Abstract
This study reports the cross-metathesis of bicyclic β-pinene, acyclic cis-3- methylpent-2-ene terpenes and the natural rubber with functionalized olefins, a route for the functionalization of the carbon-carbon double bond of natural products to obtain aliphatic unsaturated esters. The production of unsaturated esters from β-pinene and cis-3- methylpent-2-ene via cross-metathesis reaction with dimethyl maleate and diethyl maleate in the presence of the ruthenium-alkylidene [Ru(Cl)2(=CHPh)(1,3-bis(2,4,6- trimethylphenyl)-2-imidazolidinylidene)(PCy3)] (I), [Ru(Cl)2(=CH(o-isopropoxyphenylmethylene))( 1,3-bis(2,4,6-trimethylphenyl) -2-imidazolidinylidene)] (II) and rutheniumvinylidene [RuCl2(=C=CH(p-C6H4CF3))(PCy3)2] (III) was carried out. Results showed that the reaction of β-pinene with diethyl maleate using II catalyst produced unsaturated esters with 43 % selectivity. I and III catalysts showed low activity toward the cross-metathesis of β-pinene and dimethyl maleate. A survey about the cross-metathesis of acyclic cis-3-methylpent-2-ene with diethyl maleate by II catalyst was also studied. The formation of ethyl but-2-enoate and ethyl-3-methylpent-2-enoate products was highly selective by 63 %. The unsaturated esters formation from the cross-metathesis degradation of natural rubber (99.9 % cis-polyisoprene) with dimethyl maleate and diethyl maleate using I-III catalysts was accomplished as well. I and II catalysts showed high activity in the degradation of natural rubber with diethyl maleate to produce the low molecular weight of oligomers unsaturated ester products (Mn = 1 x 103 g mol-1) with isoprene units of m = 10 – 27 and yields ranging from 68 to 94 %.
Keywords: Cross-metathesis, β-pinene, natural rubber degradation, terpenes, unsaturated esters, ruthenium-alkylidene, functionalized olefins.
Graphical Abstract
[PMID: 23072478]
[http://dx.doi.org/10.1021/acscatal.5b01508]
[http://dx.doi.org/10.1002/anie.201002767] [PMID: 21472903]
[http://dx.doi.org/10.1016/S1381-1169(00)00381-2]
[http://dx.doi.org/10.1021/acs.chemrev.5b00705] [PMID: 27023340]
[http://dx.doi.org/10.1002/anie.201002593] [PMID: 20839197]
[http://dx.doi.org/10.1016/j.inoche.2005.06.005]
[http://dx.doi.org/10.1002/cssc.201100187] [PMID: 21656697]
[http://dx.doi.org/10.1002/cssc.200900091] [PMID: 19569170]
[http://dx.doi.org/10.1007/s11746-015-2614-7]
[http://dx.doi.org/10.1039/b808930b]
[http://dx.doi.org/10.1039/B604767J]
[http://dx.doi.org/10.1074/jbc.273.49.32528] [PMID: 9829987]
[http://dx.doi.org/10.1016/S0022-328X(01)01245-1]
[http://dx.doi.org/10.1016/0304-5102(93)87064-F]
[http://dx.doi.org/10.1016/0022-328X(94)87106-X]
[http://dx.doi.org/10.1016/S1381-1169(00)00378-2]
[http://dx.doi.org/10.1039/c3cy20734j]
[http://dx.doi.org/10.1039/C4GC01233J]
[http://dx.doi.org/10.1016/S1381-1169(97)00248-3]
[http://dx.doi.org/10.1590/S0100-40422003000200017]
[http://dx.doi.org/10.1016/S1381-1169(97)00006-X]
[http://dx.doi.org/10.1016/S1381-1169(01)00102-9]
[http://dx.doi.org/10.1007/3418_2018_18]
[http://dx.doi.org/10.1002/cctc.201500993]
[http://dx.doi.org/10.1039/C8CY01152D]
[http://dx.doi.org/10.2516/ogst/2015033]
[http://dx.doi.org/10.1002/1615-4169(200207)344:5<507:AID-ADSC507>3.0.CO;2-U]
[http://dx.doi.org/10.1021/ol401194h] [PMID: 23721303]
[http://dx.doi.org/10.1039/c1gc15024c]
[http://dx.doi.org/10.1021/ma00060a051]
[http://dx.doi.org/10.1021/ma00112a002]
[http://dx.doi.org/10.1039/c3py00531c]
[http://dx.doi.org/10.1016/j.jorganchem.2006.07.039]
[http://dx.doi.org/10.1007/s00289-010-0330-x]
[http://dx.doi.org/10.1016/j.jorganchem.2014.04.032]
[http://dx.doi.org/10.3390/molecules17056001] [PMID: 22609789]
[http://dx.doi.org/10.1021/om900848q]
[http://dx.doi.org/10.1016/j.polymdegradstab.2012.12.018]
[http://dx.doi.org/10.1002/1521-3919(20010601)10:5<441:AID-MATS441>3.0.CO;2-#]
[http://dx.doi.org/10.2174/157017861110141117143729]