Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Development in the Fabrication of Collagen Scaffolds for Tissue Engineering Applications: A Review

Author(s): Mohammad F. Mh Busra and Yogeswaran Lokanathan*

Volume 20, Issue 12, 2019

Page: [992 - 1003] Pages: 12

DOI: 10.2174/1389201020666190731121016

Price: $65

Abstract

Tissue engineering focuses on developing biological substitutes to restore, maintain or improve tissue functions. The three main components of its application are scaffold, cell and growthstimulating signals. Scaffolds composed of biomaterials mainly function as the structural support for ex vivo cells to attach and proliferate. They also provide physical, mechanical and biochemical cues for the differentiation of cells before transferring to the in vivo site. Collagen has been long used in various clinical applications, including drug delivery. The wide usage of collagen in the clinical field can be attributed to its abundance in nature, biocompatibility, low antigenicity and biodegradability. In addition, the high tensile strength and fibril-forming ability of collagen enable its fabrication into various forms, such as sheet/membrane, sponge, hydrogel, beads, nanofibre and nanoparticle, and as a coating material. The wide option of fabrication technology together with the excellent biological and physicochemical characteristics of collagen has stimulated the use of collagen scaffolds in various tissue engineering applications. This review describes the fabrication methods used to produce various forms of scaffolds used in tissue engineering applications.

Keywords: Collagen, decellularisation, crosslinking, nanofibres, rapid-prototyping, cell, structure.

Graphical Abstract

[1]
Sahithi, B.; Ansari, S.; Hameeda, S.; Sahithya, G.; Prasad, D.M.; Lakshmi, Y. A review on collagen based drug delivery systems. Ind. J. Biotechnol. Pharm. Res., 2013, 1(3), 461.
[2]
Rao, K.P. Recent developments of collagen-based materials for medical applications and drug delivery systems. J. Biomater. Sci. Polym. Ed., 1995, 7(7), 623-645.
[PMID: 8924427]
[3]
O’brien, F.J. Biomaterials and scaffolds for tissue engineering. Mater. Today, 2011, 14(3), 88-95.
[http://dx.doi.org/10.1016/S1369-7021(11)70058-X]
[4]
Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J., 2008, 17(4)(Suppl. 4), 467-479.
[http://dx.doi.org/10.1007/s00586-008-0745-3] [PMID: 19005702]
[5]
Zhao, P.; Gu, H.; Mi, H.; Rao, C.; Fu, J.; Turng, L-S. Fabrication of scaffolds in tissue engineering: A review. Front. Mech. Eng., 2018, 13(1), 107-119.
[http://dx.doi.org/10.1007/s11465-018-0496-8]
[6]
Wei, J.; Han, J.; Zhao, Y.; Cui, Y.; Wang, B.; Xiao, Z.; Chen, B.; Dai, J. The importance of three-dimensional scaffold structure on stemness maintenance of mouse embryonic stem cells. Biomaterials, 2014, 35(27), 7724-7733.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.060] [PMID: 24930853]
[7]
Takahashi, T.; Ogasawara, T.; Asawa, Y.; Mori, Y.; Uchinuma, E.; Takato, T.; Hoshi, K. Three-dimensional microenvironments retain chondrocyte phenotypes during proliferation culture. Tissue Eng., 2007, 13(7), 1583-1592.
[http://dx.doi.org/10.1089/ten.2006.0322] [PMID: 17630901]
[8]
Aurora, A.; Wrice, N.; Walters, T.J.; Christy, R.J.; Natesan, S. A PEGylated platelet free plasma hydrogel based composite scaffold enables stable vascularization and targeted cell delivery for volumetric muscle loss. Acta Biomater., 2018, 65, 150-162.
[http://dx.doi.org/10.1016/j.actbio.2017.11.019] [PMID: 29128541]
[9]
Dong, C.; Lv, Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers (Basel), 2016, 8(2), 42.
[http://dx.doi.org/10.3390/polym8020042] [PMID: 30979136]
[10]
Costa, F.; Dohmen, P.; Vieira, E.; Lopes, S.V.; Colatusso, C.; Pereira, E.W.L.; Matsuda, C.N.; Cauduro, S. Ross operation with decellularized pulmonary allografts: Medium-term results. Rev. Bras. Cir. Cardiovasc., 2007, 22(4), 454-462.
[http://dx.doi.org/10.1590/S0102-76382007000400012] [PMID: 18488113]
[11]
Elliott, M.J.; De Coppi, P.; Speggiorin, S.; Roebuck, D.; Butler, C.R.; Samuel, E.; Crowley, C.; McLaren, C.; Fierens, A.; Vondrys, D.; Cochrane, L.; Jephson, C.; Janes, S.; Beaumont, N.J.; Cogan, T.; Bader, A.; Seifalian, A.M.; Hsuan, J.J.; Lowdell, M.W.; Birchall, M.A. Stem-cell-based, tissue engineered tracheal replacement in a child: A 2-year follow-up study. Lancet, 2012, 380(9846), 994-1000.
[http://dx.doi.org/10.1016/S0140-6736(12)60737-5] [PMID: 22841419]
[12]
Badylak, S.F.; Taylor, D.; Uygun, K. Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng., 2011, 13, 27-53.
[http://dx.doi.org/10.1146/annurev-bioeng-071910-124743] [PMID: 21417722]
[13]
Parenteau-Bareil, R.; Gauvin, R.; Berthod, F. Collagen-based biomaterials for tissue engineering applications. Materials (Basel), 2010, 3(3), 1863-1887.
[http://dx.doi.org/10.3390/ma3031863]
[14]
Grauss, R.W.; Hazekamp, M.G.; van Vliet, S.; Gittenberger-de Groot, A.C.; DeRuiter, M.C. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J. Thorac. Cardiovasc. Surg., 2003, 126(6), 2003-2010.
[http://dx.doi.org/10.1016/S0022-5223(03)00956-5] [PMID: 14688719]
[15]
Crapo, P.M.; Gilbert, T.W.; Badylak, S.F. An overview of tissue and whole organ decellularization processes. Biomaterials, 2011, 32(12), 3233-3243.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.057] [PMID: 21296410]
[16]
Hwang, J.; San, B.H.; Turner, N.J.; White, L.J.; Faulk, D.M.; Badylak, S.F.; Li, Y.; Yu, S.M. Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide. Acta Biomater., 2017, 53, 268-278.
[http://dx.doi.org/10.1016/j.actbio.2017.01.079] [PMID: 28161576]
[17]
Patel, N.; Solanki, E.; Picciani, R.; Cavett, V.; Caldwell-Busby, J.A.; Bhattacharya, S.K. Strategies to recover proteins from ocular tissues for proteomics. Proteomics, 2008, 8(5), 1055-1070.
[http://dx.doi.org/10.1002/pmic.200700856] [PMID: 18324731]
[18]
Nonaka, P.N.; Campillo, N.; Uriarte, J.J.; Garreta, E.; Melo, E.; de Oliveira, L.V.; Navajas, D.; Farré, R. Effects of freezing/thawing on the mechanical properties of decellularized lungs. J. Biomed. Mater. Res. A, 2014, 102(2), 413-419.
[http://dx.doi.org/10.1002/jbm.a.34708] [PMID: 23533110]
[19]
Poornejad, N.; Frost, T.S.; Scott, D.R.; Elton, B.B.; Reynolds, P.R.; Roeder, B.L.; Cook, A.D. Freezing/thawing without cryoprotectant damages native but not decellularized porcine renal tissue. Organogenesis, 2015, 11(1), 30-45.
[http://dx.doi.org/10.1080/15476278.2015.1022009] [PMID: 25730294]
[20]
Pulver.; Shevtsov, A.; Leybovich, B.; Artyuhov, I.; Maleev, Y.; Peregudov, A. Production of organ extracellular matrix using a freeze-thaw cycle employing extracellular cryoprotectants. Cryo Lett., 2014, 35(5), 400-406.
[PMID: 25397955]
[21]
Reddy, N.; Reddy, R.; Jiang, Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol., 2015, 33(6), 362-369.
[http://dx.doi.org/10.1016/j.tibtech.2015.03.008] [PMID: 25887334]
[22]
Haugh, M.G.; Jaasma, M.J.; O’Brien, F.J. The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds. J. Biomed. Mater. Res. A, 2009, 89(2), 363-369.
[http://dx.doi.org/10.1002/jbm.a.31955] [PMID: 18431763]
[23]
Weadock, K.S.; Miller, E.J.; Bellincampi, L.D.; Zawadsky, J.P.; Dunn, M.G. Physical crosslinking of collagen fibers: Comparison of ultraviolet irradiation and dehydrothermal treatment. J. Biomed. Mater. Res., 1995, 29(11), 1373-1379.
[http://dx.doi.org/10.1002/jbm.820291108] [PMID: 8582905]
[24]
Weadock, K.S.; Miller, E.J.; Keuffel, E.L.; Dunn, M.G. Effect of physical crosslinking methods on collagen-fiber durability in proteolytic solutions. J. Biomed. Mater. Res., 1996, 32(2), 221-226.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199610)32:2<221: AID-JBM11>3.0.CO;2-M] [PMID: 8884499]
[25]
Tian, Z.; Li, C.; Duan, L.; Li, G. Physicochemical properties of collagen solutions cross-linked by glutaraldehyde. Connect. Tissue Res., 2014, 55(3), 239-247.
[http://dx.doi.org/10.3109/03008207.2014.898066] [PMID: 24564765]
[26]
Perez-Puyana, V.; Romero, A.; Guerrero, A. Influence of collagen concentration and glutaraldehyde on collagen-based scaffold properties. J. Biomed. Mater. Res. A, 2016, 104(6), 1462-1468.
[http://dx.doi.org/10.1002/jbm.a.35671] [PMID: 26833811]
[27]
O’Brien, F.J.; Harley, B.A.; Yannas, I.V.; Gibson, L. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials, 2004, 25(6), 1077-1086.
[http://dx.doi.org/10.1016/S0142-9612(03)00630-6] [PMID: 14615173]
[28]
Gough, J.E.; Scotchford, C.A.; Downes, S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J. Biomed. Mater. Res., 2002, 61(1), 121-130.
[http://dx.doi.org/10.1002/jbm.10145] [PMID: 12001254]
[29]
Gao, S.; Yuan, Z.; Guo, W.; Chen, M.; Liu, S.; Xi, T.; Guo, Q. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci. Mater. Sci. Eng. C, 2017, 71, 891-900.
[http://dx.doi.org/10.1016/j.msec.2016.10.074] [PMID: 27987786]
[30]
Scheffel, D.L.S.; Bianchi, L.; Soares, D.G.; Basso, F.G.; Sabatini, C.; de Souza Costa, C.A.; Pashley, D.H.; Hebling, J. Transdentinal cytotoxicity of carbodiimide (EDC) and glutaraldehyde on odontoblast-like cells. Oper. Dent., 2015, 40(1), 44-54.
[http://dx.doi.org/10.2341/13-338-L] [PMID: 25084106]
[31]
Mitra, T.; Sailakshmi, G.; Gnanamani, A. Could glutaric acid (GA) replace glutaraldehyde in the preparation of biocompatible biopolymers with high mechanical and thermal properties? J. Chem. Sci., 2014, 126(1), 127-140.
[http://dx.doi.org/10.1007/s12039-013-0543-2]
[32]
Grabarek, Z.; Gergely, J. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem., 1990, 185(1), 131-135.
[http://dx.doi.org/10.1016/0003-2697(90)90267-D] [PMID: 2344038]
[33]
Islam, M.M.; Griffith, M.; Merrett, K. Fabrication of a human recombinant collagen-based corneal substitute using carbodiimide chemistry. Methods Mol. Biol., 2013, 1014, 157-164.
[http://dx.doi.org/10.1007/978-1-62703-432-6_10]
[34]
Li, J.; Ren, N.; Qiu, J.; Jiang, H.; Zhao, H.; Wang, G.; Boughton, R.I.; Wang, Y.; Liu, H. Carbodiimide crosslinked collagen from porcine dermal matrix for high-strength tissue engineering scaffold. Int. J. Biol. Macromol., 2013, 61, 69-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.06.038] [PMID: 23820178]
[35]
Yu, X.; Tang, C.; Xiong, S.; Yuan, Q.; Gu, Z.; Li, Z.; Hu, Y. Modification of Collagen for Biomedical Applications: A review of physical and chemical methods. Org. Biomol. Chem., 2016, 20.
[http://dx.doi.org/10.2174/1385272820666151102213025]
[36]
Fujikawa, S.; Nakamura, S.; Koga, K. Genipin, a new type of protein crosslinking reagent from gardenia fruits. Agric. Biol. Chem., 1988, 52(3), 869-870.
[37]
Antonio, F.; Guillem, R.; Sonia, T.; Clara, M.; Piergiorgio, G.; Valeria, C.; Gianluca, C.; Tzanov, T. Cross-linked collagen sponges loaded with plant polyphenols with inhibitory activity towards chronic wound enzymes. Biotechnol. J., 2011, 6(10), 1208-1218.
[http://dx.doi.org/10.1002/biot.201100194] [PMID: 21805643]
[38]
Zhang, Y.; Wang, Q.S.; Yan, K.; Qi, Y.; Wang, G.F.; Cui, Y.L. Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications. J. Biomed. Mater. Res. A, 2016, 104(8), 1863-1870.
[http://dx.doi.org/10.1002/jbm.a.35717] [PMID: 27027247]
[39]
Lai, J-Y. Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye. Int. J. Mol. Sci., 2012, 13(9), 10970-10985.
[http://dx.doi.org/10.3390/ijms130910970] [PMID: 23109832]
[40]
Zhang, X.; Chen, X.; Yang, T.; Zhang, N.; Dong, L.; Ma, S.; Liu, X.; Zhou, M.; Li, B. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: An in vitro evaluation. Cell Tissue Bank., 2014, 15(4), 531-541.
[http://dx.doi.org/10.1007/s10561-014-9423-3] [PMID: 24442821]
[41]
Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J., 2013, 49(4), 780-792.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[42]
Fernandes, L.L.; Resende, C.X.; Tavares, D.S.; Soares, G.A.; Castro, L.O.; Granjeiro, J.M. Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering. Polímeros, 2011, 21(1), 1-6.
[http://dx.doi.org/10.1590/S0104-14282011005000008]
[43]
Wang, W.; Lin, S.; Xiao, Y.; Huang, Y.; Tan, Y.; Cai, L.; Li, X. Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci., 2008, 82(3-4), 190-204.
[http://dx.doi.org/10.1016/j.lfs.2007.11.009] [PMID: 18164317]
[44]
Zeng, W.; Rong, M.; Hu, X.; Xiao, W.; Qi, F.; Huang, J.; Luo, Z. Incorporation of chitosan microspheres into collagen-chitosan scaffolds for the controlled release of nerve growth factor. PLoS One, 2014, 9(7)e101300
[http://dx.doi.org/10.1371/journal.pone.0101300] [PMID: 24983464]
[45]
Ti, D.; Hao, H.; Xia, L.; Tong, C.; Liu, J.; Dong, L.; Xu, S.; Zhao, Y.; Liu, H.; Fu, X.; Han, W. Controlled release of thymosin beta 4 using a collagen-chitosan sponge scaffold augments cutaneous wound healing and increases angiogenesis in diabetic rats with hindlimb ischemia. Tissue Eng. Part A, 2015, 21(3-4), 541-549.
[http://dx.doi.org/10.1089/ten.tea.2013.0750] [PMID: 25204972]
[46]
Martínez, A.; Blanco, M.D.; Davidenko, N.; Cameron, R.E. Tailoring chitosan/collagen scaffolds for tissue engineering: Effect of composition and different crosslinking agents on scaffold properties. Carbohydr. Polym., 2015, 132, 606-619.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.084] [PMID: 26256388]
[47]
Ciardelli, G.; Gentile, P.; Chiono, V.; Mattioli-Belmonte, M.; Vozzi, G.; Barbani, N.; Giusti, P. Enzymatically crosslinked porous composite matrices for bone tissue regeneration. J. Biomed. Mater. Res. A, 2010, 92(1), 137-151.
[http://dx.doi.org/10.1002/jbm.a.32344] [PMID: 19165785]
[48]
Stachel, I.; Schwarzenbolz, U.; Henle, T.; Meyer, M. Cross-linking of type I collagen with microbial transglutaminase: Identification of cross-linking sites. Biomacromolecules, 2010, 11(3), 698-705.
[http://dx.doi.org/10.1021/bm901284x] [PMID: 20131754]
[49]
Chowdhury, S.R.; Busra, M.F.M.; Lokanathan, Y.; Ng, M.H.; Law, J.X.; Cletus, U.C.; Idrus, R.B.H. Collagen Type I: A Versatile Biomaterial.Novel Biomaterials for Regenerative Medicine;; H.C.; K.P., CH; K., G.K., Eds.; , 2018, pp. 1077. 389-414.
[50]
Rahmati, M.; Mozafari, M. Protein adsorption on polymers. Materials Today Commun., 2018, 17, 527-540.
[http://dx.doi.org/10.1016/j.mtcomm.2018.10.024]
[51]
Sulong, A.F.; Hassan, N.H.; Hwei, N.M.; Lokanathan, Y.; Naicker, A.S.; Abdullah, S.; Yusof, M.R.; Htwe, O.; Idrus, R.B.; Haflah, N.H. Collagen-coated polylactic-glycolic acid (PLGA) seeded with neural-differentiated human mesenchymal stem cells as a potential nerve conduit. Adv. Clin. Exp. Med., 2014, 23(3), 353-362.
[http://dx.doi.org/10.17219/acem/37125] [PMID: 24979505]
[52]
Rabiatul, A.R.; Lokanathan, Y.; Rohaina, C.M.; Chowdhury, S.R.; Aminuddin, B.S.; Ruszymah, B.H. Surface modification of electrospun poly(methyl methacrylate) (PMMA) nanofibers for the development of in vitro respiratory epithelium model. J. Biomater. Sci. Polym. Ed., 2015, 26(17), 1297-1311.
[http://dx.doi.org/10.1080/09205063.2015.1088183] [PMID: 26335265]
[53]
Baek, J-Y.; Xing, Z-C.; Kwak, G.; Yoon, K-B.; Park, S-Y.; Park, L.S.; Kang, I-K. Fabrication and characterization of collagen-immobilized porous PHBV/HA nanocomposite scaffolds for bone tissue engineering. J. Nanomater., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/171804]
[54]
Zuyderhoff, E.M.; Dupont-Gillain, C.C. Nano-organized collagen layers obtained by adsorption on phase-separated polymer thin films. Langmuir, 2012, 28(4), 2007-2014.
[http://dx.doi.org/10.1021/la203842q] [PMID: 22149629]
[55]
Fauzi, M.B.; Lokanathan, Y.; Aminuddin, B.S.; Ruszymah, B.H.I.; Chowdhury, S.R. Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications. Mater. Sci. Eng. C, 2016, 68, 163-171.
[http://dx.doi.org/10.1016/j.msec.2016.05.109] [PMID: 27524008]
[56]
Prasad, A.; Sankar, M.R.; Katiyar, V. State of art on solvent casting particulate leaching method for orthopedic scaffolds fabrication. Materials Today: Proceedings, 2017, 4(2), 898-907.
[57]
Yannas, I.V.; Tzeranis, D.S.; Harley, B.A.; So, P.T. Biologically active collagen-based scaffolds: Advances in processing and characterization. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2010, 368(1917), 2123-2139.
[http://dx.doi.org/10.1098/rsta.2010.0015] [PMID: 20308118]
[58]
Fauzi, M.; Aminuddin, B.; Ruszymah, B. Fabrication of collagen type I Scaffold for skin tissue engineering. Regen. Res., 2014, 3(2), 60-61.
[59]
Subia, B.; Kundu, J.; Kundu, S. Biomaterial scaffold fabrication techniques for potential tissue engineering applications; INTECH Open Access Publisher, 2010.
[http://dx.doi.org/10.5772/8581]
[60]
Brougham, C.M.; Levingstone, T.J.; Shen, N.; Cooney, G.M.; Jockenhoevel, S.; Flanagan, T.C.; O’Brien, F.J. Freeze-drying as a novel biofabrication method for achieving a controlled microarchitecture within large, complex natural biomaterial scaffolds. Adv. Healthc. Mater., 2017, 6(21)1700598
[http://dx.doi.org/10.1002/adhm.201700598] [PMID: 28758358]
[61]
Clearfield, D.; Wei, M. Investigation of structural collapse in unidirectionally freeze cast collagen scaffolds. J. Mater. Sci. Mater. Med., 2016, 27(1), 15.
[http://dx.doi.org/10.1007/s10856-015-5632-y] [PMID: 26676861]
[62]
Keshaw, H.; Thapar, N.; Burns, A.J.; Mordan, N.; Knowles, J.C.; Forbes, A.; Day, R.M. Microporous collagen spheres produced via thermally induced phase separation for tissue regeneration. Acta Biomater., 2010, 6(3), 1158-1166.
[http://dx.doi.org/10.1016/j.actbio.2009.08.044] [PMID: 19733702]
[63]
Munir, N.; Callanan, A. Novel phase separated polycaprolactone/collagen scaffolds for cartilage tissue engineering. Biomed. Mater., 2018, 13(5)051001
[http://dx.doi.org/10.1088/1748-605X/aac91f] [PMID: 29848797]
[64]
Ouyang, Y.; Huang, C.; Zhu, Y.; Fan, C.; Ke, Q. Fabrication of seamless electrospun collagen/PLGA conduits whose walls comprise highly longitudinal aligned nanofibers for nerve regeneration. J. Biomed. Nanotechnol., 2013, 9(6), 931-943.
[http://dx.doi.org/10.1166/jbn.2013.1605] [PMID: 23858957]
[65]
Pham, Q.P.; Sharma, U.; Mikos, A.G. Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng., 2006, 12(5), 1197-1211.
[http://dx.doi.org/10.1089/ten.2006.12.1197] [PMID: 16771634]
[66]
Khorshidi, S.; Solouk, A.; Mirzadeh, H.; Mazinani, S.; Lagaron, J.M.; Sharifi, S.; Ramakrishna, S. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J. Tissue Eng. Regen. Med., 2016, 10(9), 715-738.
[http://dx.doi.org/10.1002/term.1978] [PMID: 25619820]
[67]
Kim, Y.B.; Kim, G. Rapid-prototyped collagen scaffolds reinforced with PCL/β-TCP nanofibres to obtain high cell seeding efficiency and enhanced mechanical properties for bone tissue regeneration. J. Mater. Chem., 2012, 22(33), 16880-16889.
[http://dx.doi.org/10.1039/c2jm33036a]
[68]
Lee, Y-B.; Polio, S.; Lee, W.; Dai, G.; Menon, L.; Carroll, R.S.; Yoo, S-S. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol., 2010, 223(2), 645-652.
[http://dx.doi.org/10.1016/j.expneurol.2010.02.014] [PMID: 20211178]
[69]
Pucci, J.U.; Christophe, B.R.; Sisti, J.A.; Connolly, E.S. Jr Three-dimensional printing: Technologies, applications, and limitations in neurosurgery. Biotechnol. Adv., 2017, 35(5), 521-529.
[http://dx.doi.org/10.1016/j.biotechadv.2017.05.007] [PMID: 28552791]
[70]
Islam, A.; Mbimba, T.; Younesi, M.; Akkus, O. Effects of substrate stiffness on the tenoinduction of human mesenchymal stem cells. Acta Biomater., 2017, 58, 244-253.
[http://dx.doi.org/10.1016/j.actbio.2017.05.058] [PMID: 28602855]
[71]
Kang, L.; Liu, X.; Yue, Z.; Chen, Z.; Baker, C.; Winberg, P.C.; Wallace, G.G. Fabrication and in vitro characterization of electrochemically compacted collagen/sulfated xylorhamnoglycuronan matrix for wound healing applications. Polymers (Basel), 2018, 10(4), 415.
[http://dx.doi.org/10.3390/polym10040415] [PMID: 30966450]
[72]
Younesi, M.; Islam, A.; Kishore, V.; Panit, S.; Akkus, O. Fabrication of compositionally and topographically complex robust tissue forms by 3D-electrochemical compaction of collagen. Biofabrication, 2015, 7(3)035001
[http://dx.doi.org/10.1088/1758-5090/7/3/035001] [PMID: 26069162]
[73]
Lee, J.K.; Link, J.M.; Hu, J.C.Y.; Athanasiou, K.A. The self-assembling process and applications in tissue engineering. Cold Spring Harb. Perspect. Med., 2017, 7(11)a025668
[http://dx.doi.org/10.1101/cshperspect.a025668] [PMID: 28348174]
[74]
Zeravcic, Z.; Manoharan, V.N.; Brenner, M.P. Size limits of self-assembled colloidal structures made using specific interactions. Proc. Natl. Acad. Sci. USA, 2014, 111(45), 15918-15923.
[http://dx.doi.org/10.1073/pnas.1411765111] [PMID: 25349380]
[75]
Zhu, S.; Yuan, Q.; Yin, T.; You, J.; Gu, Z.; Xiong, S.; Hu, Y. Self-assembly of collagen-based biomaterials: Preparation, characterizations and biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(18), 2650-2676.
[http://dx.doi.org/10.1039/C7TB02999C]
[76]
Sarti, B.; Scandola, M. Viscoelastic and thermal properties of collagen/poly(vinyl alcohol) blends. Biomaterials, 1995, 16(10), 785-792.
[http://dx.doi.org/10.1016/0142-9612(95)99641-X] [PMID: 7492709]
[77]
Taraballi, F.; Zanini, S.; Lupo, C.; Panseri, S.; Cunha, C.; Riccardi, C.; Marcacci, M.; Campione, M.; Cipolla, L. Amino and carboxyl plasma functionalization of collagen films for tissue engineering applications. J. Colloid Interface Sci., 2013, 394, 590-597.
[http://dx.doi.org/10.1016/j.jcis.2012.11.041] [PMID: 23266023]
[78]
Russo, L.; Gautieri, A.; Raspanti, M.; Taraballi, F.; Nicotra, F.; Vesentini, S.; Cipolla, L. Carbohydrate-functionalized collagen matrices: Design and characterization of a novel neoglycosylated biomaterial. Carbohydr. Res., 2014, 389, 12-17.
[http://dx.doi.org/10.1016/j.carres.2013.11.008] [PMID: 24332940]
[79]
Liu, Y.; Ren, L.; Yao, H.; Wang, Y. Collagen films with suitable physical properties and biocompatibility for corneal tissue engineering prepared by ion leaching technique. Mater. Lett., 2012, 87, 1-4.
[http://dx.doi.org/10.1016/j.matlet.2012.07.091]
[80]
Lee, S.B.; Kim, Y.H.; Chong, M.S.; Lee, Y.M. Preparation and characteristics of hybrid scaffolds composed of β-chitin and collagen. Biomaterials, 2004, 25(12), 2309-2317.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.016] [PMID: 14741596]
[81]
Zhang, Q.; Lu, H.; Kawazoe, N.; Chen, G. Pore size effect of collagen scaffolds on cartilage regeneration. Acta Biomater., 2014, 10(5), 2005-2013.
[http://dx.doi.org/10.1016/j.actbio.2013.12.042] [PMID: 24384122]
[82]
Ahn, S.; Lee, S.; Cho, Y.; Chun, W.; Kim, G. Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process. Bioprocess Biosyst. Eng., 2011, 34(7), 903-911.
[http://dx.doi.org/10.1007/s00449-011-0541-z] [PMID: 21472408]
[83]
Schoof, H.; Apel, J.; Heschel, I.; Rau, G. Control of pore structure and size in freeze-dried collagen sponges. J. Biomed. Mater. Res., 2001, 58(4), 352-357.
[http://dx.doi.org/10.1002/jbm.1028] [PMID: 11410892]
[84]
Kim, T.G.; Chung, H.J.; Park, T.G. Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater., 2008, 4(6), 1611-1619.
[http://dx.doi.org/10.1016/j.actbio.2008.06.008] [PMID: 18640884]
[85]
Matthews, J.A.; Wnek, G.E.; Simpson, D.G.; Bowlin, G.L. Electrospinning of collagen nanofibers. Biomacromolecules, 2002, 3(2), 232-238.
[http://dx.doi.org/10.1021/bm015533u] [PMID: 11888306]
[86]
Vigneswari, S.; Murugaiyah, V.; Kaur, G.; Abdul Khalil, H.P.S.; Amirul, A.A. Simultaneous dual syringe electrospinning system using benign solvent to fabricate nanofibrous P(3HB-co-4HB)/collagen peptides construct as potential leave-on wound dressing. Mater. Sci. Eng. C, 2016, 66, 147-155.
[http://dx.doi.org/10.1016/j.msec.2016.03.102] [PMID: 27207048]
[87]
Zhao, P.; Cao, M.; Gu, H.; Gao, Q.; Xia, N.; He, Y.; Fu, J. Research on the electrospun foaming process to fabricate three‐dimensional tissue engineering scaffolds. J. Appl. Polym. Sci., 2018, 135(46), 46898.
[http://dx.doi.org/10.1002/app.46898]
[88]
Gao, Q.; Gu, H.; Zhao, P.; Zhang, C.; Cao, M.; Fu, J.; He, Y. Fabrication of electrospun nanofibrous scaffolds with 3D controllable geometric shapes. Mater. Des., 2018, 157, 159-169.
[http://dx.doi.org/10.1016/j.matdes.2018.07.042]
[89]
Murr, L.E. Rapid Prototyping Technologies: Solid Freeform Fabrication. Handbook of Materials Structures, Properties, Processing and Performance; Springer, 2015, pp. 639-652.
[90]
Shao, H.; Sun, M.; Zhang, F.; Liu, A.; He, Y.; Fu, J.; Yang, X.; Wang, H.; Gou, Z. Custom repair of mandibular bone defects with 3D printed bioceramic scaffolds. J. Dent. Res., 2018, 97(1), 68-76.
[http://dx.doi.org/10.1177/0022034517734846] [PMID: 29020507]
[91]
Shao, H.; Ke, X.; Liu, A.; Sun, M.; He, Y.; Yang, X.; Fu, J.; Liu, Y.; Zhang, L.; Yang, G.; Xu, S.; Gou, Z. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect. Biofabrication, 2017, 9(2)025003
[http://dx.doi.org/10.1088/1758-5090/aa663c] [PMID: 28287077]
[92]
Cui, T.; Yan, Y.; Zhang, R.; Liu, L.; Xu, W.; Wang, X. Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration. Tissue Eng. Part C Methods, 2009, 15(1), 1-9.
[http://dx.doi.org/10.1089/ten.tec.2008.0354] [PMID: 18844602]
[93]
Liu, C.Z.; Xia, Z.D.; Han, Z.W.; Hulley, P.A.; Triffitt, J.T.; Czernuszka, J.T. Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 85(2), 519-528.
[http://dx.doi.org/10.1002/jbm.b.30975] [PMID: 18076093]
[94]
Pins, G.D.; Silver, F.H. A self-assembled collagen scaffold suitable for use in soft and hard tissue replacement. Mater. Sci. Eng. C, 1995, 3(2), 101-107.
[http://dx.doi.org/10.1016/0928-4931(95)00109-3]
[95]
Gross, J.; Highberger, J.H.; Schmitt, F.O. Some factors involved in the fibrogenesis of collagen in vitro. Proc. Soc. Exp. Biol. Med., 1952, 80(3), 462-465.
[http://dx.doi.org/10.3181/00379727-80-19657] [PMID: 14949085]
[96]
Kato, Y.P.; Christiansen, D.L.; Hahn, R.A.; Shieh, S-J.; Goldstein, J.D.; Silver, F.H. Mechanical properties of collagen fibres: A comparison of reconstituted and rat tail tendon fibres. Biomaterials, 1989, 10(1), 38-42.
[http://dx.doi.org/10.1016/0142-9612(89)90007-0] [PMID: 2713432]
[97]
Pins, G.D.; Christiansen, D.L.; Patel, R.; Silver, F.H. Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys. J., 1997, 73(4), 2164-2172.
[http://dx.doi.org/10.1016/S0006-3495(97)78247-X] [PMID: 9336212]
[98]
Chan, B.P.; Hui, T.Y.; Yeung, C.W.; Li, J.; Mo, I.; Chan, G.C. Self-assembled collagen-human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials, 2007, 28(31), 4652-4666.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.041] [PMID: 17681374]
[99]
Xing, R.; Liu, K.; Jiao, T.; Zhang, N.; Ma, K.; Zhang, R.; Zou, Q.; Ma, G.; Yan, X. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv. Mater., 2016, 28(19), 3669-3676.
[http://dx.doi.org/10.1002/adma.201600284] [PMID: 26991248]
[100]
Yang, Y.L.; Motte, S.; Kaufman, L.J. Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials, 2010, 31(21), 5678-5688.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.039] [PMID: 20430434]
[101]
Faraj, K.A.; Brouwer, K.M.; Geutjes, P.J.; Versteeg, E.M.; Wismans, R.G.; Deprest, J.A.; Chajra, H.; Tiemessen, D.M.; Feitz, W.F.; Oosterwijk, E. The effect of ethylene oxide sterilisation, beta irradiation and gamma irradiation on collagen fibril-based scaffolds. J. Tissue Eng. Regen. Med., 2011, 8(5), 460-470.
[102]
Wiegand, C.; Abel, M.; Ruth, P.; Wilhelms, T.; Schulze, D.; Norgauer, J.; Hipler, U.C. Effect of the sterilization method on the performance of collagen type I on chronic wound parameters in vitro. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 90(2), 710-719.
[http://dx.doi.org/10.1002/jbm.b.31338] [PMID: 19213054]
[103]
Monaco, G.; Cholas, R.; Salvatore, L.; Madaghiele, M.; Sannino, A. Sterilization of collagen scaffolds designed for peripheral nerve regeneration: Effect on microstructure, degradation and cellular colonization. Mater. Sci. Eng. C, 2017, 71, 335-344.
[http://dx.doi.org/10.1016/j.msec.2016.10.030] [PMID: 27987715]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy