[1]
Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector-row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: Results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008; 52(21): 1724-32.
[2]
Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008; 359(22): 2324-36.
[3]
Cademartiri F, Mollet NR, Lemos PA, et al. Higher intracoronary attenuation improves diagnostic accuracy in MDCT coronary angiography. Am J Roentgenol 2006; 187(4): W430-3.
[4]
Cademartiri F, Mollet NR, Runza G, et al. Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: Observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 2005; 15(7): 1426-31.
[5]
Cademartiri F, Maffei E, Palumbo AA, et al. Influence of intra-coronary enhancement on diagnostic accuracy with 64-slice CT coronary angiography. Eur Radiol 2008; 18(3): 576-83.
[6]
Fei X, Du X, Yang Q, et al. 64-MDCT coronary angiography: Phantom study of effects of vascular attenuation on detection of coronary stenosis. Am J Roentgenol 2008; 191(1): 43-9.
[7]
Becker CR, Hong C, Knez A, et al. Optimal contrast application for cardiac 4-detector-row computed tomography. Invest Radiol 2003; 38(11): 690-4.
[8]
Hausleiter J, Meyer TS, Martuscelli E, et al. Image quality and radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography: The multicenter, multivendor, randomized PROTECTION-III study. JACC Cardiovasc Imaging 2012; 5(5): 484-93.
[9]
Utsunomiya D, Tanaka R, Yoshioka K, et al. Relationship between diverse patient body size- and image acquisition-related factors, and quantitative and qualitative image quality in coronary computed tomography angiography: A multicenter observational study. Jpn J Radiol 2016; 34(8): 548-55.
[10]
Abbara S, Blanke P, Maroules CD, et al. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: A report of the society of Cardiovascular Computed Tomography Guidelines Committee: Endorsed by the North American Society for Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr 2016; 10(6): 435-49.
[11]
Tatsugami F, Kanamoto T, Nakai G, et al. Reduction of the total injection volume of contrast material with a short injection duration in 64-detector row CT coronary angiography. Br J Radiol 2010; 83(985): 35-9.
[12]
Nakaura T, Awai K, Yauaga Y, et al. Contrast injection protocols for coronary computed tomography angiography using a 64-detector scanner: Comparison between patient weight-adjusted- and fixed iodine-dose protocols. Investigat Radiol 2008; 43(7): 512-9.
[13]
McDonald RJ, McDonald JS, Newhouse JH, Davenport MS. Controversies in contrast material-induced acute kidney injury: Closing in on the truth? Radiology 2015; 277(3): 627-32.
[15]
Nakayama Y, Awai K, Funama Y, et al. Abdominal CT with low tube voltage: Preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 2005; 237(3): 945-51.
[16]
Oda S, Utsunomiya D, Funama Y, et al. A hybrid iterative reconstruction algorithm that improves the image quality of low-tube-voltage coronary CT angiography. Am J Roentgenol 2012; 198(5): 1126-31.
[17]
Nakaura T, Nakamura S, Maruyama N, et al. Low contrast agent and radiation dose protocol for hepatic dynamic CT of thin adults at 256-detector row CT: Effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology 2012; 264(2): 445-54.
[18]
Oda S, Utsunomiya D, Funama Y, et al. Evaluation of deep vein thrombosis with reduced radiation and contrast material dose at computed tomography venography: Clinical application of a combined iterative reconstruction and low-tube-voltage technique. Circ J 2012; 76(11): 2614-22.
[19]
Utsunomiya D, Oda S, Funama Y, et al. Comparison of standard- and low-tube voltage MDCT angiography in patients with peripheral arterial disease. Eur Radiol 2010; 20(11): 2758-65.
[20]
Yamamura S, Oda S, Imuta M, et al. Reducing the radiation dose for CT colonography: Effect of low tube voltage and iterative reconstruction. Acad Radiol 2016; 23(2): 155-62.
[21]
Yamamura S, Oda S, Utsunomiya D, et al. Dynamic computed tomography of locally advanced pancreatic cancer: Effect of low tube voltage and a hybrid iterative reconstruction algorithm on image quality. J Comput Assist Tomogr 2013; 37(5): 790-6.
[22]
Itatani R, Oda S, Utsunomiya D, et al. Reduction in radiation and contrast medium dose via optimization of low-kilovoltage CT protocols using a hybrid iterative reconstruction algorithm at 256-slice body CT: Phantom study and clinical correlation. Clin Radiol 2013; 68(3): e128-35.
[23]
Oda S, Weissman G, Vembar M, Weigold WG. Iterative model reconstruction: Improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT. Eur J Radiol 2014; 83(8): 1408-15.
[24]
Oda S, Utsunomiya D, Yuki H, et al. Low contrast and radiation dose coronary CT angiography using a 320-row system and a refined contrast injection and timing method. J Cardiovasc Comput Tomogr 2015; 9(1): 19-27.
[25]
Kidoh M, Nakaura T, Funama Y, et al. Paradoxical effect of cardiac output on arterial enhancement at computed tomography: Does cardiac output reduction simply result in an increase in aortic peak enhancement? J Comput Assist Tomogr 2017; 41(3): 349-53.
[26]
Bae KT. Intravenous contrast medium administration and scan timing at CT: Considerations and approaches. Radiology 2010; 256(1): 32-61.
[27]
de Monye C, Cademartiri F, de Weert TT, Siepman DA, Dippel DW, van Der Lugt A. Sixteen-detector row CT angiography of carotid arteries: Comparison of different volumes of contrast material with and without a bolus chaser. Radiology 2005; 237(2): 555-62.
[28]
Cademartiri F, Mollet N, van der Lugt A, et al. Non-invasive 16-row multislice CT coronary angiography: Usefulness of saline chaser. Eur Radiol 2004; 14(2): 178-83.
[29]
Kim DJ, Kim TH, Kim SJ, et al. Saline flush effect for enhancement of aorta and coronary arteries at multidetector CT coronary angiography. Radiology 2008; 246(1): 110-5.
[30]
Behrendt FF, Bruners P, Keil S, et al. Effect of different saline chaser volumes and flow rates on intravascular contrast enhancement in CT using a circulation phantom. Eur J Radiol 2010; 73(3): 688-93.
[31]
Utsunomiya D, Awai K, Sakamoto T, et al. Cardiac 16-MDCT for anatomic and functional analysis: Assessment of a biphasic contrast injection protocol. Am J Roentgenol 2006; 187(3): 638-44.
[32]
Cademartiri F, Nieman K, van der Lugt A, et al. Intravenous contrast material administration at 16-detector row helical CT coronary angiography: Test bolus versus bolus-tracking technique. Radiology 2004; 233(3): 817-23.