 2001, 6(11), 527-534.
[http://dx.doi.org/10.1016/j.pbi.2015.05.027] [PMID: 11701381]
[61]
Balconi, C.; Stevanato, P.; Motto, M.; Biancardi, E. Breeding for biotic stress resistance/tolerance in plants. Crop production for agricultural improvement; Ashraf, M.; Öztürk, M.; Ahmad, M; Aksoy, A., Ed.; Springer: Dordrecht, 2012, pp. 57-114.
[http://dx.doi.org/10.1007/978-94-007-4116-4_4]
[62]
Noman, A.; Aqeel, M.; Lou, Y. PRRs and NB-LRRs: From signal perception to activation of plant innate immunity. Int. J. Mol. Sci., 2019, 20(8), 1882.
[http://dx.doi.org/10.3390/ijms20081882] [PMID: 30995767]
[63]
Wu, X.; Valli, A.; García, J.A.; Zhou, X.; Cheng, X. The tug-of-war between plants and viruses: great progress and many remaining questions. Viruses, 2019, 11(3), 203.
[http://dx.doi.org/10.3390/v11030203] [PMID: 30823402]
[64]
Fernandez-Garcia, M.D.; Meertens, L.; Bonazzi, M.; Cossart, P.; Arenzana-Seisdedos, F.; Amara, A. Appraising the roles of CBLL1 and the ubiquitin/proteasome system for flavivirus entry and replication. J. Virol., 2011, 85(6), 2980-2989.
[http://dx.doi.org/10.1128/JVI.02483-10] [PMID: 21191016]
[65]
Zorzatto, C.; Machado, J.P.; Lopes, K.V.; Nascimento, K.J.; Pereira, W.A.; Brustolini, O.J.; Reis, P.A.; Calil, I.P.; Deguchi, M.; Sachetto-Martins, G.; Gouveia, B.C.; Loriato, V.A.; Silva, M.A.; Silva, F.F.; Santos, A.A.; Chory, J.; Fontes, E.P. NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature, 2015, 520(7549), 679-682.
[http://dx.doi.org/10.1038/nature14171] [PMID: 25707794]
[66]
Hanley-Bowdoin, L.; Bejarano, E.R.; Robertson, D.; Mansoor, S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat. Rev. Microbiol., 2013, 11(11), 777-788.
[http://dx.doi.org/10.1038/nrmicro3117] [PMID: 24100361]
[67]
Reddy, V.P.; Verma, S.; Sharma, D.; Thakur, A. Role of resistant-proteins in plant innate immunity-A review. Agric. Rev. (Karnal), 2019, 40(1), 12-20.
[68]
Li, X.; Ahmad, S.; Ali, A.; Guo, C.; Li, H.; Yu, J.; Zhang, Y.; Gao, X.; Guo, Y. Characterization of somatic embryogenesis receptor-like Kinase 4 as a negative regulator of leaf senescence in Arabidopsis. Cells, 2019, 8(1), 50.
[http://dx.doi.org/10.3390/cells8010050] [PMID: 30646631]
[69]
Tyagi, S.; Upadhyay, S.K. Receptor-like kinases and environmental stress in plants. Molecular Approaches in Plant Biology and Environmental Challenges; Singh, S.; Upadhyay, S.; Pandey, A; Kumar, S., Ed.; Springer: Singapore, 2019, pp. 79-102.
[70]
Tang, J.; Wang, Y.; Yin, W.; Dong, G.; Sun, K.; Teng, Z.; Wu, X.; Wang, S.; Qian, Y.; Pan, X.; Qian, Q.; Chu, C. Mutation of a nu-cleotide-binding leucine-rich repeat immune receptor-type protein disrupts immunity to bacterial blight. Plant Physiol. 2019, 181(3), 1295-1313.
[http://dx.doi.org/10.1104/pp.19.00686] [PMID: 31431512]
[71]
Lisa, M.N.; Cvirkaite-Krupovic, V.; Richet, E.; André-Leroux, G.; Alzari, P.M.; Haouz, A.; Danot, O. Double autoinhibition mechanism of signal transduction ATPases with numerous domains (STAND) with a tetratricopeptide repeat sensor. Nucleic Acids Res., 2019, 47(7), 3795-3810.
[http://dx.doi.org/10.1093/nar/gkz112] [PMID: 30788511]
[72]
Chisholm, S.T.; Coaker, G.; Day, B.; Staskawicz, B.J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006, 124(4), 803-814.
[http://dx.doi.org/10.1016/j.cell.2006.02.008] [PMID: 16497589]
[73]
Li, J.; Huang, H.; Zhu, M.; Huang, S.; Zhang, W.; Dinesh-Kumar, S.P.; Tao, X. A plant immune receptor adopts a two-step recognition mechanism to enhance viral effector perception. Mol. Plant, 2019, 12(2), 248-262.
[http://dx.doi.org/10.1016/j.molp.2019.01.005] [PMID: 30639751]
[74]
Pandey, S.S.; Bhatt, R.; Tiwari, B.S. Plant death: short and long life span to immortality. Sensory Biology of Plants; Sopory, S., Ed.; Springer: Singapore, 2019, pp. 601-619.
[http://dx.doi.org/10.1007/978-981-13-8922-1_22]
[75]
Saur, I.M.L.; Bauer, S.; Lu, X.; Schulze-Lefert, P. A cell death assay in barley and wheat protoplasts for identification and validation of matching pathogen AVR effector and plant NLR immune receptors. Plant Methods, 2019, 15(1), 118.
[http://dx.doi.org/10.1186/s13007-019-0502-0] [PMID: 31666804]
[76]
Satish, D.; Mukherjee, S.K.; Gupta, D. PAmiRDB: A web resource for plant miRNAs targeting viruses. Sci. Rep., 2019, 9(1), 4627.
[http://dx.doi.org/10.1038/s41598-019-41027-1] [PMID: 30874591]
[77]
Huang, C.; Liu, Y.; Yu, H.; Yuan, C.; Zeng, J.; Zhao, L.; Tong, Z.; Tao, X. Non-structural protein NSm of Tomato Spotted Wilt Virus is an avirulence factor recognized by resistance genes of tobacco and tomato via different elicitor active sites. Viruses, 2018, 10(11), 660.
[http://dx.doi.org/10.3390/v10110660] [PMID: 30469406]
[78]
Agarrwal, R.; Padmakumari, A.P.; Bentur, J.S.; Nair, S. Metabolic and transcriptomic changes induced in host during hypersensitive response mediated resistance in rice against the Asian rice gall midge. Rice (N. Y.), 2016, 9(1), 5.
[http://dx.doi.org/10.1186/s12284-016-0077-6] [PMID: 26892000]
[79]
Yadav, S.; Chhibbar, A.K. Plant-virus interactions. Molecular Aspects of Plant-Pathogen Interaction; Singh, A; Singh, I., Ed.; Springer: Singapore, 2018, pp. 43-77.
[http://dx.doi.org/10.1007/978-981-10-7371-7_3]
[80]
Culver, J.N.; Padmanabhan, M.S. Virus-induced disease: altering host physiology one interaction at a time. Annu. Rev. Phytopathol., 2007, 45, 221-243.
[http://dx.doi.org/10.1146/annurev.phyto.45.062806.094422] [PMID: 17417941]
[81]
Qi, J.; Wang, J.; Gong, Z.; Zhou, J.M. Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol., 2017, 38, 92-100.
[http://dx.doi.org/10.1016/j.pbi.2017.04.022] [PMID: 28511115]
[82]
Mur, L.A.; Kenton, P.; Lloyd, A.J.; Ougham, H.; Prats, E. The hypersensitive response; the centenary is upon us but how much do we know? J. Exp. Bot., 2008, 59(3), 501-520.
[http://dx.doi.org/10.1093/jxb/erm239] [PMID: 18079135]
[83]
Stirpe, F. Ribosome-inactivating proteins: from toxins to useful proteins. Toxicon, 2013, 67, 12-16.
[http://dx.doi.org/10.1016/j.toxicon.2013.02.005] [PMID: 23462379]
[84]
Domashevskiy, A.V.; Williams, S.; Kluge, C.; Cheng, S.Y. Plant translation initiation complex eifiso4f directs pokeweed antiviral protein to selectively depurinate uncapped Tobacco Etch Virus RNA. Biochemistry, 2017, 56(45), 5980-5990.
[http://dx.doi.org/10.1021/acs.biochem.7b00598] [PMID: 29064680]
[85]
Ranf, S.; Gisch, N.; Schäffer, M.; Illig, T.; Westphal, L.; Knirel, Y.A.; Sánchez-Carballo, P.M.; Zähringer, U.; Hückelhoven, R.; Lee, J.; Scheel, D. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat. Immunol., 2015, 16(4), 426-433.
[http://dx.doi.org/10.1038/ni.3124] [PMID: 25729922]
[86]
Yoshida, T.; Shiraishi, T.; Hagiwara-Komoda, Y.; Komatsu, K.; Maejima, K.; Okano, Y.; Fujimoto, Y.; Yusa, A.; Yamaji, Y.; Namba, S. The plant non-canonical antiviral resistance protein JAX1 inhibits potexviral replication by targeting the viral RNA-dependent RNA polymerase. J. Virol., 2019, 93(3), e01506-e01518.
[PMID: 30429349]
[87]
Prasad, V.; Mishra, S.K.; Srivastava, S.; Srivastava, A. A virus inhibitory protein isolated from Cyamopsis tetragonoloba (L.) Taub. upon induction of systemic antiviral resistance shares partial amino acid sequence homology with a lectin. Plant Cell Rep., 2014, 33(9), 1467-1478.
[http://dx.doi.org/10.1007/s00299-014-1630-7] [PMID: 24828329]
[88]
Liu, X.Y.; Li, H.; Zhang, W. The lectin from Musa paradisiaca binds with the capsid protein of tobacco mosaic virus and prevents viral infection. Biotechnol. Equip., 2014, 28(3), 408-416.
[http://dx.doi.org/10.1080/13102818.2014.925317] [PMID: 26019527]
[89]
Yoshimoto, K.; Jikumaru, Y.; Kamiya, Y.; Kusano, M.; Consonni, C.; Panstruga, R.; Ohsumi, Y.; Shirasu, K. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell, 2009, 21(9), 2914-2927.
[http://dx.doi.org/10.1105/tpc.109.068635] [PMID: 19773385]
[90]
Li, F.; Zhang, C.; Li, Y.; Wu, G.; Hou, X.; Zhou, X.; Wang, A. Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase. Nat. Commun., 2018, 9(1), 1268.
[http://dx.doi.org/10.1038/s41467-018-03658-2] [PMID: 29593293]
[91]
Hua, Z.; Vierstra, R.D. The cullin-RING ubiquitin-protein ligases. Annu. Rev. Plant Biol., 2011, 62, 299-334.
[http://dx.doi.org/10.1146/annurev-arplant-042809-112256] [PMID: 21370976]
[92]
Berens, M.L.; Wolinska, K.W.; Spaepen, S.; Ziegler, J.; Nobori, T.; Nair, A.; Krüler, V.; Winkelmüller, T.M.; Wang, Y.; Mine, A.; Becker, D.; Garrido-Oter, R.; Schulze-Lefert, P.; Tsuda, K. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proc. Natl. Acad. Sci. USA, 2019, 116(6), 2364-2373.
[http://dx.doi.org/10.1073/pnas.1817233116] [PMID: 30674663]
[93]
Rejeb, I.B.; Pastor, V.; Mauch-Mani, B. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants (Basel), 2014, 3(4), 458-475.
[http://dx.doi.org/10.3390/plants3040458] [PMID: 27135514]
[94]
Vanitharani, R.; Chellappan, P.; Pita, J.S.; Fauquet, C.M. Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J. Virol., 2004, 78(17), 9487-9498.
[http://dx.doi.org/10.1128/JVI.78.17.9487-9498.2004] [PMID: 15308741]
[95]
Lisch, D. Epigenetic regulation of transposable elements in plants. Annu. Rev. Plant Biol., 2009, 60, 43-66.
[http://dx.doi.org/10.1146/annurev.arplant.59.032607.092744] [PMID: 19007329]
[96]
Rajagopalan, R.; Vaucheret, H.; Trejo, J.; Bartel, D.P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev., 2006, 20(24), 3407-3425.
[http://dx.doi.org/10.1101/gad.1476406] [PMID: 17182867]
[97]
Agrawal, N.; Dasaradhi, P.V.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev., 2003, 67(4), 657-685.
[http://dx.doi.org/10.1128/MMBR.67.4.657-685.2003] [PMID: 14665679]
[98]
Jayachandran, B.; Hussain, M.; Asgari, S. RNA interference as a cellular defense mechanism against the DNA virus baculovirus. J. Virol., 2012, 86(24), 13729-13734.
[http://dx.doi.org/10.1128/JVI.02041-12] [PMID: 23055564]
[99]
Praveen, S.; Ramesh, S.V.; Mishra, A.K.; Koundal, V.; Palukaitis, P. Silencing potential of viral derived RNAi constructs in Tomato leaf curl virus-AC4 gene suppression in tomato. Transgenic Res., 2010, 19(1), 45-55.
[http://dx.doi.org/10.1007/s11248-009-9291-y] [PMID: 19548101]
[100]
Karjee, S.; Islam, M.N.; Mukherjee, S.K. Screening and identification of virus-encoded RNA silencing suppressors. RNAi; Barik, S., Ed.; Humana Press, 2008, pp. 187-203.
[http://dx.doi.org/10.1007/978-1-59745-191-8_14]
[101]
Xi, D.; Yang, H.; Jiang, Y.; Xu, M.; Shang, J.; Zhang, Z.; Cheng, S.; Sang, L.; Lin, H. Interference between Tobacco necrosis virus and Turnip crinkle virus in Nicotiana benthamiana. J. Phytopathol., 2010, 158(4), 263-269.
[http://dx.doi.org/10.1111/j.1439-0434.2009.01607.x]
[102]
Pogány, M.; Koehl, J.; Heiser, I.; Elstner, E.F.; Barna, B. Juvenility of tobacco induced by cytokinin gene introduction decreases susceptibility to Tobacco necrosis virus and confers tolerance to oxidative stress. Physiol. Mol. Plant Pathol., 2004, 65(1), 39-47.
[http://dx.doi.org/10.1016/j.pmpp.2004.10.006]
[103]
Xu, P.; Rogers, S.J.; Roossinck, M.J. Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress. Proc. Natl. Acad. Sci. USA, 2004, 101(44), 15805-15810.
[http://dx.doi.org/10.1073/pnas.0407094101] [PMID: 15505199]
[104]
Fusaro, A.F.; Matthew, L.; Smith, N.A.; Curtin, S.J.; Dedic-Hagan, J.; Ellacott, G.A.; Watson, J.M.; Wang, M.B.; Brosnan, C.; Carroll, B.J.; Waterhouse, P.M. RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep., 2006, 7(11), 1168-1175.
[http://dx.doi.org/10.1038/sj.embor.7400837] [PMID: 17039251]
[105]
Wassenegger, M.; Krczal, G. Nomenclature and functions of RNA-directed RNA polymerases. Trends Plant Sci., 2006, 11(3), 142-151.
[http://dx.doi.org/10.1016/j.tplants.2006.01.003] [PMID: 16473542]
[106]
Dalakouras, A.; Dadami, E.; Wassenegger, M. Engineering viroid resistance. Viruses, 2015, 7(2), 634-646.
[http://dx.doi.org/10.3390/v7020634] [PMID: 25674769]
[107]
Anandalakshmi, R.; Marathe, R.; Ge, X.; Herr, J.M., Jr; Mau, C.; Mallory, A.; Pruss, G.; Bowman, L.; Vance, V.B. A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science, 2000, 290(5489), 142-144.
[http://dx.doi.org/10.1126/science.290.5489.142] [PMID: 11021800]
[108]
Kong, J.; Wei, M.; Li, G.; Lei, R.; Qiu, Y.; Wang, C.; Li, Z-H.; Zhu, S. The cucumber mosaic virus movement protein suppresses PAMP-triggered immune responses in Arabidopsis and tobacco. Biochem. Biophys. Res. Commun., 2018, 498(3), 395-401.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.072] [PMID: 29407169]
[109]
Pita, J.S.; Roossinck, M.J. Virus populations, mutation rates and frequencies. Plant Virus Evolution; Roossinck, M.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2008, pp. 109-121.
[http://dx.doi.org/10.1007/978-3-540-75763-4_6]
[110]
Valli, A.A.; Gallo, A.; Rodamilans, B.; López-Moya, J.J.; García, J.A. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. Mol. Plant Pathol., 2018, 19(3), 744-763.
[http://dx.doi.org/10.1111/mpp.12553] [PMID: 28371183]
[111]
Goyal, R.K.; Mattoo, A.K. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Sci., 2014, 228, 135-149.
[http://dx.doi.org/10.1016/j.plantsci.2014.05.012] [PMID: 25438794]
[112]
Wang, A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu. Rev. Phytopathol., 2015, 53, 45-66.
[http://dx.doi.org/10.1146/annurev-phyto-080614-120001] [PMID: 25938276]
[113]
Rausher, M.D. Co-evolution and plant resistance to natural enemies. Nature, 2001, 411(6839), 857-864.
[http://dx.doi.org/10.1038/35081193] [PMID: 11459070]
[114]
Stavolone, L.; Prigigallo, M.I.; Cillo, F. Plant viruses against RNA silencing-based defenses: Strategies and solutions. In: Applied Plant Biotechnology for Improving Resistance to Biotic Stress; Poltronieri, P.; Hong, Y, Eds.; Academic Press, , 2020; pp. 225-250.
[115]
Pyott, D.E.; Sheehan, E.; Molnar, A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol., 2016, 17(8), 1276-1288.
[http://dx.doi.org/10.1111/mpp.12417] [PMID: 27103354]
[116]
Chandrasekaran, J.; Brumin, M.; Wolf, D.; Leibman, D.; Klap, C.; Pearlsman, M.; Sherman, A.; Arazi, T.; Gal-On, A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol., 2016, 17(7), 1140-1153.
[http://dx.doi.org/10.1111/mpp.12375] [PMID: 26808139]
[117]
Khatodia, S.; Bhatotia, K.; Tuteja, N. Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops. Bioengineered, 2017, 8(3), 274-279.
[http://dx.doi.org/10.1080/21655979.2017.1297347] [PMID: 28581909]
[118]
Varun, P.; Ranade, S.A.; Saxena, S. A molecular insight into papaya leaf curl-a severe viral disease. Protoplasma, 2017, 254(6), 2055-2070.
[http://dx.doi.org/10.1007/s00709-017-1126-8] [PMID: 28540512]
[119]
Wisler, G.C.; Duffus, J.E. A century of plant virus management in the Salinas valley of California, ‘East of Eden’. Virus Res., 2000, 71(1-2), 161-169.
[http://dx.doi.org/10.1016/S0168-1702(00)00196-9] [PMID: 11137170]
[120]
Heath, M.C. Nonhost resistance and nonspecific plant defenses. Curr. Opin. Plant Biol., 2000, 3(4), 315-319.
[http://dx.doi.org/10.1016/S1369-5266(00)00087-X] [PMID: 10873843]
[121]
Ritzenthaler, C. Resistance to plant viruses: old issue, news answers? Curr. Opin. Biotechnol., 2005, 16(2), 118-122.
[http://dx.doi.org/10.1016/j.copbio.2005.02.009] [PMID: 15831375]
[122]
Gupta, M.; Gerard, M.; Padmaja, S.S.; Sastry, R.K. Trends of CRISPR technology development and deployment into agricultural production-consumption systems. World Pat. Inf., 2020, 60101944
[http://dx.doi.org/10.1016/j.wpi.2019.101944]
[123]
Schreinemachers, P.; Balasubramaniam, S.; Boopathi, N.M.; Ha, C.V.; Kenyon, L.; Praneetvatakul, S.; Sirijinda, A.; Le, N.T.; Srinivasan, R.; Wu, M.H. Farmers’ perceptions and management of plant viruses in vegetables and legumes in tropical and subtropical Asia. Crop Prot., 2015, 75, 115-123.
[http://dx.doi.org/10.1016/j.cropro.2015.05.012]
[124]
Montenegro, M. CRISPR is coming to agriculture- With big impli-cations for food, farmers, consumers and nature. Ensia., (Accessed March 31, 2016), Available online at: http: //ensia.com/voices/ crispr-is-coming-to-agriculture-with-big-implications-for-food-farmers-consumers-and-nature/

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy