Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

叶酸和维生素B12单独和联合使用对轻度认知障碍老年人认知功能和炎症因子的影响:单盲实验设计

卷 16, 期 7, 2019

页: [622 - 632] 页: 11

弟呕挨: 10.2174/1567205016666190725144629

价格: $65

conference banner
摘要

背景:叶酸和维生素B12是众所周知的必需营养素,在大脑的正常功能中起关键作用。 炎症过程至少在AD病理中起一定作用。 有效的营养干预措施可改善认知缺陷,减少周围炎症细胞因子水平,已引起特别关注。 目的:本研究旨在确定单独或联合添加叶酸和维生素B12是否可以通过降低外周炎症细胞因子水平来改善认知能力。 方法:将240名MCI参与者按等比例随机分为四个治疗组:单独叶酸,单独维生素B12,叶酸加维生素B12或每天不治疗的对照组,共6个月。 用WAIS-RC测量认知度。 使用ELISA测量炎性细胞因子的水平。 通过方差或混合效应模型的重复测量分析来分析认知功能或血液生物标志物的变化。 该试验已注册,试验编号为ChiCTR-ROC-16008305。 结果:与对照组相比,叶酸加维生素B12组的血清叶酸,高半胱氨酸,维生素B12和IL-6,TNF-α,MCP-1的改善明显。 叶酸和维生素B12的添加显着改变了全智商(影响大小d = 0.169; P = 0.024),语言智商(影响大小d = 0.146; P = 0.033),信息(d = 0.172; P = 0.019)和 数字跨度(d = 0.187; P = 0.009)得分。 土耳其事后测试发现,在所有指标上,叶酸和维生素B12的补充比单独使用叶酸更有效。 结论:口服叶酸加维生素B12在MCI老年人中使用六个月可以显着改善认知能力并降低人外周血中炎性细胞因子的水平。 叶酸和维生素B12的组合明显优于单独的叶酸或维生素B12。

关键词: 轻度认知障碍,叶酸,维生素B12,外周炎性细胞因子,单盲实验设计,阿尔茨海默病.

[1]
Rajesh R, Tampi DJ, Tampi SC, Ambreen Ghori MD. Mild cognitive impairment: a comprehensive review. Healthy Aging Res 4: 1-11. (2015)
[2]
Crous-Bou M, Minguillón C, Gramunt N, Molinuevo JL. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther 9(1): 71. (2017)
[http://dx.doi.org/10.1186/s13195-017-0297-z] [PMID: 28899416]
[3]
Zhang YP, Miao R, Li Q, Wu T, Ma F. Effects of DHA supplementation on hippocampal volume and cognitive function in older adults with mild cognitive impairment: a 12-month randomized, double-blind, placebo-controlled trial. J Alzheimers Dis 55(2): 497-507. (2017)
[http://dx.doi.org/10.3233/JAD-160439] [PMID: 27716665]
[4]
Ma F, Wu T, Zhao J, Ji L, Song A, Zhang M, et al. Plasma homocysteine and serum folate and vitamin B12 levels in mild cognitive impairment and Alzheimer’s disease: a case-control study. Nutrients 9(7): 725. (2017)
[http://dx.doi.org/10.3390/nu9070725] [PMID: 28698453]
[5]
Lucock MD, Daskalakis IG, Wild J, Anderson A, Schorah CJ, Lean ME, et al. The influence of dietary folate and methionine on the metabolic disposition of endotoxic homocysteine. Biochem Mol Med 59(2): 104-11. (1996)
[http://dx.doi.org/10.1006/bmme.1996.0074] [PMID: 8986631]
[6]
Refsum H. Folate, vitamin B12 and homocysteine in relation to birth defects and pregnancy outcome. Br J Nutr 85(2): S109-13. (2001)
[http://dx.doi.org/10.1079/BJN2000302] [PMID: 11509098]
[7]
Ng TP, Feng L, Nyunt MS, Feng L, Gao Q, Lim ML, et al. Metabolic syndrome and the risk of mild cognitive impairment and progression to dementia: follow-up of the Singapore Longitudinal Ageing Study Cohort. JAMA Neurol 73(4): 456-63. (2016)
[http://dx.doi.org/10.1001/jamaneurol.2015.4899] [PMID: 26926205]
[8]
de Lau LM, Refsum H, Smith AD, Johnston C, Breteler MM. Plasma folate concentration and cognitive performance: Rotterdam Scan Study. Am J Clin Nutr 86(3): 728-34. (2007)
[http://dx.doi.org/10.1093/ajcn/86.3.728] [PMID: 17823439]
[9]
Ravaglia G, Forti P, Maioli F, Martelli M, Servadei L, Brunetti N, et al. Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am J Clin Nutr 82(3): 636-43. (2005)
[http://dx.doi.org/10.1093/ajcn/82.3.636] [PMID: 16155278]
[10]
McCaddon A, Regland B, Hudson P, Davies G. Functional vitamin B(12) deficiency and Alzheimer disease. Neurology (2002); 58(9): 1395-9.
[http://dx.doi.org/10.1212/WNL.58.9.1395] [PMID: 12011287]
[11]
Bozoglu E, Isik AT, Doruk H, Kilic S. The effects of early vitamin B12 replacement therapy on the cognitive and functional status of elderly subjects. Klinik Psikofarmakoloji Bülteni-Bulletin of Clinical Psychopharmacology 20(2): 120-4. (2010)
[http://dx.doi.org/10.1080/10177833.2010.11790645]
[12]
Agrawal A, Ilango K, Singh PK, Karmakar D, Singh GP, Kumari R, et al. Age dependent levels of plasma homocysteine and cognitive performance. Behav Brain Res 283: 139-44. (2015)
[http://dx.doi.org/10.1016/j.bbr.2015.01.016] [PMID: 25601573]
[13]
Guest J, Bilgin A, Hokin B, Mori TA, Croft KD, Grant R. Novel relationships between B12, folate and markers of inflammation, oxidative stress and NAD(H) levels, systemically and in the CNS of a healthy human cohort. Nutr Neurosci 18(8): 355-64. (2015)
[http://dx.doi.org/10.1179/1476830515Y.0000000041] [PMID: 26263423]
[14]
Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16(6): 358-72. (2015)
[http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443]
[15]
Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal 2012756357 (2012)
[http://dx.doi.org/10.1100/2012/756357] [PMID: 22566778]
[16]
Holmes C, Cunningham C, Zotova E, Culliford D, Perry VH. Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurology 77(3): 212-8. (2011)
[http://dx.doi.org/10.1212/WNL.0b013e318225ae07] [PMID: 21753171]
[17]
Berk M, Wadee AA, Kuschke RH, O’Neill-Kerr A. Acute phase proteins in major depression. J Psychosom Res 43(5): 529-34. (1997)
[http://dx.doi.org/10.1016/S0022-3999(97)00139-6] [PMID: 9394269]
[18]
Dansokho C, Aucouturier P, Dorothée G. Beneficial effect of interleukin-2-based immunomodulation in Alzheimer-like pathology. Brain 140(7)e39 (2017)
[http://dx.doi.org/10.1093/brain/awx108] [PMID: 28498909]
[19]
Zheng C, Zhou XW, Wang JZ. The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Transl Neurodegener 5: 7. (2016)
[http://dx.doi.org/10.1186/s40035-016-0054-4] [PMID: 27054030]
[20]
Bettcher BM, Fitch R, Wynn MJ, Lalli MA, Elofson J, Jastrzab L, et al. MCP-1 and eotaxin-1 selectively and negatively associate with memory in MCI and Alzheimer’s disease dementia phenotypes. Alzheimers Dement (Amst) 3: 91-7. (2016)
[http://dx.doi.org/10.1016/j.dadm.2016.05.004] [PMID: 27453930]
[21]
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 256(3): 183-94. (2004)
[http://dx.doi.org/10.1111/j.1365-2796.2004.01388.x] [PMID: 15324362]
[22]
Ritchie K, Artero S, Touchon J. Classification criteria for mild cognitive impairment: a population-based validation study. Neurology 56(1): 37-42. (2001)
[http://dx.doi.org/10.1212/WNL.56.1.37] [PMID: 11148233]
[23]
Perneczky R, Pohl C, Sorg C, Hartmann J, Komossa K, Alexopoulos P, et al. Complex activities of daily living in mild cognitive impairment: conceptual and diagnostic issues. Age Ageing 35(3): 240-5. (2006)
[http://dx.doi.org/10.1093/ageing/afj054] [PMID: 16513677]
[24]
Yao-xian G. Revision of wechsler’s adult intelligence scale in china. Acta Psychol Sin 3: 18. (2002)
[25]
Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 369(9557): 208-16. (2007)
[http://dx.doi.org/10.1016/S0140-6736(07)60109-3] [PMID: 17240287]
[26]
Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, Agacinski G, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One 5(9)e12244 (2010)
[http://dx.doi.org/10.1371/journal.pone.0012244] [PMID: 20838622]
[27]
Almeida OP, Marsh K, Alfonso H, Flicker L, Davis TM, Hankey GJ. B-vitamins reduce the long-term risk of depression after stroke: The VITATOPS-DEP trial. Ann Neurol 68(4): 503-10. (2010)
[http://dx.doi.org/10.1002/ana.22189] [PMID: 20976769]
[28]
Coley N, Andrieu S, Gardette V, Gillette-Guyonnet S, Sanz C, Vellas B, et al. Dementia prevention: methodological explanations for inconsistent results. Epidemiol Rev 30: 35-66. (2008)
[http://dx.doi.org/10.1093/epirev/mxn010] [PMID: 18779228]
[29]
Jia X, McNeill G, Avenell A. Does taking vitamin, mineral and fatty acid supplements prevent cognitive decline? A systematic review of randomized controlled trials. J Hum Nutr Diet 21(4): 317-36. (2008)
[http://dx.doi.org/10.1111/j.1365-277X.2008.00887.x] [PMID: 18721399]
[30]
Malouf R, Grimley Evans J. Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst Rev (4): CD004514 (2008)
[http://dx.doi.org/10.1002/14651858.CD004514.pub2] [PMID: 18843658]
[31]
Raman G, Tatsioni A, Chung M, Rosenberg IH, Lau J, Lichtenstein AH, et al. Heterogeneity and lack of good quality studies limit association between folate, vitamins B-6 and B-12, and cognitive function. J Nutr 137(7): 1789-94. (2007)
[http://dx.doi.org/10.1093/jn/137.7.1789] [PMID: 17585032]
[32]
Ma F, Wu T, Zhang J, Han F, Marseglia A, Liu H, et al. Effects of six-month folic acid supplementation on cognitive function and blood biomarkers in Mild Cognitive Impairment: a randomized controlled trial in China. J Gerontol A Biol Sci Med Sc 71: 1376-83. (2016)
[33]
Morris MS, Jacques PF, Rosenberg IH, Selhub J. Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am J Clin Nutr 85(1): 193-200. (2007)
[http://dx.doi.org/10.1093/ajcn/85.1.193] [PMID: 17209196]
[34]
Smith AD, Refsum H. Homocysteine, B vitamins, and cognitive impairment. Annu Rev Nutr 36: 211-39. (2016)
[http://dx.doi.org/10.1146/annurev-nutr-071715-050947] [PMID: 27431367]
[35]
Hannibal L, Blom HJ. Homocysteine and disease: causal associations or epiphenomenons? Mol Aspects Med 53: 36-42. (2017)
[http://dx.doi.org/10.1016/j.mam.2016.11.003] [PMID: 27876556]
[36]
Schaffer A, Verdoia M, Cassetti E, Marino P, Suryapranata H, De Luca G. Relationship between homocysteine and coronary artery disease. Results from a large prospective cohort study. Thromb Res 134(2): 288-93. (2014)
[http://dx.doi.org/10.1016/j.thromres.2014.05.025] [PMID: 24928335]
[37]
Ray L, Khemka VK, Behera P, Bandyopadhyay K, Pal S, Pal K, et al. Cerum homocysteine, dehydroepiandrosterone sulphate and lipoprotein (a) in alzheimer’s disease and vascular dementia. Aging Dis 4(2): 57-64. (2013)
[PMID: 23696950]
[38]
Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3): 383-421. (2000)
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[39]
Krabbe KS, Pedersen M, Bruunsgaard H. Inflammatory mediators in the elderly. Exp Gerontol 39(5): 687-99. (2004)
[http://dx.doi.org/10.1016/j.exger.2004.01.009] [PMID: 15130663]
[40]
Nicklas BJ, Brinkley TE. Exercise training as a treatment for chronic inflammation in the elderly. Exerc Sport Sci Rev 37(4): 165-70. (2009)
[PMID: 19955865]
[41]
Dalal S, Parkin SM, Homer-Vanniasinkam S, Nicolaou A. Effect of homocysteine on cytokine production by human endothelial cells and monocytes. Ann Clin Biochem 40(Pt 5): 534-41. (2003)
[http://dx.doi.org/10.1258/000456303322326452] [PMID: 14503991]
[42]
Coppola A, Astarita C, Liguori E, Fontana D, Oliviero M, Esposito K, et al. Impairment of coronary circulation by acute hyperhomocysteinaemia and reversal by antioxidant vitamins. J Intern Med 256(5): 398-405. (2004)
[http://dx.doi.org/10.1111/j.1365-2796.2004.01389.x] [PMID: 15485475]
[43]
Herrmann W, Quast S, Schultze H, Ullrich M, Geisel J. The importance of hyperhomocysteinemia in high age people. Atherosclerosis 134: 1005-9. (1997)
[http://dx.doi.org/10.1016/S0021-9150(97)88909-5]
[44]
Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 50(1): 3-32. (2004)
[http://dx.doi.org/10.1373/clinchem.2003.021634] [PMID: 14709635]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy