[1]
Ghadi, R.; Dand, N. BCS class IV drugs: Highly notorious candidates for formulation development. J. Control. Release, 2017, 248, 71-95. [http://dx.doi.org/10.1016/j.jconrel.2017.01.014]. [PMID: 28088572].
[2]
Emami, S.; Siahi-Shadbad, M.; Adibkia, K.; Barzegar-Jalali, M. Recent advances in improving oral drug bioavailability by cocrystals. Bioimpacts, 2018, 8(4), 305-320. [http://dx.doi.org/10.15171/bi.2018.33]. [PMID: 30397585].
[3]
Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res., 1995, 12(3), 413-420. [http://dx.doi.org/10.1023/A:1016212804288]. [PMID: 7617530].
[4]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv. Drug Deliv. Rev., 2012, 64, 4-17. [http://dx.doi.org/10.1016/j.addr.2012.09.019].
[5]
Thayer, A.M. Finding solutions. Chem. Eng. News, 2010, 88(22), 13-18. [http://dx.doi.org/10.1021/cen-v088n022.p013].
[6]
Yamamoto, K.; Kojima, T.; Karashima, M.; Ikeda, Y. Physicochemical evaluation and developability assessment of co-amorphouses of low soluble drugs and comparison to the co-crystals. Chem. Pharm. Bull. (Tokyo), 2016, 64(12), 1739-1746. [http://dx.doi.org/10.1248/cpb.c16-00604]. [PMID: 27733735].
[7]
Serajuddin, A.T.M. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev., 2007, 59(7), 603-616. [http://dx.doi.org/10.1016/j.addr.2007.05.010]. [PMID: 17619064].
[8]
Dalpiaz, A.; Pavan, B.; Ferretti, V. Can pharmaceutical co-crystals provide an opportunity to modify the biological properties of drugs? Drug Discov. Today, 2017, 22(8), 1134-1138. [http://dx.doi.org/10.1016/j.drudis.2017.01.010]. [PMID: 28130117].
[9]
Rodrigues, M.; Baptista, B.; Lopes, J.A.; Sarraguça, M.C. Pharmaceutical cocrystallization techniques. Advances and challenges. Int. J. Pharm., 2018, 547(1-2), 404-420. [http://dx.doi.org/10.1016/j.ijpharm.2018.06.024]. [PMID: 29890258].
[10]
Kumar, A.; Kumar, S.; Nanda, A. A review about regulatory status and recent patents of pharmaceutical co-crystals. Adv. Pharm. Bull., 2018, 8(3), 355-363. [http://dx.doi.org/10.15171/apb.2018.042]. [PMID: 30276131].
[11]
Duggirala, N.K.; Perry, M.L.; Almarsson, Ö.; Zaworotko, M. J. Pharmaceutical cocrystals: Along the path to improved medicines. Chem. Commun. (Camb.), 2016, 52(4), 640-655. [http://dx.doi.org/10.1039/C5CC08216A]. [PMID: 26565650].
[12]
Dai, X.L.; Li, S.; Chen, J.M.; Lu, T.B. Improving the membrane permeability of 5-fluorouracil via cocrystallization. Cryst. Growth Des., 2016, 16, 4430-4438. [http://dx.doi.org/10.1021/acs.cgd.6b00552].
[13]
Yan, Y.; Chen, J.M.; Lu, T.B. Synthon polymorphs of 1:1 cocrystal of 5-fluorouracil and 4-hydroxybenzoic acid: Their relative stability and solvent polarity dependence of grinding outcomes. CrystEngComm, 2013, 15, 6457-6460. [http://dx.doi.org/10.1039/c3ce41017j].
[14]
Sanphui, P.; Devi, V.K.; Clara, D.; Malviya, N.; Ganguly, S.; Desiraju, G.R. Cocrystals of hydrochlorothiazide: Solubility and diffusion/permeability enhancements through drug-coformer interactions. Mol. Pharm., 2015, 12(5), 1615-1622. [http://dx.doi.org/10.1021/acs.molpharmaceut.5b00020]. [PMID: 25800383].
[15]
do Amaral, L.H.; do Carmo, F.A.; Amaro, M.I.; de Sousa, V.P.; da Silva, L.C.R.P.; de Almeida, G.S.; Rodrigues, C.R.; Healy, A.M.; Cabral, L.M. Development and characterization of dapsone cocrystal prepared by scalable production methods. AAPS PharmSciTech, 2018, 19(6), 2687-2699. [http://dx.doi.org/10.1208/s12249-018-1101-5]. [PMID: 29968042].
[16]
Reggane, M.; Wiest, J.; Saedtler, M.; Harlacher, C.; Gutmann, M.; Zottnick, S.H.; Piechon, P.; Dix, I.; Müller-Buschbaum, K.; Holzgrabe, U.; Meinel, L.; Galli, B. Bioinspired co-crystals of Imatinib providing enhanced kinetic solubility. Eur. J. Pharm. Biopharm., 2018, 128, 290-299. [http://dx.doi.org/10.1016/j.ejpb.2018.05.012]. [PMID: 29733951].
[17]
Ferretti, V.; Dalpiaz, A.; Bertolasi, V.; Ferraro, L.; Beggiato, S.; Spizzo, F.; Spisni, E.; Pavan, B. Indomethacin co-crystals and their parent mixtures: Does the intestinal barrier recognize them differently? Mol. Pharm., 2015, 12(5), 1501-1511. [http://dx.doi.org/10.1021/mp500826y]. [PMID: 25794305].
[18]
Dalpiaz, A.; Ferretti, V.; Bertolasi, V.; Pavan, B.; Monari, A.; Pastore, M. From physical mixtures to co-crystals: How the coformers can modify solubility and biological activity of carbamazepine. Mol. Pharm., 2018, 15(1), 268-278. [http://dx.doi.org/10.1021/acs.molpharmaceut.7b00899]. [PMID: 29164899].