[1]
He, Z-H.; Lv, W.; Wang, L-M.; Wang, Y-Q.; Hu, J. Identification of genes associated with lung adenocarcinoma prognosis. Comb. Chem. High Throughput Screen., 2019, 22(4), 220-224.
[2]
Xu, B-Y.; Liu, C.; Qian, L-F.; Qu, Y.; Su, W-J.; Xu, J-L.; Zhao, J-Z. Statistical modelling outcome of in vitro fertilization and intracytoplasmic sperm injection: A single centre study. Comb. Chem. High Throughput Screen., 2019, 22(4), 225-231.
[3]
An, J-H. Expression and significance of Th17 cells and related factors in patients with autoimmune hepatitis. Comb. Chem. High Throughput Screen., 2019, 22(4), 232-237.
[4]
Chen, G.; Ye, B. The key microRNAs regulated the development of non-small cell lung cancer by targeting TGF-β-induced epithelial–mesenchymal transition. Comb. Chem. High Throughput Screen., 2019, 22(4), 238-244.
[5]
Kataria, R.; Khatkar, A. Contribution of resveratrol in development of novel urease inhibitors: Synthesis, biological evaluation and molecular docking studies. Comb. Chem. High Throughput Screen., 2019, 22(4), 245-255.
[6]
Zhao, Z-W.; Fan, X-X.; Yang, L-L.; Song, J-J.; Fang, S-J.; Tu, J-F.; Chen, M-J.; Zheng, L-Y.; Wu, F-Z.; Zhang, D-K.; Ying, X-H.; Ji, J-S. Recognition of lung adenocarcinoma-specific gene pairs based on genetic algorithm and establishment of a deep learning prediction model. Comb. Chem. High Throughput Screen., 2019, 22(4), 256-265.
[7]
Zhong, J.; Chen, J-M.; Chen, S-L.; Yi, Y-F. Constructing a risk prediction model for lung cancer recurrence by using gene function clustering and machine learning. Comb. Chem. High Throughput Screen., 2019, 22(4), 266-275.