Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Development and Validation of an Individualized Immune Prognostic Signature for Recurrent Prostate Cancer

Author(s): Yaojian Jin, Lan Wang, Hongqiang Lou, Chunhan Song, Xuying He and Mingxing Ding*

Volume 24, Issue 1, 2021

Published on: 27 June, 2020

Page: [98 - 108] Pages: 11

DOI: 10.2174/1386207323666200627212820

Price: $65

Abstract

Background: Immune-related genes possess promising prognostic potential in multiple cancer types. Here, we describe the development of an immune-related prognostic signature for predicting prostate cancer recurrence.

Methods: Prostate cancer gene expression profiles for 477 prostate cases, as well as accompanying follow-up information were downloaded from The Cancer Genome Atlas (TCGA) and GEO. The samples were divided into 3 groups and immune gene sets significantly associated with prognosis were identified by evaluating the relationship between the expression of 1039 immune genes and prognosis in the training set. Relative expression levels of these genes were used to identify prognostic gene pairs. LASSO was used for feature selection and robust biomarkers selected. Finally, the identified immune prognostic markers were validated using dataset and GEO validation dataset and their performance compared with existing prognostic models.

Results: In total, 87 immune genes, significantly associated with prognosis, were identified and 2447 immune gene pairs (IRGPs) established. Univariate survival analysis identified 641 prognosis-associated immune gene pairs. 8-IRGPs were obtained via LASSO feature selection and an 8-IRGPs signature established. The 8-IRGPs signature exhibited an independent prognosis value in prostate cancer of the training set, test set, and external validation set (p = <0.001). The 5- year survival AUC in both the training set and the validation set was >0.7. The 8-IRGPs outperformed clinical tumor classification features, including T, N, radiation therapy (RT) and targeted molecular therapy (TMT) (p <0.01). In addition, we compared the prognostic characteristics of 8-IRGPs with 3 reported prostate cancers and found that 8-IRGPs achieved a high C index (0.85) and had the highest predictive performance within 10 years of follow-up (HR: 10.5). Finally, we integrated T, N, RT, TMT, and 8-IRGPs and generated a novel alignment chart to aid the prediction of prostate cancer recurrence in individual patients (p <0.01).

Conclusion: Here, we identified an 8-IRGP novel prognostic signature for the prediction of prostate cancer recurrence.

Keywords: Bioinformatics, immune genes, cancer, prognostic markers, TCGA, prostate.

[1]
Ali, I.; Haque, A.; Saleem, K.; Hsieh, M.F. Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: synthesis, pharmacological and simulation studies. Bioorg. Med. Chem., 2013, 21(13), 3808-3820.
[http://dx.doi.org/10.1016/j.bmc.2013.04.018] [PMID: 23643901]
[2]
Ali, I.; Saleem, K.; Wesselinova, D.; Haque, A. Synthesis, DNA binding, hemolytic, and anti-cancer assays of curcumin I-based ligands and their ruthenium (III) complexes. Med. Chem. Res., 2013, 22(3), 1386-1398.
[http://dx.doi.org/10.1007/s00044-012-0133-8]
[3]
Ali, I.; Lone, M.N.; Al-Othman, Z.A.; Al-Warthan, A.; Sanagi, M.M. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development. Curr. Drug Targets, 2015, 16(7), 711-734.
[http://dx.doi.org/10.2174/1389450116666150309115922] [PMID: 25751009]
[4]
Ali, I. Nano anti-cancer drugs: pros and cons and future perspectives. Curr. Cancer Drug Targets, 2011, 11(2), 131-134.
[http://dx.doi.org/10.2174/156800911794328457] [PMID: 21062238]
[5]
Saleem, K.; Wani, W.A.; Haque, A.; Lone, M.N.; Hsieh, M.F.; Jairajpuri, M.A.; Ali, I. Synthesis, DNA binding, hemolysis assays and anticancer studies of copper(II), nickel(II) and iron(III) complexes of a pyrazoline-based ligand. Future Med. Chem., 2013, 5(2), 135-146.
[http://dx.doi.org/10.4155/fmc.12.201] [PMID: 23360139]
[6]
Ali, I.; Aboul-Enein, H.Y.; Ghanem, A. Enantioselective toxicity and carcinogenesis. Curr. Pharm. Anal., 2005, 1(1), 109-125.
[http://dx.doi.org/10.2174/1573412052953328]
[7]
Ali, I.; Wani, W.A.; Saleem, K.; Hseih, M-F. Design and synthesis of thalidomide based dithiocarbamate Cu (II), Ni (II) and Ru (III) complexes as anticancer agents. Polyhedron, 2013, 56, 134-143.
[http://dx.doi.org/10.1016/j.poly.2013.03.056]
[8]
Ali, I.; Saleem, K.; Aboul-Enein, H.Y.; Rather, A. social aspects of cancer genesis. Cancer Ther., 2011, 8, 6-14.
[9]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[10]
Center, M.M.; Jemal, A.; Lortet-Tieulent, J.; Ward, E.; Ferlay, J.; Brawley, O.; Bray, F. International variation in prostate cancer incidence and mortality rates. Eur. Urol., 2012, 61(6), 1079-1092.
[http://dx.doi.org/10.1016/j.eururo.2012.02.054] [PMID: 22424666]
[11]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[12]
Ali, I.; Wani, A.W.; Saleem, K.; Haque, A. Thalidomide: a banned drug resurged into future anticancer drug. Curr. Drug Ther., 2012, 7(1), 13-23.
[http://dx.doi.org/10.2174/157488512800389164]
[13]
Ali, I.; Wani, W.A.; Khan, A.; Haque, A.; Ahmad, A.; Saleem, K.; Manzoor, N. Synthesis and synergistic antifungal activities of a pyrazoline based ligand and its copper(II) and nickel(II) complexes with conventional antifungals. Microb. Pathog., 2012, 53(2), 66-73.
[http://dx.doi.org/10.1016/j.micpath.2012.04.005] [PMID: 22575887]
[14]
Ali, I.; Saleem, K.; Uddin, R.; Haque, A.; El-Azzouny, A. Natural products: human friendly anti-cancer medications. Egypt Pharm J, 2010, 9(2), 133-179. [NRC
[15]
Ali, I.; Wani, W.A.; Haque, A.; Saleem, K. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs. Future Med. Chem., 2013, 5(8), 961-978.
[http://dx.doi.org/10.4155/fmc.13.62] [PMID: 23682571]
[16]
Ali, I.; Wani, W.A.; Saleem, K.; Hsieh, M-F. Anticancer metallodrugs of glutamic acid sulphonamides: in silico, DNA binding, hemolysis and anticancer studies. RSC Advances, 2014, 4(56), 29629-29641.
[http://dx.doi.org/10.1039/C4RA02570A]
[17]
Ali, I.; Haque, A.; Wani, W.A.; Saleem, K.; Al Za’abi, M. Analyses of anticancer drugs by capillary electrophoresis: a review. Biomed. Chromatogr., 2013, 27(10), 1296-1311.
[http://dx.doi.org/10.1002/bmc.2953] [PMID: 23843248]
[18]
Ali, I.; Lone, M.N.; Suhail, M.; Mukhtar, S.D.; Asnin, L. Advances in Nanocarriers for Anticancer Drugs Delivery. Curr. Med. Chem., 2016, 23(20), 2159-2187.
[http://dx.doi.org/10.2174/0929867323666160405111152] [PMID: 27048343]
[19]
Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer statistics, 2010. CA Cancer J. Clin., 2010, 60(5), 277-300.
[http://dx.doi.org/10.3322/caac.20073] [PMID: 20610543]
[20]
Ali, I.; Wani, W.A.; Saleem, K.; Wesselinova, D. Syntheses, DNA binding and anticancer profiles of L-glutamic acid ligand and its copper(II) and ruthenium(III) complexes. Med. Chem., 2013, 9(1), 11-21.
[http://dx.doi.org/10.2174/157340613804488297] [PMID: 22741786]
[21]
Ali, I. Nano drugs: novel agents for cancer chemo-therapy. Curr. Cancer Drug Targets, 2011, 11(2), 130.
[http://dx.doi.org/10.2174/156800911794328466] [PMID: 21247391]
[22]
Ali, I.; Lone, M.N.; Alothman, Z.A.; Badjah, A.Y.; Alanazi, A.G. Spectroscopic and In Silico DNA Binding Studies on the Interaction of Some New N-Substituted Rhodanines with Calfthymus DNA: In Vitro Anticancer Activities Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal ChemistryAnti-Cancer Agents) , 2019; 19, pp. (3)425-433.
[23]
Ali, I.; Mukhtar, S.D.; Hsieh, M.F.; Alothman, Z.A.; Alwarthan, A. Facile synthesis of indole heterocyclic compounds based micellar nano anti-cancer drugs. RSC Advances, 2018, 8(66), 37905-37914.
[http://dx.doi.org/10.1039/C8RA07060A]
[24]
Ali, I.; Alharbi, O.M.L.; Tkachev, A.; Galunin, E.; Burakov, A.; Grachev, V.A. Water treatment by new-generation graphene materials: hope for bright future. Environ. Sci. Pollut. Res. Int., 2018, 25(8), 7315-7329.
[http://dx.doi.org/10.1007/s11356-018-1315-9] [PMID: 29359248]
[25]
Ali, I. Rahis-Uddin; Salim, K.; Rather, M.A.; Wani, W.A.; Haque, A. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets, 2011, 11(2), 135-146.
[http://dx.doi.org/10.2174/156800911794328493] [PMID: 21158724]
[26]
Colozza, M.; de Azambuja, E.; Personeni, N.; Lebrun, F.; Piccart, M.J.; Cardoso, F. Achievements in systemic therapies in the pregenomic era in metastatic breast cancer. Oncologist, 2007, 12(3), 253-270.
[http://dx.doi.org/10.1634/theoncologist.12-3-253] [PMID: 17405890]
[27]
Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[28]
Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Thorsen, T.; Quist, H.; Matese, J.C.; Brown, P.O.; Botstein, D.; Lønning, P.E.; Børresen-Dale, A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10869-10874.
[http://dx.doi.org/10.1073/pnas.191367098] [PMID: 11553815]
[29]
Ahmadzadeh, M.; Johnson, L.A.; Heemskerk, B.; Wunderlich, J.R.; Dudley, M.E.; White, D.E.; Rosenberg, S.A. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 2009, 114(8), 1537-1544.
[http://dx.doi.org/10.1182/blood-2008-12-195792] [PMID: 19423728]
[30]
Kaur, H.B.; Guedes, L.B.; Lu, J.; Maldonado, L.; Reitz, L.; Barber, J.R.; De Marzo, A.M.; Tosoian, J.J.; Tomlins, S.A.; Schaeffer, E.M.; Joshu, C.E.; Sfanos, K.S.; Lotan, T.L. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer. Mod. Pathol., 2018, 31(10), 1539-1552.
[http://dx.doi.org/10.1038/s41379-018-0083-x] [PMID: 29849114]
[31]
Petitprez, F.; Fossati, N.; Vano, Y.; Freschi, M.; Becht, E.; Lucianò, R.; Calderaro, J.; Guédet, T.; Lacroix, L.; Rancoita, P.M.V.; Montorsi, F.; Fridman, W.H.; Sautès-Fridman, C.; Briganti, A.; Doglioni, C.; Bellone, M. PD-L1 Expression and CD8+ T-cell Infiltrate are Associated with Clinical Progression in Patients with Node-positive Prostate Cancer. Eur. Urol. Focus, 2019, 5(2), 192-196.
[http://dx.doi.org/10.1016/j.euf.2017.05.013] [PMID: 28753812]
[32]
Gannon, P.O.; Poisson, A.O.; Delvoye, N.; Lapointe, R.; Mes-Masson, A.M.; Saad, F. Characterization of the intra-prostatic immune cell infiltration in androgen-deprived prostate cancer patients. J. Immunol. Methods, 2009, 348(1-2), 9-17.
[http://dx.doi.org/10.1016/j.jim.2009.06.004] [PMID: 19552894]
[33]
Taylor, B.S.; Schultz, N.; Hieronymus, H.; Gopalan, A.; Xiao, Y.; Carver, B.S.; Arora, V.K.; Kaushik, P.; Cerami, E.; Reva, B.; Antipin, Y.; Mitsiades, N.; Landers, T.; Dolgalev, I.; Major, J.E.; Wilson, M.; Socci, N.D.; Lash, A.E.; Heguy, A.; Eastham, J.A.; Scher, H.I.; Reuter, V.E.; Scardino, P.T.; Sander, C.; Sawyers, C.L.; Gerald, W.L. Integrative genomic profiling of human prostate cancer. Cancer Cell, 2010, 18(1), 11-22.
[http://dx.doi.org/10.1016/j.ccr.2010.05.026] [PMID: 20579941]
[34]
Guo, J.C.; Wu, Y.; Chen, Y.; Pan, F.; Wu, Z.Y.; Zhang, J.S.; Wu, J.Y.; Xu, X.E.; Zhao, J.M.; Li, E.M.; Zhao, Y.; Xu, L.Y. Protein-coding genes combined with long noncoding RNA as a novel transcriptome molecular staging model to predict the survival of patients with esophageal squamous cell carcinoma. Cancer Commun (Lond), 2018, 38(1), 4.
[http://dx.doi.org/10.1186/s40880-018-0277-0] [PMID: 29784063]
[35]
Kostareli, E.; Hielscher, T.; Zucknick, M.; Baboci, L.; Wichmann, G.; Holzinger, D.; Mücke, O.; Pawlita, M.; Del Mistro, A.; Boscolo-Rizzo, P.; Da Mosto, M.C.; Tirelli, G.; Plinkert, P.; Dietz, A.; Plass, C.; Weichenhan, D.; Hess, J. Gene promoter methylation signature predicts survival of head and neck squamous cell carcinoma patients. Epigenetics, 2016, 11(1), 61-73.
[http://dx.doi.org/10.1080/15592294.2015.1137414] [PMID: 26786582]
[36]
Zhang, J.X.; Song, W.; Chen, Z.H.; Wei, J.H.; Liao, Y.J.; Lei, J.; Hu, M.; Chen, G.Z.; Liao, B.; Lu, J.; Zhao, H.W.; Chen, W.; He, Y.L.; Wang, H.Y.; Xie, D.; Luo, J.H. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis. Lancet Oncol., 2013, 14(13), 1295-1306.
[http://dx.doi.org/10.1016/S1470-2045(13)70491-1] [PMID: 24239208]
[37]
Papaemmanuil, E.; Gerstung, M.; Malcovati, L.; Tauro, S.; Gundem, G.; Van Loo, P.; Yoon, C.J.; Ellis, P.; Wedge, D.C.; Pellagatti, A.; Shlien, A.; Groves, M.J.; Forbes, S.A.; Raine, K.; Hinton, J.; Mudie, L.J.; McLaren, S.; Hardy, C.; Latimer, C.; Della Porta, M.G.; O’Meara, S.; Ambaglio, I.; Galli, A.; Butler, A.P.; Walldin, G.; Teague, J.W.; Quek, L.; Sternberg, A.; Gambacorti-Passerini, C.; Cross, N.C.; Green, A.R.; Boultwood, J.; Vyas, P.; Hellstrom-Lindberg, E.; Bowen, D.; Cazzola, M.; Stratton, M.R.; Campbell, P.J. Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood, 2013, 122(22), 3616-3627.
[http://dx.doi.org/10.1182/blood-2013-08-518886] [PMID: 24030381]
[38]
Yuan, Y.; Van Allen, E.M.; Omberg, L.; Wagle, N.; Amin-Mansour, A.; Sokolov, A.; Byers, L.A.; Xu, Y.; Hess, K.R.; Diao, L.; Han, L.; Huang, X.; Lawrence, M.S.; Weinstein, J.N.; Stuart, J.M.; Mills, G.B.; Garraway, L.A.; Margolin, A.A.; Getz, G.; Liang, H. Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat. Biotechnol., 2014, 32(7), 644-652.
[http://dx.doi.org/10.1038/nbt.2940] [PMID: 24952901]
[39]
Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw., 2010, 33(1), 1-22.
[http://dx.doi.org/10.18637/jss.v033.i01] [PMID: 20808728]
[40]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[41]
Dougherty, K.M.; Blomme, E.A.; Koh, A.J.; Henderson, J.E.; Pienta, K.J.; Rosol, T.J.; McCauley, L.K. Parathyroid hormone-related protein as a growth regulator of prostate carcinoma. Cancer Res., 1999, 59(23), 6015-6022.
[PMID: 10606251]
[42]
Gujral, A.; Burton, D.W.; Terkeltaub, R.; Deftos, L.J. Parathyroid hormone-related protein induces interleukin 8 production by prostate cancer cells via a novel intracrine mechanism not mediated by its classical nuclear localization sequence. Cancer Res., 2001, 61(5), 2282-2288.
[PMID: 11280799]
[43]
Savvidis, C.; Koutsilieris, M. Circadian rhythm disruption in cancer biology. Mol. Med., 2012, 18, 1249-1260.
[http://dx.doi.org/10.2119/molmed.2012.00077] [PMID: 22811066]
[44]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J.; Group, S.I.S. SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[45]
Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; Xu, J.; Sun, Y.; Liang, H.; Liu, J.; Wang, J.; Tak, W.Y.; Pan, H.; Burock, K.; Zou, J.; Voliotis, D.; Guan, Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol., 2009, 10(1), 25-34.
[http://dx.doi.org/10.1016/S1470-2045(08)70285-7] [PMID: 19095497]
[46]
Eddy, J.A.; Sung, J.; Geman, D.; Price, N.D. Relative expression analysis for molecular cancer diagnosis and prognosis. Technol. Cancer Res. Treat., 2010, 9(2), 149-159.
[http://dx.doi.org/10.1177/153303461000900204] [PMID: 20218737]
[47]
Shu, P.; Wu, J.; Tong, Y.; Xu, C.; Zhang, X. Gene pair based prognostic signature for colorectal colon cancer. Medicine (Baltimore), 2018, 97(42)e12788
[http://dx.doi.org/10.1097/MD.0000000000012788] [PMID: 30334969]
[48]
Li, B.; Cui, Y.; Diehn, M.; Li, R. Development and Validation of an Individualized Immune Prognostic Signature in Early-Stage Nonsquamous Non-Small Cell Lung Cancer. JAMA Oncol., 2017, 3(11), 1529-1537.
[http://dx.doi.org/10.1001/jamaoncol.2017.1609] [PMID: 28687838]
[49]
Peng, P.L.; Zhou, X.Y.; Yi, G.D.; Chen, P.F.; Wang, F.; Dong, W.G. Identification of a novel gene pairs signature in the prognosis of gastric cancer. Cancer Med., 2018, 7(2), 344-350.
[http://dx.doi.org/10.1002/cam4.1303] [PMID: 29282891]
[50]
Mintz, P.J.; Rietz, A.C.; Cardó-Vila, M.; Ozawa, M.G.; Dondossola, E.; Do, K.A.; Kim, J.; Troncoso, P.; Logothetis, C.J.; Sidman, R.L.; Pasqualini, R.; Arap, W. Discovery and horizontal follow-up of an autoantibody signature in human prostate cancer. Proc. Natl. Acad. Sci. USA, 2015, 112(8), 2515-2520.
[http://dx.doi.org/10.1073/pnas.1500097112] [PMID: 25675522]
[51]
Zheng, X.; Dong, L.; Wang, K.; Zou, H.; Zhao, S.; Wang, Y.; Wang, G. MiR-21 Participates in the PD-1/PD-L1 Pathway-Mediated Imbalance of Th17/Treg Cells in Patients After Gastric Cancer Resection. Ann. Surg. Oncol., 2019, 26(3), 884-893.
[http://dx.doi.org/10.1245/s10434-018-07117-6] [PMID: 30565043]
[52]
Iwai, Y.; Ishida, M.; Tanaka, Y.; Okazaki, T.; Honjo, T.; Minato, N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12293-12297.
[http://dx.doi.org/10.1073/pnas.192461099] [PMID: 12218188]
[53]
Sage, E.K.; Schmid, T.E.; Geinitz, H.; Gehrmann, M.; Sedelmayr, M.; Duma, M.N.; Combs, S.E.; Multhoff, G. Effects of definitive and salvage radiotherapy on the distribution of lymphocyte subpopulations in prostate cancer patients. Strahlenther. Onkol., 2017, 193(8), 648-655.
[http://dx.doi.org/10.1007/s00066-017-1144-7] [PMID: 28500490]
[54]
Eckert, F.; Schaedle, P.; Zips, D.; Schmid-Horch, B.; Rammensee, H.G.; Gani, C.; Gouttefangeas, C. Impact of curative radiotherapy on the immune status of patients with localized prostate cancer. OncoImmunology, 2018, 7(11)e1496881
[http://dx.doi.org/10.1080/2162402X.2018.1496881] [PMID: 30393582]
[55]
Shimura, S.; Yang, G.; Ebara, S.; Wheeler, T.M.; Frolov, A.; Thompson, T.C. Reduced infiltration of tumor-associated macrophages in human prostate cancer: association with cancer progression. Cancer Res., 2000, 60(20), 5857-5861.
[PMID: 11059783]
[56]
Nonomura, N.; Takayama, H.; Nakayama, M.; Nakai, Y.; Kawashima, A.; Mukai, M.; Nagahara, A.; Aozasa, K.; Tsujimura, A. Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int., 2011, 107(12), 1918-1922.
[http://dx.doi.org/10.1111/j.1464-410X.2010.09804.x] [PMID: 21044246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy