[1]
Elia, A.E.; Rellos, P.; Haire, L.F.; Chao, J.W.; Ivins, F.J.; Hoepker, K.; Mohammad, D.; Cantley, L.C.; Smerdon, S.J.; Yaffe, M.B. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell, 2003, 115(1), 83-95.
[2]
Strebhardt, K.; Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nat. Rev. Cancer, 2006, 6(4), 321-330.
[3]
Golsteyn, R.M.; Mundt, K.E.; Fry, A.M.; Nigg, E.A. Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J. Cell Biol., 1995, 129(6), 1617-1628.
[4]
Toyoshima-Morimoti, F.; Taniguchi, E.; Shinya, N.; Iwamatsu, A.; Nishida, E. erratum: Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature, 2001, 410(6830), 847-847.
[5]
Lane, H.A.; Nigg, E.A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol., 1996, 135(6), 1701-1713.
[6]
Kops, G.J.; Weaver, B.A.; Cleveland, D.W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat. Rev. Cancer, 2005, 5(10), 773-785.
[7]
Takahashi, T.; Sano, B.; Nagata, T.; Kato, H.; Sugiyama, Y.; Kunieda, K.; Kimura, M.; Okano, Y.; Saji, S. Polo‐like kinase 1 (PLK1) is overexpressed in primary colorectal cancers. Cancer Sci., 2003, 94(2), 148-152.
[8]
Wolf, G.; Hildenbrand, R.; Schwar, C.; Grobholz, R.; Kaufmann, M.; Stutte, H-J.; Strebhardt, K.; Bleyl, U. Polo-like kinase: a novel marker of proliferation: correlation with estrogen-receptor expression in human breast cancer. Pathol. Res. Pract., 2000, 196(11), 753-759.
[9]
Tokumitsu, Y.; Mori, M.; Tanaka, S.; Akazawa, K.; Nakano, S.; Niho, Y. Prognostic significance of polo-like kinase expression in esophageal carcinoma. Int. J. Oncol., 1999, 15(4), 687-779.
[10]
Gray, P.J.; Bearss, D.J.; Han, H.; Nagle, R.; Tsao, M-S.; Dean, N.; Von Hoff, D.D. Identification of human polo-like kinase 1 as a potential therapeutic target in pancreatic cancer. Cancer Res., 2004, 3(5), 641-646.
[11]
Knecht, R.; Elez, R.; Oechler, M.; Solbach, C.; von Ilberg, C.; Strebhardt, K. Prognostic significance of polo-like kinase (PLK) expression in squamous cell carcinomas of the head and neck. Cancer Res., 1999, 59(12), 2794-2797.
[12]
Takai, N.; Miyazaki, T.; Fujisawa, K.; Nasu, K.; Hamanaka, R.; Miyakawa, I. Expression of polo-like kinase in ovarian cancer is associated with histological grade and clinical stage. Cancer Lett., 2001, 164(1), 41-49.
[13]
Sato, F.; Abraham, J.M.; Yin, J.; Kan, T.; Ito, T.; Mori, Y.; Hamilton, J.P.; Jin, Z.; Cheng, Y.; Paun, B. Polo-like kinase and survivin are esophageal tumor-specific promoters. Biochem. Biophys. Res. Commun., 2006, 342(2), 465-471.
[14]
Feng, Y.B.; Lin, D.C.; Shi, Z.Z.; Wang, X.C.; Shen, X.M.; Zhang, Y.; Du, X.L.; Luo, M.L.; Xu, X.; Han, Y.L. Overexpression of PLK1 is associated with poor survival by inhibiting apoptosis via enhancement of survivin level in esophageal squamous cell carcinoma. Int. J. Cancer, 2009, 124(3), 578-588.
