[1]
Sharfstein ST. Non-protein biologic therapeutics. Curr Opin Biotechnol 2018; 53: 65-75.
[2]
Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA. The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet 1996; 59(5): 1134.
[3]
Chatterjee B, Pancholi J, Kevalia J, Kothari V, Pandya P, Bhatt U. Significance of molecular markers and dna based technology in research and standardization of medicinal plants: A review. Int J Res Med 2015; 4: 5-16.
[4]
Jayasena SD. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin Chem 1999; 45(9): 1628-50.
[5]
Roth A, Breaker RR. The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 2009; 78: 305-34.
[6]
Uphoff KW, Bell SD, Ellington AD. In vitro selection of aptamers: the dearth of pure reason. Curr Opin Struct Biol 1996; 6(3): 281-8.
[7]
Afshar M, Prescott CD, Varani G. Structure-based and combinatorial search for new RNA-binding drugs. Curr Opin Biotechnol 1999; 10(1): 59-63.
[8]
Vafajoo A, Rostami A, Parsa SF, et al. Early diagnosis of disease using microbead array technology: A review. Anal Chim Acta 2018; 1032: 1-7.
[9]
Farjadian F, Moghoofei M, Mirkiani S, et al. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol Adv 2018; 36(4): 968-85.
[10]
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990; 249(4968): 505-10.
[11]
Pfeiffer F, Tolle F, Rosenthal M, Brändle GM, Ewers J, Mayer G. Identification and characterization of nucleobase-modified aptamers by click-SELEX. Nat Protoc 2018; 13(5): 1153.
[12]
Yu X, Chen F, Wang R, Li Y. Whole-bacterium SELEX of DNA aptamers for rapid detection of E. coli O157: H7 using a QCM sensor. J Biotechnol 2018; 266: 39-49.
[13]
Lauridsen LH, Doessing HB, Long KS, Nielsen AT. A Capture-SELEX strategy for multiplexed selection of rna aptamers against small molecules. Methods Mol Biol 2018; 1671: 291-306.
[14]
Amraee M, Oloomi M, Yavari A, Bouzari S. DNA aptamer identification and characterization for E. coli O157 detection using cell based SELEX method. Anal Biochem 2017; 536: 36-44.
[15]
Regazzi R. MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications. Expert Opin Ther Pat 2018; 22.
[16]
Eissa S, Zourob M. Aptamers and sensing technology used for
detection of glycated hemoglobin in whole blood. US Patent
9,863,962; 2018.
[17]
Stoltenburg R, Reinemann C, Strehlitz B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 2005; 383(1): 83-91.
[18]
Sefah K, Shangguan D, Xiong X, O’donoghue MB, Tan W. Development of DNA aptamers using Cell-SELEX. Nat Protoc 2010; 5(6): 1169.
[19]
Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron 2005; 20(12): 2424-34.
[20]
Prakash S. Role of human serum albumin and oxidative stress in diabetes. J Appl Biotechnol Bioeng 2017; 3(1): 00057.
[21]
Japrung D, Apiwat C, Treerattrakoon K, Dharakul T, Luksirikul P. Eds Aptasensor for diabetes mellitus detection and monitoring.Nanotechnology (IEEE-NANO), 2015 IEEE 15th International
Conference on; 2015: IEEE.
[22]
Japrung D, Dharakul T, Chumseng S. Aptamers bound human serum albumin and glycated human serum albumin. Google Patents 2017.
[23]
Takenaka M, Okumura Y, Amino T, Miyachi Y, Ogino C, Kondo A. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin. Bioorg Med Chem Lett 2017; 27(4): 954-7.
[24]
Esfandyari-Manesh M, Mohammadi A, Atyabi F, et al. Specific targeting delivery to MUC1 overexpressing tumors by albumin-chitosan nanoparticles conjugated to DNA aptamer. Int J Pharm 2016; 515(1-2): 607-15.
[25]
Apiwat C, Luksirikul P, Kankla P, et al. Graphene based aptasensor for glycated albumin in diabetes mellitus diagnosis and monitoring. Biosens Bioelectron 2016; 82: 140-5.
[26]
Stoltenburg R, Krafčiková P, Víglaský V, Strehlitz B. G-quadruplex aptamer targeting Protein A and its capability to detect Staphylococcus aureus demonstrated by ELONA. Sci Rep 2016; 6: 33812.
[27]
Yamamoto R, Kumar PK. Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV‐1. Genes Cells 2000; 5(5): 389-96.
[28]
Tombelli S, Minunni M, Luzi E, Mascini M. Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry 2005; 67(2): 135-41.
[29]
Neff CP, Zhou J, Remling L, et al. An aptamer-siRNA chimera
suppresses HIV-1 viral loads and protects from helper CD4+ T cell
decline in humanized mice. Sci Trans Med 2011. 3(66): 66ra6-ra6.
[30]
Young JA, Rall G. Current topics in microbiology and
immunology. 1990.
[31]
Thiel KW, Giangrande PH. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 2009; 19(3): 209-22.
[32]
Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 1990; 63(3): 601-8.
[33]
Matsui T, Higashimoto Y, Nishino Y, Nakamura N, Fukami K, Yamagishi SI. RAGE-aptamer blocks the development and progression of experimental diabetic nephropathy. Diabetes 2017; 66(6): 1683-95.
[34]
Matheus AS, Tannus LR, Cobas RA, Palma CC, Negrato CA, Gomes MB. Impact of diabetes on cardiovascular disease: an update. Int J Hypertens 2013; 653789(10): 4.
[35]
Li J, Chang K-W, Wang C-H, Yang C-H, Shiesh S-C, Lee G-B. On-chip, aptamer-based sandwich assay for detection of glycated hemoglobins via magnetic beads. Biosens Bioelectron 2016; 79: 887-93.
[36]
Khalafallah A, Phuah E, Al-Barazan AM, et al. Glycosylated haemoglobin for screening and diagnosis of gestational diabetes mellitus. BMJ Open 2016; 6(4): e011059.
[37]
Barnaby OS, Cerny RL, Clarke W, Hage DS. Comparison of modification sites formed on human serum albumin at various stages of glycation. Clin Chim Acta 2011; 412(3-4): 277-85.
[38]
Almusharraf AY, Eissa S, Zourob M. Truncated aptamers for total and glycated hemoglobin, and their integration into a graphene oxide-based fluorometric method for high-throughput screening for diabetes. Mikrochim Acta 2018; 185(5): 256.
[39]
Yu L-R, Sun J, Daniels JR, et al. Aptamer-based proteomics identifies mortality-associated serum biomarkers in AKI-D patients. Kidney Int Rep 2018; 3(5): 1202-13.
[40]
Yamagishi SI. Diabetes and advanced glycation end products Diabetes and Aging-related Complications. Springer 2018; pp. 201-12.
[41]
Ghosh S, Datta D, Cheema M, Dutta M, Stroscio MA. Aptasensor based optical detection of glycated albumin for diabetes mellitus diagnosis. Nanotechnology 2017; 28(43): 1361-6528.
[42]
Apiwat C, Luksirikul P, Kankla P, et al. Graphene based aptasensor for glycated albumin in diabetes mellitus diagnosis and monitoring. Biosens Bioelectron 2016; 82: 140-5.
[43]
Jeganathan SE. Anti-angiogenesis drugs in diabetic retinopathy. Curr Pharm Biotechnol 2011; 12(3): 369-72.
[44]
P Giuliari G. Diabetic retinopathy: Current and new treatment options. Curr Diabetes Rev 2012; 8(1): 32-41.
[45]
Giuliari GP, Guel DA, Gonzalez VH. Pegaptanib sodium for the treatment of proliferative diabetic retinopathy and diabetic macular edema. Curr Diabetes Rev 2009; 5(1): 33-8.
[46]
Inoue Y, Inoue M, Saito M, Yoshikawa H, Tamiya E. Sensitive detection of glycated albumin in human serum albumin using electrochemiluminescence. Anal Chem 2017; 89(11): 5909-15.
[47]
Schimke I, Haberland A, Wallukat G. Use of aptamers in therapy and/or diagnosis of autoimmune diseases. Google Patents 2018.
[48]
Pezzuoli D, Cazzulo A, Angeli E, et al. Nanofluidic sensor for antigen-antibody binding detection. Biophys J 2018; 114(3): 19a-20a.
[49]
Ni X, Castanares M, Mukherjee A, Lupold SE. Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 2011; 18(27): 4206-14.
[50]
Wang G, Liu J, Chen K, et al. Selection and characterization of DNA aptamer against glucagon receptor by cell-SELEX Sci Rep 2017; 7(1): 017-05840.
[51]
Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet 2017; 389(10085): 2239-51.
[52]
Mostafa S, Coleman R, Agbaje O, Gray A, Holman R, Bethel M. Modelling incremental benefits on complications rates when targeting lower HbA1c levels in people with Type 2 diabetes and cardiovascular disease. Diabet Med 2018; 35(1): 72-7.
[53]
Thomas S, Karalliedde J. Diabetic nephropathy. Medicine 2015; 43(1): 20-5.
[54]
Taguchi K, Yamagishi S-I, Yokoro M, et al. RAGE-aptamer attenuates deoxycorticosterone acetate/salt-induced renal injury in mice. Sci Rep 2018; 8(1): 2686.
[55]
Hickey FB, Martin F. Role of the Immune System in Diabetic Kidney Disease. Curr Diab Rep 2018; 18(4): 20.
[56]
Alberti KGMM, Zimmet Pf. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med 1998; 15(7): 539-53.
[57]
Yamagishi S-i, Nakamura N, Suematsu M, Kaseda K, Matsui T. Advanced glycation end products: a molecular target for vascular complications in diabetes. Mol Med 2015; 21(Suppl. 1): S32.
[58]
Ojima A, Matsui T, Maeda S, et al. DNA aptamer raised against advanced glycation end products inhibits melanoma growth in nude mice. Lab Invest 2014; 94(4): 422.
[59]
Kaida Y, Fukami K, Matsui T, et al. DNA aptamer raised against AGEs blocks the progression of experimental diabetic nephropathy. Diabetes 2013; 62(9): 3241-50.
[60]
Um JE, Park JT, Nam BY, et al. Periostin-binding DNA aptamer treatment attenuates renal fibrosis under diabetic conditions. Sci Rep 2017; 7(1): 8490.
[61]
De Franco E, Caswell R, Houghton J, Iotova V, Hattersley AT, Ellard S. Analysis of cell‐free fetal DNA for non‐invasive prenatal diagnosis in a family with neonatal diabetes. Diabet Med 2017; 34(4): 582-5.
[62]
Mironidou-Tzouveleki M, Tsartsalis S, Tomos C. Vascular endothelial growth factor (VEGF) in the pathogenesis of diabetic nephropathy of type 1 diabetes mellitus. Curr Drug Targets 2011; 12(1): 107-14.
[63]
Rodriguez-Fontal M, Alfaro V, Kerrison JB, Jablon EP. Ranibizumab for diabetic retinopathy. Curr Diabetes Rev 2009; 5(1): 47-51.
[64]
Torabi R, Ghourchian H, Amanlou M, Pasalar P. Aptamer-conjugated calcium phosphate nanoparticles for reducing diabetes risk via retinol binding protein 4 inhibition. Can J Diabetes 2017; 41(3): 305-11.
[65]
Amato R, Dal Monte M, Lulli M, Cammalleri M, Raffa V, Casini G. Functionalized magnetic nanoparticles as a novel strategy for the treatment of diabetic retinopathy. Acta Ophthalmologica 2017; 95(S259)
[66]
Torabi R, Ghourchian H, Amanlou M, Pasalar P. Aptamer-conjugated calcium phosphate nanoparticles for reducing diabetes risk via retinol binding protein 4 inhibition. Canadian J Diab 2017; 41(3): 305-11.
[67]
Park K, Chen Y, Hu Y, et al. Nanoparticle-mediated expression of an angiogenic inhibitor ameliorates ischemia-induced retinal neovascularization and diabetes-induced retinal vascular leakage. Diabetes 2009; 58(8): 1902-13.
[68]
Gopinath SC, Lakshmipriya T, Chen Y, Phang W-M, Hashim U. Aptamer-based ‘point-of-care testing’. Biotechnol Adv 2016; 34(3): 198-208.