Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis of Unsaturated Esters by Cross-Metathesis of Terpenes and Natural Rubber Using Ru-Alkylidene Catalysts

Author(s): Araceli Martínez*, Mikhail A. Tlenkopatchev, Selena Gutiérrez, Manuel Burelo, Joel Vargas and Enrique Jiménez-Regalado

Volume 23, Issue 12, 2019

Page: [1356 - 1364] Pages: 9

DOI: 10.2174/1385272823666190723125427

Price: $65

Abstract

This study reports the cross-metathesis of bicyclic β-pinene, acyclic cis-3- methylpent-2-ene terpenes and the natural rubber with functionalized olefins, a route for the functionalization of the carbon-carbon double bond of natural products to obtain aliphatic unsaturated esters. The production of unsaturated esters from β-pinene and cis-3- methylpent-2-ene via cross-metathesis reaction with dimethyl maleate and diethyl maleate in the presence of the ruthenium-alkylidene [Ru(Cl)2(=CHPh)(1,3-bis(2,4,6- trimethylphenyl)-2-imidazolidinylidene)(PCy3)] (I), [Ru(Cl)2(=CH(o-isopropoxyphenylmethylene))( 1,3-bis(2,4,6-trimethylphenyl) -2-imidazolidinylidene)] (II) and rutheniumvinylidene [RuCl2(=C=CH(p-C6H4CF3))(PCy3)2] (III) was carried out. Results showed that the reaction of β-pinene with diethyl maleate using II catalyst produced unsaturated esters with 43 % selectivity. I and III catalysts showed low activity toward the cross-metathesis of β-pinene and dimethyl maleate. A survey about the cross-metathesis of acyclic cis-3-methylpent-2-ene with diethyl maleate by II catalyst was also studied. The formation of ethyl but-2-enoate and ethyl-3-methylpent-2-enoate products was highly selective by 63 %. The unsaturated esters formation from the cross-metathesis degradation of natural rubber (99.9 % cis-polyisoprene) with dimethyl maleate and diethyl maleate using I-III catalysts was accomplished as well. I and II catalysts showed high activity in the degradation of natural rubber with diethyl maleate to produce the low molecular weight of oligomers unsaturated ester products (Mn = 1 x 103 g mol-1) with isoprene units of m = 10 – 27 and yields ranging from 68 to 94 %.

Keywords: Cross-metathesis, β-pinene, natural rubber degradation, terpenes, unsaturated esters, ruthenium-alkylidene, functionalized olefins.

Graphical Abstract

[1]
Roesle, P.; Dürr, C.J.; Möller, H.M.; Cavallo, L.; Caporaso, L.; Mecking, S. Mechanistic features of isomerizing alkoxycarbonylation of methyl oleate. J. Am. Chem. Soc., 2012, 134(42), 17696-17703.
[PMID: 23072478]
[2]
Goldbach, V.; Roesle, P.; Mecking, S. Catalytic isomerizing w-functionalization of fatty acids. ACS Catal., 2015, 5(10), 5951-5972.
[http://dx.doi.org/10.1021/acscatal.5b01508]
[3]
Biermann, U.; Bornscheuer, U.; Meier, M.A.R.; Metzger, J.O.; Schäfer, H.J. Oils and fats as renewable raw materials in chemistry. Angew. Chem. Int. Ed. Engl., 2011, 50(17), 3854-3871.
[http://dx.doi.org/10.1002/anie.201002767] [PMID: 21472903]
[4]
El Houssame, S.; El Firdoussi, L.; Allaoud, S.; Karim, A.; Castanet, Y.; Mortreux, A. Palladium-catalyzed alkoxycarbonylation of allylic natural terpenic functionalized olefins. J. Mol. Catal. Chem., 2001, 168(1–2), 15-23.
[http://dx.doi.org/10.1016/S1381-1169(00)00381-2]
[5]
Stempfle, F.; Ortmann, P.; Mecking, S. Long-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates. Chem. Rev., 2016, 116(7), 4597-4641.
[http://dx.doi.org/10.1021/acs.chemrev.5b00705] [PMID: 27023340]
[6]
Cole-Hamilton, D.J. Nature’s polyethylene. Angew. Chem. Int. Ed. Engl., 2010, 49(46), 8564-8566.
[http://dx.doi.org/10.1002/anie.201002593] [PMID: 20839197]
[7]
Jiménez-Rodriguez, C.; Eastham, G.R.; Cole-Hamilton, D.J. Dicarboxylic acid esters from the carbonylation of unsaturated esters under mild conditions. Inorg. Chem. Commun., 2005, 8(10), 878-881.
[http://dx.doi.org/10.1016/j.inoche.2005.06.005]
[8]
Walther, G.; Deutsch, J.; Martin, A.; Baumann, F.E.; Fridag, D.; Franke, R.; Köckritz, A. α,ω-Functionalized C19 monomers. ChemSusChem, 2011, 4(8), 1052-1054.
[http://dx.doi.org/10.1002/cssc.201100187] [PMID: 21656697]
[9]
Walther, G.; Martin, A.; Köckritz, A. Direct transesterification/isomerization/methoxycarbonylation of various plant oils. J. Am. Oil Chem. Soc., 2013, 90(1), 141-145.
[10]
Ho, T.T.T.; Jacobs, T.; Meier, M.A.R. A design-of-experiments approach for the optimization and understanding of the cross-metathesis reaction of methyl ricinoleate with methyl acrylate. ChemSusChem, 2009, 2(8), 749-754.
[http://dx.doi.org/10.1002/cssc.200900091] [PMID: 19569170]
[11]
Behr, A.; Toepell, S. Comparison of reactivity in the cross metathesis of allyl acetate-derivatives with oleochemical compounds. J. Am. Oil Chem. Soc., 2015, 92(4), 603-611.
[http://dx.doi.org/10.1007/s11746-015-2614-7]
[12]
Rybak, A.; Meier, M.A.R. Cross-metathesis of oleyl alcohol with methyl acrylate: Optimization of reaction conditions and comparison of their environmental impact. Green Chem., 2008, 10(10), 1099-1104.
[http://dx.doi.org/10.1039/b808930b]
[13]
Rybak, A.; Meier, M.A.R. Cross-Metathesis of fatty acid derivatives with methyl acrylate: Renewable raw materials for the chemical industry. Green Chem., 2007, 9(12), 1356-1361.
[14]
Warwel, S.; Demes, C.; Steinke, G. Polyesters by lipase-catalyzed polycondensation of unsaturated and epoxidized long-chain α,ω-dicarboxylic acid methyl esters with diols. J. Polym. Sci. A Polym. Chem., 2001, 39(10), 1601-1609.
[15]
Zhu, Y.; Patel, J.; Mujcinovic, S.; Jackson, W.R.; Robinson, A.J. Preparation of terminal oxygenates from renewable natural oils by a one-pot metathesis-isomerisation-methoxycarbonylation-transesterification reaction sequence. Green Chem., 2006, 8(8), 746-749.
[http://dx.doi.org/10.1039/B604767J]
[16]
Scheller, U.; Zimmer, T.; Becher, D.; Schauer, F.; Schunck, W.H. Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by Cytochrome P450 52A3. J. Biol. Chem., 1998, 273(49), 32528-32534.
[http://dx.doi.org/10.1074/jbc.273.49.32528] [PMID: 9829987]
[17]
Aldred, E.M.; Buck, C.; Vall, K. Chapter 22 - Terpenes In: Pharmacology: a handbook for complementary healthcare professionals;Aldred, E. M., Ed.; Churchill Livingstone Elsevier ; , 2009, pp. London. 167-174.
[18]
Breitmaier, E. Terpenes: Flavors, Fragances, Pharmaca,Pheromones Wiley-VCH GmbH & CoGaA,, 2006.
[19]
Kalck, P.; Urrutigoïty, M.; Dechy-Cabaret, O. Hydroxy- and alkoxycarbonylations of alkenes and alkynes. In: Catalytic Carbonylation Reactions; Beller, M., Ed.; Springer-Verlag Berlin Heidelberg: Berlín, Heidelberg, 2006, Vol. 18, pp. 97-123.
[20]
Lenoble, G.; Urrutigoïty, M.; Kalck, P. Dihydromyrcenol carbonylation catalyzed by palladium-tin precursors: Selectivity of the reaction drawn by the experimental conditions and the co-reactants. J. Organomet. Chem., 2002, 643-644, 12-18.
[http://dx.doi.org/10.1016/S0022-328X(01)01245-1]
[21]
Chenal, T.; Cipres, I.; Jenck, J.; Kalck, P.; Peres, Y. Carbon monoxide as a building block in organic synthesis. Part II. One-step synthesis of esters by alkoxycarbonylation of naturally occurring allylbenzenes, propenylbenzenes and monoterpenes. J. Mol. Catal., 1993, 78(3), 351-366.
[http://dx.doi.org/10.1016/0304-5102(93)87064-F]
[22]
Gusevskaya, E.V.; dos Santos, E.N.; Augusti, R.; Dias, A.O.; Robles-Dutenhefner, P.a.; Foca, C.M.; Barros, H.J.V. Metal complex catalyzed functionalization of naturally occurring monoterpenes: Oxidation, hydroformylation, alkoxycarbonylation. In: Studies in Surface Science and Catalysis; Corma, A.; Melo, F.V.; Mendioroz, S.; Fierro, J.L., Eds.; Elsiever Science, 2000, Vol. 130, pp. 563-568.
[23]
Naigre, R.; Chenal, T.; Ciprés, I.; Kalck, P.; Daran, J.C.; Vaissermann, J. Carbon monoxide as a building block in organic synthesis. Part V. Involvement of palladium-hydride species in carbonylation reactions of monoterpenes. X-Ray crystal structure of [Ph3PCH2CHCHPh]4[PdCl6][SnCl6]. J. Organomet. Chem., 1994, 480(1–2), 91-102.
[http://dx.doi.org/10.1016/0022-328X(94)87106-X]
[24]
Benedek, C.; Prókai, L.; Tõrös, S.; Heil, B. Diastereoselective hydroalkoxycarbonylation of terpenes and vinyl-estrone. J. Mol. Catal. Chem., 2001, 165(1–2), 15-21.
[http://dx.doi.org/10.1016/S1381-1169(00)00378-2]
[25]
Behr, A.; Johnen, L.; Wintzer, A.; Willstumpf, A.; Dinges, M. First methoxycarbonylation of the renewable b-myrcene: High selectivity through reduced isomerisation. Catal. Sci. Technol., 2013, 3(6), 1573-1578.
[http://dx.doi.org/10.1039/c3cy20734j]
[26]
Busch, H.; Stempfle, F.; Heß, S.; Grau, E.; Mecking, S. Selective isomerization-carbonylation of a terpene trisubstituted double bond. Green Chem., 2014, 16(10), 4541-4545.
[http://dx.doi.org/10.1039/C4GC01233J]
[27]
Da Rocha, L.L.; Dias, A. de, O.; Dos Santos, E.N.; Augusti, R.; Gusevskaya, E. Palladium/tin catalyzed alkoxycarbonylation of naturally occurring bicyclic monoterpenes. J. Mol. Catal. Chem., 1998, 132(2–3), 213-221.
[http://dx.doi.org/10.1016/S1381-1169(97)00248-3]
[28]
Gusevskaya, E.V. Organometallic catalysis: Some contributions to organic synthesis. Quim. Nova, 2003, 26(2), 242-248.
[http://dx.doi.org/10.1590/S0100-40422003000200017]
[29]
Gusevskaya, E.; Gonsalves, J.A. Palladium(II) catalyzed oxidation of naturally occurring terpenes with dioxygen. J. Mol. Catal. Chem., 1997, 121(2-3), 131-137.
[http://dx.doi.org/10.1016/S1381-1169(97)00006-X]
[30]
Dragojlovic, V.; Gao, D. Bin; Chow, Y.L. Multigram scale cobalt catalyzed photochemical methoxycarbonylation of alkenes. J. Mol. Catal. Chem., 2001, 171(1-2), 43-51.
[http://dx.doi.org/10.1016/S1381-1169(01)00102-9]
[31]
Bruneau, C.; Fischmeister, C. Alkene metathesis for transformation of renewables. Top. Organomet. Chem., 2019, 63, 77-102.
[http://dx.doi.org/10.1007/3418_2018_18]
[32]
Behr, A.; Johnen, L.; Wintzer, A.; Gümüş Çetin, A.; Neubert, P.; Domke, L. Ruthenium-catalyzed cross metathesis of β-myrcene and its derivatives with methyl acrylate. ChemCatChem, 2016, 8(3), 515-522.
[http://dx.doi.org/10.1002/cctc.201500993]
[33]
Bruneau, C.; Fischmeister, C.; Mandelli, D.; Carvalho, W.A.; Dos Santos, E.N.; Dixneuf, P.H.; Fernandes, L.S. Transformations of terpenes and terpenoids via carbon-carbon double bond metathesis. Catal. Sci. Technol., 2018, 8(16), 3989-4004.
[http://dx.doi.org/10.1039/C8CY01152D]
[34]
Dixneuf, P.H.; Bruneau, C.; Fischmeister, C. Alkene metathesis catalysis: A key for transformations of unsaturated plant oils and renewable derivatives. Oil Gas Sci. Technol., 2016, 71(2), 1-21.
[http://dx.doi.org/10.2516/ogst/2015033]
[35]
Tanabe, Y.; Makita, A.; Funakoshi, S.; Hamasaki, R.; Kawakusu, T. Practical synthesis of (Z)-civetone utilizing Ti-dieckmann. Adv. Synth. Catal., 2002, 344(5), 507-510.
[http://dx.doi.org/10.1002/1615-4169(200207)344:5<507:AID-ADSC507>3.0.CO;2-U]
[36]
Wang, Z.J.; Jackson, W.R.; Robinson, A.J. An efficient protocol for the cross-metathesis of sterically demanding olefins. Org. Lett., 2013, 15(12), 3006-3009.
[http://dx.doi.org/10.1021/ol401194h] [PMID: 23721303]
[37]
Bilel, H.; Hamdi, N.; Zagrouba, F.; Fischmeister, C.; Bruneau, C. Cross-metathesis transformations of terpenoids in dialkyl carbonate solvents. Green Chem., 2011, 13(6), 1448-1452.
[http://dx.doi.org/10.1039/c1gc15024c]
[38]
Borré, E.; Dinh, T.; Caijo, F.; Crévisy, C.; Mauduit, M. Terpenic compounds as renewable sources of raw materials for cross-metathesis. Synthesis, 2011, 13, 2125-2130.
[39]
Marmo, J.C.; Wagener, K.B. Acyclic Diene Metathesis (ADMET) depolymerization. Synthesis of mass-exact telechelic polybutadiene oligomers. Macromolecules, 1993, 26(8), 2137-2138.
[http://dx.doi.org/10.1021/ma00060a051]
[40]
Marmo, J.C.; Wagener, K.B. ADMET Depolymerization. Synthesis of perfectly difunctional f=2.0) telechelic polybutadiene oligomers. Macromolecules, 1995, 28(8), 2602-2606.
[http://dx.doi.org/10.1021/ma00112a002]
[41]
Schulz, M.D.; Ford, R.R.; Wagener, K.B. Insertion metathesis depolymerization. Polym. Chem., 2013, 4(13), 3656-3658.
[http://dx.doi.org/10.1039/c3py00531c]
[42]
Reyes-Gómez, S.; Montiel, R.; Tlenkopatchev, M.A. J. Mex. Chem. Soc., 2018, 61(1), 1-15.
[43]
Fomine, S.; Tlenkopatchev, M.A. Cross-metathesis of dimethyl maleate and ethylene catalyzed by second generation ruthenium carbene complexes: B3LYP and MPW1K comparison study. J. Organomet. Chem., 2006, 691(24–25), 5189-5196.
[http://dx.doi.org/10.1016/j.jorganchem.2006.07.039]
[44]
Gutiérrez, S.; Tlenkopatchev, M.A. Metathesis of renewable products: Degradation of natural rubber via cross-metathesis with β-pinene using Ru-alkylidene catalysts. Polym. Bull., 2011, 66(8), 1029-1038.
[http://dx.doi.org/10.1007/s00289-010-0330-x]
[45]
Acevedo, A.; Fomine, S.; Gutiérrez, S.; Tlenkopatchev, M.A. Metathesis of terpenes using the second generation Grubbs Ru-alkylidene catalysts: Computational modeling. J. Organomet. Chem., 2014, 765, 17-22.
[http://dx.doi.org/10.1016/j.jorganchem.2014.04.032]
[46]
Martínez, A.; Gutiérrez, S.; Tlenkopatchev, M.A. Metathesis transformations of natural products: Cross-metathesis of natural rubber and mandarin oil by Ru-alkylidene catalysts. Molecules, 2012, 17(5), 6001-6010.
[http://dx.doi.org/10.3390/molecules17056001] [PMID: 22609789]
[47]
Fomine, S.; Tlenkopatchev, M.A. Computational modeling of renewable molecules. Ruthenium alkylidene-mediated metathesis of trialkyl-substituted olefins. Organometallics, 2010, 29(7), 1580-1587.
[http://dx.doi.org/10.1021/om900848q]
[48]
Sadaka, F.; Campistron, I.; Laguerre, A.; Pilard, J.F. Telechelic oligomers obtained by metathetic degradation of both polyisoprene and styrene-butadiene rubbers. Applications for recycling waste tyre rubber. Polym. Degrad. Stabil., 2013, 98(3), 736-742.
[http://dx.doi.org/10.1016/j.polymdegradstab.2012.12.018]
[49]
Tlenkopatchev, M.A.; Barcenas, A.; Fomine, S. Computational study of metathesis degradation of rubber, 2a distribution of cyclic oligomers via intermolecular metathesis degradation of natural rubber. Macromol. Theory Simul., 2001, 10(7), 441-446.
[http://dx.doi.org/10.1002/1521-3919(20010601)10:5<441:AID-MATS441>3.0.CO;2-#]
[50]
Martínez, A.; Clark-Tapia, R.; Gutierrez, S.; Tlenkopatchev, M. Synthesis and characterization of new ruthenium vinylidene complexes. Lett. Org. Chem., 2014, 11(10), 748-754.
[http://dx.doi.org/10.2174/157017861110141117143729]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy