Abstract
Background: Recently, great importance has been devoted to borate glass systems doped with rare-earth ions because of their unique peculiar properties in the field of photonics for optical applications.
Objective: The purpose of the present study is to investigate the effect of concentration of Sm3+ ions on the luminescence properties of lead fluoroborate glasses through the energy transfer mechanism.
Materials and Methods: Samarium doped lead fluoroborate glasses with chemical composition 20PbF2 .10Li2O .5SrO .5ZnO. (60-x) B2O3. xSm2O3 (where x = 0.1, 0.5, 1.0, 1.5 and 2.0 mol %) were prepared by means of melt quenching method. The concentration dependent luminescence properties were investigated in detail from the optical absorption, photoluminescence and decay analysis. Judd-Ofelt (J-O) theory was applied to analyze the optical absorption spectra. The experimental oscillator strengths of absorption bands have been used to determine the J-O parameters. Using the J-O parameters Ωλ (λ = 2, 4 and 6) and luminescence data several radiative parameters were obtained.
Results: From the luminescence spectra, it was noticed that luminescence quenching starts at higher concentrations of Sm3+ ions (x ≥ 0.5 mol %). The decay curves of 4G5/2 → 6H7/2 transition exhibit a single exponential at lower dopant concentrations (x = 0.1 and 0.5 mol %) and non-exponential at higher concentrations (x ≥ 1 mol %). The concentration quenching was attributed to the energy transfer through the cross-relaxation between Sm3+ ions. The non-exponential curves were well fitted to Inokuti-Hirayama model for S = 6, indicating that the energy transfer between Sm3+ - Sm3+ ions is of dipole-dipole type. The calculated color coordinates of the as-prepared glasses fall within the reddish-orange region of the CIE diagram.
Conclusion: All the experimental results indicate that the 0.5 mol% Sm3+ ions doped LLSZFB glass can be a possible choice for solid state lighting and display applications.
Keywords: Energy transfer, fluoroborate glass, melt quenching, optical absorption, photoluminescence, Sm3+ ions.
Graphical Abstract
[http://dx.doi.org/10.1016/j.saa.2004.10.028] [PMID: 16165019]
[http://dx.doi.org/10.1016/j.optmat.2017.09.047]
[http://dx.doi.org/10.1016/j.jallcom.2016.07.024]
[http://dx.doi.org/10.1016/j.molstruc.2015.10.043]
[http://dx.doi.org/10.1016/j.jnoncrysol.2010.01.005]
[http://dx.doi.org/10.1016/j.saa.2013.08.006]
[http://dx.doi.org/10.1016/j.jlumin.2006.01.098]
[http://dx.doi.org/10.1016/j.saa.2012.11.088] [PMID: 23274475]
[http://dx.doi.org/10.1016/j.optmat.2016.04.033]
[http://dx.doi.org/10.1016/j.materresbull.2018.04.033]
[http://dx.doi.org/10.1016/j.optmat.2018.03.005]
[http://dx.doi.org/10.1016/j.jallcom.2018.07.017]
[http://dx.doi.org/10.1016/j.materresbull.2018.10.033]
[http://dx.doi.org/10.13036/17533562.57.3.020]
[http://dx.doi.org/10.1016/j.optmat.2006.06.011]
[http://dx.doi.org/10.1016/j.jallcom.2010.09.058]
[http://dx.doi.org/10.1063/1.1669893]
[http://dx.doi.org/10.1103/PhysRev.127.750]
[http://dx.doi.org/10.1063/1.1701366]
[http://dx.doi.org/10.1016/j.optmat.2016.12.009]
[http://dx.doi.org/10.1016/S0925-8388(00)00888-4]
[http://dx.doi.org/10.1016/j.physb.2008.05.027]
[http://dx.doi.org/10.1016/j.optcom.2015.01.032]
[http://dx.doi.org/10.1016/j.optmat.2011.04.030]
[http://dx.doi.org/10.1016/S1386-1425(02)00282-2] [PMID: 12633709]
[http://dx.doi.org/10.1016/j.jlumin.2014.03.006]
[http://dx.doi.org/10.1016/j.jlumin.2011.03.016]
[http://dx.doi.org/10.1016/0022-5088(83)90454-X]
[http://dx.doi.org/10.1111/j.11512916.1993.tb06612.x]
[http://dx.doi.org/10.1016/j.jlumin.2014.11.025]
[http://dx.doi.org/10.1016/j.saa.2014.01.025] [PMID: 24530709]
[http://dx.doi.org/10.1016/j.jlumin.2013.09.035]
[http://dx.doi.org/10.1063/1.1697063]
[http://dx.doi.org/10.1016/j.jlumin.2012.05.031]
[http://dx.doi.org/10.1016/j.optmat.2008.12.008]
[http://dx.doi.org/10.1017/CBO9780511790546.018]
[http://dx.doi.org/10.1016/j.saa.2012.11.030] [PMID: 23261619]