[15]
Coupland, V.H.; Allum, W.; Blazeby, J.M.; Mendall, M.A.; Hardwick, R.H.; Linklater, K.M.; Møller, H.; Davies, E.A. Incidence and survival of esophageal and gastric cancer in England between 1998 and 2007, a population-based study. BMC Cancer, 2012, 12(1)
[16]
Adams, R.; Morgan, M.; Mukherjee, S.; Brewster, A.; Maughan, T.; Morrey, D.; Havard, T.; Lewis, W.; Clark, G.; Roberts, S. A prospective comparison of multidisciplinary treatment of esophageal cancer with curative intent in a UK cancer network. Eur. J. Surg. Oncol., 2007, 33(3), 307-313.
[17]
WHO. World Cancer Report; Lyon IARC Press, 2003.
[18]
Kim, S.M.; Park, Y-Y.; Park, E.S.; Cho, J.Y.; Izzo, J.G.; Zhang, D.; Kim, S-B.; Lee, J.H.; Bhutani, M.S.; Swisher, S.G. Prognostic biomarkers for esophageal adenocarcinoma identified by analysis of tumor transcriptome. PLoS One, 2010, 5(11)e15074
[19]
Peters, C.J.; Rees, J.R.; Hardwick, R.H.; Hardwick, J.S.; Vowler, S.L.; Ong, C.A.J.; Zhang, C.; Save, V.; O’Donovan, M.; Rassl, D. A 4-gene signature predicts survival of patients with resected adenocarcinoma of the esophagus, junction, and gastric cardia. Gastroenterology, 2010, 139(6), 1995-2004.
[20]
Chin, L.; Gray, J.W. Translating insights from the cancer genome into clinical practice. Nature, 2008, 452(7187), 553-563.
[21]
Hawkins, R.D.; Hon, G.C.; Ren, B. Next-generation genomics: An integrative approach. Nat. Rev. Genet., 2010, 11(7), 476-486.
[22]
Berger, J.A.; Hautaniemi, S.; Mitra, S.K.; Astola, J. Jointly analyzing gene expression and copy number data in breast cancer using data reduction models. IEEE/ACM Tr Comp. Biol. Bioinf., 2006, 3(1), 2.
[23]
Shen, R.; Olshen, A.B.; Ladanyi, M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics, 2009, 25(22), 2906-2912.
[24]
Guex, N.; Peitsch, M.C.; Schwede, T. Automated comparative protein structure modeling with SWISS‐MODEL and Swiss‐PdbViewer: A historical perspective. Electrophoresis, 2009, 30(S1)
[25]
Sheelagh, F.; Claire, A.; Robert, O.; Jonathan, H.; Stephen, T.; Ted, H.; David, B.; Daniella, Z. Potent and selective small molecule inhibitors
of Polo-like kinase 1: Biological characterization AACR
103rd Annual Meeting 2012. Chicago, IL.
[26]
Wu, S.; Zhang, Y. MUSTER: improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins Structure, Function, Bioinformatics, 2008, 72(2), 547-556.
[27]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[28]
De Vries, S.J.; Van Dijk, M.; Bonvin, A.M. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc., 2010, 5(5), 883-897.
[29]
Torchala, M.; Moal, I.H.; Chaleil, R.A.; Fernandez-Recio, J.; Bates, P.A. SwarmDock: A server for flexible protein–protein docking. Bioinformatics, 2013, 29(6), 807-809.
[30]
Tovchigrechko, A.; Vakser, I.A. GRAMM-X public web server for protein–protein docking. Nucleic Acids Res., 2006, 34(suppl_2), W310-W314.
[31]
Meng, E.C.; Pettersen, E.F.; Couch, G.S.; Huang, C.C.; Ferrin, T.E. Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics, 2006, 7(1), 339.
[32]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 1995, 8(2), 127-134.
[33]
Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 2008, 5(7), 621-628.
[34]
Yaffe, M.B.; Smerdon, S.J. The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function. Annu. Rev. Biophys. Biomol. Struct., 2004, 33, 225-244.
[35]
Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D., 2010, 66(4), 486-501.
[36]
Barr, F.A.; Silljé, H.H.; Nigg, E.A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol., 2004, 5(6), 429-441.
[37]
Petronczki, M.; Lénárt, P.; Peters, J-M. Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev. Cell, 2008, 14(5), 646-659.
[38]
Archambault, V.; Glover, D.M. Polo-like kinases: conservation and divergence in their functions and regulation. Nat. Rev. Mol. Cell Biol., 2009, 10(4), 265-275.
[39]
Taylor, S.; Peters, J-M. Polo and Aurora kinases-lessons derived from chemical biology. Curr. Opin. Cell Biol., 2008, 20(1), 77-84.
[40]
Tsvetkov, L.; Stern, D.F. Interaction of chromatin-associated Plk1 and Mcm7. J. Biol. Chem., 2005, 280(12), 11943-11947.
[41]
Van Vugt, M.A.; Gardino, A.K.; Linding, R.; Ostheimer, G.J.; Reinhardt, H.C.; Ong, S-E.; Tan, C.S.; Miao, H.; Keezer, S.M.; Li, J. A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G2/M DNA damage checkpoint. PLoS Biol., 2010, 8(1)e1000287
[42]
Luca, M.D.; Lavia, P.; Guarguaglini, G. A functional interplay between Aurora-A, Plk1 and TPX2 at spindle poles: Plk1 controls centrosomal localization of Aurora-A and TPX2 spindle association. Cell Cycle, 2006, 5(3), 296-303.
[43]
Li, H.; Wang, Y.; Liu, X. Plk1-dependent phosphorylation regulates functions of DNA topoisomerase IIα in cell cycle progression. J. Biol. Chem., 2008, 283(10), 6209-6221.
[44]
Denison, C.; Rudner, A.D.; Gerber, S.A.; Bakalarski, C.E.; Moazed, D.; Gygi, S.P. A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell. Proteomics, 2005, 4(3), 246-254.
[45]
Hannich, J.T.; Lewis, A.; Kroetz, M.B.; Li, S-J.; Heide, H.; Emili, A.; Hochstrasser, M. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem., 2005, 280(6), 4102-4110.
[46]
Panse, V.G.; Hardeland, U.; Werner, T.; Kuster, B.; Hurt, E. A proteome-wide approach identifies sumoylated substrate proteins in yeast. J. Biol. Chem., 2004, 279(40), 41346-41351.
[47]
Wohlschlegel, J.A.; Johnson, E.S.; Reed, S.I.; Yates, J.R. Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem., 2004, 279(44), 45662-45668.
[48]
Dasso, M. Emerging roles of the SUMO pathway in mitosis. Cell Div., 2008, 3(1), 5.
[49]
Gill, G. Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev., 2005, 15(5), 536-541.
[50]
Hay, R.T. SUMO: A history of modification. Mol. Cell, 2005, 18(1), 1-12.
[51]
Hay, R. Role of ubiquitin-like proteins in transcriptional regulation. In: The Histone Code and Beyond; Springer, 2006; pp. 173-192.
[52]
Moschos, S.J.; Mo, Y-Y. Role of SUMO/Ubc9 in DNA damage repair and tumorigenesis. J. Mol. Histol., 2006, 37(5), 309-319.
[53]
Pastushok, L.; Xiao, W. DNA postreplication repair modulated by ubiquitination and sumoylation. Adv. Protein Chem., 2004, 69, 279-306.
[54]
Seeler, J-S.; Bischof, O.; Nacerddine, K.; Dejean, A. SUMO, the three Rs and cancer. In: Acute Promyelocytic Leukemia; Springer, 2007; pp. 49-71.
[55]
Matic, I.; Macek, B.; Hilger, M.; Walther, T.C.; Mann, M. Phosphorylation of SUMO-1 occurs in vivo and is conserved through evolution. J. Proteome Res., 2008, 7(9), 4050-4057.
[56]
Rodriguez, M.S.; Desterro, J.M.; Lain, S.; Midgley, C.A.; Lane, D.P.; Hay, R.T. SUMO‐1 modification activates the transcriptional response of p53. EMBO J., 1999, 18(22), 6455-6461.
[57]
McKenzie, L.; King, S.; Marcar, L.; Nicol, S.; Dias, S.S.; Schumm, K.; Robertson, P.; Bourdon, J-C.; Perkins, N.; Fuller-Pace, F. p53-dependent repression of polo-like kinase-1 (PLK1). Cell Cycle, 2010, 9(20), 4200-4212.
[58]
Zhu, H.; Chang, B-D.; Uchiumi, T.; Roninson, I.B. Identification of promoter elements responsible for transcriptional inhibition of polo-like kinase 1 and topoisomerase iiα genes by p21WAF1/ CIP1/SDI1. Cell Cycle, 2002, 1(1), 55-62.
[59]
Stamler, R.; Kappé, G.; Boelens, W.; Slingsby, C. Wrapping the α-crystallin domain fold in a chaperone assembly. J. Mol. Biol., 2005, 353(1), 68-79.
[60]
Mymrikov, E.V.; Seit-Nebi, A.S.; Gusev, N.B. Large potentials of small heat shock proteins. Physiol. Rev., 2011, 91(4), 1123-1159.
[61]
Assimakopoulou, M.; Sotiropoulou-Bonikou, G.; Maraziotis, T.; Varakis, I. Prognostic significance of Hsp-27 in astrocytic brain tumors: an immunohistochemical study. Physiol. Rev., 1997, 17(4A), 2677-2682.
[62]
Ciocca, D.R.; Calderwood, S.K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 2005, 10(2), 86-103.
[63]
Fuqua, S.A.; Oesterreich, S.; Hilsenbeck, S.G.; Von Hoff, D.D.; Eckardt, J.; Osborne, C.K. Heat shock proteins and drug resistance. Breast Cancer Res. Treat., 1994, 32, 67-71.
[64]
Huang, Q.; Ye, J.; Huang, Q.; Chen, W.; Wang, L.; Lin, W.; Lin, J.; Lin, X. Heat shock protein 27 is over-expressed in tumor tissues and increased in sera of patients with gastric adenocarcinoma. Clin. Chem. Lab. Med., 2010, 48(2), 263-269.
[65]
Muzio, L.L.; Leonardi, R.; Mariggio, M.; Mignogna, M.; Rubini, C.; Vinella, A.; Pannone, G.; Giannetti, L.; Serpico, R.; Testa, N. HSP 27 as possible prognostic factor in patients with oral squamous cell carcinoma. Histol. Histopathol., 2004, 19(1), 119-128.
[66]
Kato, K.; Hasegawa, K.; Goto, S.; Inaguma, Y. Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J. Biol. Chem., 1994, 269(15), 11274-11278.
[67]
Hayes, D.; Napoli, V.; Mazurkie, A.; Stafford, W.F.; Graceffa, P. Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function. J. Biol. Chem., 2009, 284(28), 18801-18807.
[68]
Chauhan, D.; Li, G.; Hideshima, T.; Podar, K.; Mitsiades, C.; Mitsiades, N.; Catley, L.; Tai, Y.T.; Hayashi, T.; Shringarpure, R. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood, 2003, 102(9), 3379-3386.
[69]
Chen, Y.J.; Lin, Y.P.; Chow, L.P.; Lee, T.C. Proteomic identification of Hsp70 as a new Plk1 substrate in arsenic trioxide‐induced mitotically arrested cells. Proteomics, 2011, 11(22), 4331-4345.
[70]
Chen, Y.J. 1; Lai, K.C.; Kuo, H.H.; Chow, L.P.; Yih, L.H.; Lee, T.C. HSP70 colocalizes with PLK1 at the centrosome and disturbs spindle dynamics in cells arrested in mitosis by arsenic trioxide. Arch. Toxicol., 2014, 88(9), 1711-1723.
[71]
de Cárcer, G. Heat shock protein 90 regulates the metaphase-anaphase transition in a polo-like kinase-dependent manner. Cancer Res., 2004, 64(15), 5106-5112.