Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Concentration Dependent Luminescence and Energy Transfer Properties of Samarium Doped LLSZFB Glasses

Author(s): Gudelly Anjaiah, Thammisetty Sasikala and Puram Kistaiah*

Volume 9, Issue 2, 2019

Page: [110 - 122] Pages: 13

DOI: 10.2174/1877946809666190724152259

Abstract

Background: Recently, great importance has been devoted to borate glass systems doped with rare-earth ions because of their unique peculiar properties in the field of photonics for optical applications.

Objective: The purpose of the present study is to investigate the effect of concentration of Sm3+ ions on the luminescence properties of lead fluoroborate glasses through the energy transfer mechanism.

Materials and Methods: Samarium doped lead fluoroborate glasses with chemical composition 20PbF2 .10Li2O .5SrO .5ZnO. (60-x) B2O3. xSm2O3 (where x = 0.1, 0.5, 1.0, 1.5 and 2.0 mol %) were prepared by means of melt quenching method. The concentration dependent luminescence properties were investigated in detail from the optical absorption, photoluminescence and decay analysis. Judd-Ofelt (J-O) theory was applied to analyze the optical absorption spectra. The experimental oscillator strengths of absorption bands have been used to determine the J-O parameters. Using the J-O parameters Ωλ (λ = 2, 4 and 6) and luminescence data several radiative parameters were obtained.

Results: From the luminescence spectra, it was noticed that luminescence quenching starts at higher concentrations of Sm3+ ions (x ≥ 0.5 mol %). The decay curves of 4G5/2 → 6H7/2 transition exhibit a single exponential at lower dopant concentrations (x = 0.1 and 0.5 mol %) and non-exponential at higher concentrations (x ≥ 1 mol %). The concentration quenching was attributed to the energy transfer through the cross-relaxation between Sm3+ ions. The non-exponential curves were well fitted to Inokuti-Hirayama model for S = 6, indicating that the energy transfer between Sm3+ - Sm3+ ions is of dipole-dipole type. The calculated color coordinates of the as-prepared glasses fall within the reddish-orange region of the CIE diagram.

Conclusion: All the experimental results indicate that the 0.5 mol% Sm3+ ions doped LLSZFB glass can be a possible choice for solid state lighting and display applications.

Keywords: Energy transfer, fluoroborate glass, melt quenching, optical absorption, photoluminescence, Sm3+ ions.

Next »
Graphical Abstract

[1]
Gao, Y.; Nie, Q.H.; Xu, T.F.; Shen, X. Thermal stability, Judd-Ofelt theory analysis and spectroscopic properties of a new Er3+/Yb3+-codoped germano-tellurite glass. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 61(13-14), 2822-2826.
[http://dx.doi.org/10.1016/j.saa.2004.10.028] [PMID: 16165019]
[2]
Deopa, N.; Rao, A.S.; Gupta, M.; Vijaya Prakash, G. Spectroscopic studies of Nd3+ doped lithium lead aluminium borate glasses for 1.06 µm laser applications. Opt. Mater., 2018, 75, 127-134.
[http://dx.doi.org/10.1016/j.optmat.2017.09.047]
[3]
Jha, K.; Jayasimhadri, M. Spectroscopic investigation on thermally stable Dy3+ doped zinc phosphate glasses for white light emitting diodes. J. Alloys Compd., 2016, 688, 833-840.
[http://dx.doi.org/10.1016/j.jallcom.2016.07.024]
[4]
Mariyappan, M.; Arunkumar, S.; Marimuthu, K. Effect of Bi2O3 on the structural and spectroscopic properties of Sm3+ ions doped sodium fluoroborate glasses. J. Mol. Struct., 2016, 1105, 214-224.
[http://dx.doi.org/10.1016/j.molstruc.2015.10.043]
[5]
Kaur, A.A.K.; Carmen, D.; Fernando, G.; Vasanth, S. Preparation and characterization of lead and zinc tellurite glasses. J. Non-Cryst. Solids, 2010, 356, 864-872.
[http://dx.doi.org/10.1016/j.jnoncrysol.2010.01.005]
[6]
Noorazlan, A.M.; Kamari, H.M.; Zulkefly, S.S.; Mohammad, D.W. Effect of erbium nanoparticles on optical properties of zinc borotellurite glass system. J. Nanomater., 2013, 2013, 168.
[7]
Gopal, R.P.S.; Rajesh, S.; Suresh, S. Structural evolution on TeO2-SeO2-R2O ternary glass system using Raman and IR. Emerg. Mate. Res., 2015, 5, 95-99.
[8]
Bharadwaj, S.; Shukla, R.; Sanghi, S.; Agarwal, A.; Pal, I. Spectroscopic properties of Sm3+ doped lead bismuthsilicate glasses using Judd-Ofelt theory. Spectrochim. Acta A, 2014, 117, 191-197.
[http://dx.doi.org/10.1016/j.saa.2013.08.006]
[9]
Dominiak-Dzik, G.; Ryba-Romanowski, W.; Pisarski, J.; Pisarski, W.A. Spectral properties and dynamics of luminescent states of Pr3+ and Tm3+ in lead borate glasses modified by PbF2. J. Lumin., 2007, 122-123, 62-65.
[http://dx.doi.org/10.1016/j.jlumin.2006.01.098]
[10]
Sasikala, T. RamaMoorthy, L.; Mohan B.A. Optical and luminescent properties of Sm3+ doped tellurite glasses. Spectrochim. Acta A, 2013, 104, 445-450.
[http://dx.doi.org/10.1016/j.saa.2012.11.088] [PMID: 23274475]
[11]
Vijayalakshmi, L.; Naveenkumar, K.; Vijayalakshmi, R.P. Energy transfer based photoluminescence spectra of co-doped (Dy3+ + Sm3+): Li2O-LiF-B2O3-ZnO glasses for orange emission. Opt. Mater., 2016, 57, 125-133.
[http://dx.doi.org/10.1016/j.optmat.2016.04.033]
[12]
Talewar, R.A.; Mahamuda, S.; Swapna, K.; Venkateswarlu, M.; Rao, A.S. Spectroscopic studies of Sm3+ ions doped alkaline-earth chloro borate glasses for visible photonic applications. Mater. Res. Bull., 2018, 105, 45-54.
[http://dx.doi.org/10.1016/j.materresbull.2018.04.033]
[13]
Shiva, R.R.K.; Swapna, K.; Mahamuda, S.; Venkateswarlu, M.; Srinivas, P.M.V.V.K.; Rao, A.S. Vijaya, P.G. Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in alkaline-earth Boro-tellurite glasses. Opt. Mater., 2018, 79, 21-32.
[http://dx.doi.org/10.1016/j.optmat.2018.03.005]
[14]
Shamshad, M.; Ali, N.A.; Kaewkhao, J.; Rooh, G.; Ahmad, T.; Zaman, F. Luminescence characterization of Sm3+ doped sodium potassium borate glasses for laser applications. J. Alloys Compd., 2018, 766, 828-840.
[http://dx.doi.org/10.1016/j.jallcom.2018.07.017]
[15]
Rekha, R.P.; Venkateswarlu, M.; Mahamuda, S.; Swapna, K.; Rao, A.S.; Vijaya Prakash, G. Structural, absorption and photoluminescence studies of Sm3+ ions doped barium lead alumino fluoroborate glasses for optoelectronic device applications. Mater. Res. Bull., 2019, 110, 159-168.
[http://dx.doi.org/10.1016/j.materresbull.2018.10.033]
[16]
Anjaiah, G.; Kistaiah, P. Spectroscopic and emission properties of Sm3+ doped lead fluoroborate glasses containing alkaline-earth metal oxides for efficient visible lasers. Phys. Chem. Glasses: Eur. J. Glass Sci. Tecnol. B., 2016, 57, 125-129.
[http://dx.doi.org/10.13036/17533562.57.3.020]
[17]
Venkataramu, V.; Babu, P.; Jayasankar, C.K.; Troster, Th.; Sievers, W.; Wortmann, G. Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses. Opt. Mater., 2007, 29, 1429-1439.
[http://dx.doi.org/10.1016/j.optmat.2006.06.011]
[18]
Babu, M.A.; Jamalaiah, B.C.; Sasikala, T.; Saleem, S.A. RamaMoorthy, L. Spectroscopic and photoluminescence properties of Dy3+-doped lead tungsten tellurite glasses for laser materials. J. Alloys Compd., 2011, 509, 457-462.
[http://dx.doi.org/10.1016/j.jallcom.2010.09.058]
[19]
Carnall, W.T.; Field, P.R.; Rajnak, K. Electronics energy levels in trivalent lanthanides aqua ions. J. Chem. Phys., 1968, 49, 4424-4442.
[http://dx.doi.org/10.1063/1.1669893]
[20]
Judd, B.R. Optical absorption intensities of rare-earth ions. Phys. Rev., 1962, 127, 750-761.
[http://dx.doi.org/10.1103/PhysRev.127.750]
[21]
Ofelt, G.S. Intensities of crystal spectra of rare earth ions. J. Chem. Phys., 1962, 37, 511-522.
[http://dx.doi.org/10.1063/1.1701366]
[22]
Ramteke, D.; Balakrishna, D.; Vijay, K.A.; Swart, H.C. Luminescence dynamics and investigation of Judd-Ofelt intensity parameters of Sm3+ ion containing glasses. Opt. Mater., 2017, 64, 171-178.
[http://dx.doi.org/10.1016/j.optmat.2016.12.009]
[23]
Jayasankar, C.K.; Babu, P. Optical properties of Sm3+ ions in lithium borate and lithium fluoroborate glasses. J. Alloys Compd., 2000, 307, 82-95.
[http://dx.doi.org/10.1016/S0925-8388(00)00888-4]
[24]
Praveena, R.; Venkatramu, V.; Babu, P.; Jayasankar, C.K. Fluorescence spectroscopy of Sm3+ ions in P2O5-PbO-Nb2O5 glasses. Physica B, 2008, 403, 3527-3534.
[http://dx.doi.org/10.1016/j.physb.2008.05.027]
[25]
Linganna, K.; Basavapoornima, Ch.; Jayasankar, C.K. Luminescence properties of Sm3+-doped fluorosilicate glasses. Opt. Commun., 2015, 344, 100-105.
[http://dx.doi.org/10.1016/j.optcom.2015.01.032]
[26]
Jamalaiah, B.C.; Vijay, K.M.V.; Ramgopal, K. Fluorescence properties and energy transfer mechanism of Sm3+ ion in lead telluroborate glasses. Opt. Mater., 2011, 33, 1643-1647.
[http://dx.doi.org/10.1016/j.optmat.2011.04.030]
[27]
Kumar, A.; Rai, D.K.; Rai, S.B. Optical properties of Sm3+ ions doped in tellurite glass. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2003, 59(5), 917-925.
[http://dx.doi.org/10.1016/S1386-1425(02)00282-2] [PMID: 12633709]
[28]
Basavapoornima, C.; Jayasankar, C.K. Spectroscopic and photoluminescence properties of Sm3+ ions in Pb-K-Al-Na phosphate glasses for efficient visible lasers. J. Lumin., 2014, 153, 233-241.
[http://dx.doi.org/10.1016/j.jlumin.2014.03.006]
[29]
Madhukar, R.C.; Dillip, G.R.; Mallikarjuna, K.; Zulifikar, A.A. Sd.; Sudhakar, R.B.; Deva, P.R.B. Absorption and fluorescence studies of Sm3+ ions in lead containing sodium fluoroborate glasses. J. Lumin., 2011, 131, 1368-1375.
[http://dx.doi.org/10.1016/j.jlumin.2011.03.016]
[30]
Jorgensen, C.K.; Reisfeld, R. Judd-Ofelt parameters and chemical bonding. J. Less Common Met., 1983, 93, 107-112.
[http://dx.doi.org/10.1016/0022-5088(83)90454-X]
[31]
Nageno, Y.; Takabe, H.; Morinaga, K. Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses. J. Am. Ceram. Soc., 1993, 76, 3081-3086.
[http://dx.doi.org/10.1111/j.11512916.1993.tb06612.x]
[32]
Selvi, S.; Marimuthu, K.; Muralidharan, G. Structural and luminescence behavior of Sm3+ ions doped lead boro-telluro-phosphate glasses. J. Lumin., 2015, 159, 207-218.
[http://dx.doi.org/10.1016/j.jlumin.2014.11.025]
[33]
Swapna, K.; Mahamuda, S.; Srinivasa, R.A.; Shakya, S.; Sasikala, T.; Haranath, D.; Vijaya, P.G. Optical studies of Sm3+ ions doped zinc alumino bismuth borate glasses. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 125, 53-60.
[http://dx.doi.org/10.1016/j.saa.2014.01.025] [PMID: 24530709]
[34]
Mahamuda, S.; Swapna, K.; Srinivas, R.A.; Sasikala, T. RamaMoorthy, L. Visible luminescence characteristics of Sm3+ doped zinc alumino bismuth borate glasses. J. Lumin., 2014, 146, 288-294.
[http://dx.doi.org/10.1016/j.jlumin.2013.09.035]
[35]
Gorller-Walrand, C.; Binnemans, K.; Gschneidner, Jr, K.A. Handbook on the Physics and Chemistry of Rare Earths; Amsterdam, North-Holland. , 1998, p. 25.
[36]
Reisfeld, R.; Jorgensen, C.K. Excited state phenomena in vitreous materials. Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, K.A; Eyring, L., Ed.; North-Holland: Amsterdam, 1987, Vol. 9, .
[37]
Inokuti, M.; Hirayama, F. Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys., 1965, 43, 1978.
[http://dx.doi.org/10.1063/1.1697063]
[38]
Suresh, K.J.; Pavani, K.; Sasikala, T.; Sreenivasa, R.A.; Neerajkumar, G.; Rai, S.B. RamaMoorthy, L. Photoluminescence and energy transfer properties of Sm3+ doped CFB glasses. Solid State Sci., 2011, 13, 1548-1553.
[39]
Kesavulu, C.R.; Jayasankar, C.K. Spectroscopic properties of Sm3+ ions in lead fluorophosphate glasses. J. Lumin., 2012, 132, 2802-2809.
[http://dx.doi.org/10.1016/j.jlumin.2012.05.031]
[40]
Suhasini, T.; Suresh, K.J.; Sasikala, T.; Kiwang, J.; Sueb, L.H.O.; Jayasimhadri, M.; Jung, H.J.; Soung, S.Y. RamaMoorthy, L. Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses. Opt. Mater., 2009, 31, 1167-1172.
[http://dx.doi.org/10.1016/j.optmat.2008.12.008]
[41]
Fred, S.E. Light emitting diodes, 2nd ed; Cambridge University Press: New York, USA, 2006, p. 292.
[http://dx.doi.org/10.1017/CBO9780511790546.018]
[42]
Zulfiqar, A.A.S.; Madhukar, R.C.; Deva, P.R.B. Spectroscopic and laser properties of Sm3+ ions doped lithium fluoroborate glasses for efficient visible lasers. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 103, 246-254.
[http://dx.doi.org/10.1016/j.saa.2012.11.030] [PMID: 23261619]

© 2025 Bentham Science Publishers | Privacy Policy