Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

PTTG has a Dual Role of Promotion-Inhibition in the Development of Pituitary Adenomas

Author(s): Zujian Xiong, Xuejun Li* and Qi Yang

Volume 26, Issue 11, 2019

Page: [800 - 818] Pages: 19

DOI: 10.2174/0929866526666190722145449

Price: $65

Abstract

Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.

Keywords: PTTG, pituitary adenoma, tumorigenesis, invasiveness, angiogenesis, senescence.

Graphical Abstract

[1]
Chesnokova, V.; Melmed, S. Pituitary tumour-transforming gene (PTTG) and pituitary senescence. Horm. Res., 2009, 71(Suppl. 2), 82-87.
[http://dx.doi.org/doi.org/10.1159/000192443] [PMID: 19407503]
[2]
Gadelha, M.R.; Trivellin, G.; Hernández Ramírez, L.C.; Korbonits, M. Genetics of pituitary adenomas. Front. Horm. Res., 2013, 41, 111-140.
[http://dx.doi.org/10.1159/000345673] [PMID: 23652674]
[3]
Cuny, T.; Pertuit, M.; Sahnoun-Fathallah, M.; Daly, A.; Occhi, G.; Odou, M.F.; Tabarin, A.; Nunes, M.L.; Delemer, B.; Rohmer, V.; Desailloud, R.; Kerlan, V.; Chabre, O.; Sadoul, J.L.; Cogne, M.; Caron, P.; Cortet-Rudelli, C.; Lienhardt, A.; Raingeard, I.; Guedj, A.M.; Brue, T.; Beckers, A.; Weryha, G.; Enjalbert, A.; Barlier, A. Genetic analysis in young patients with sporadic pituitary macroadenomas: besides AIP don’t forget MEN1 genetic analysis. Eur. J. Endocrinol., 2013, 168(4), 533-541.
[http://dx.doi.org/10.1530/EJE-12-0763] [PMID: 23321498]
[4]
Chamaon, K.; Kanakis, D.; Mawrin, C.; Dietzmann, K.; Kirches, E. Transcripts of PTTG and growth factors bFGF and IGF-1 are correlated in pituitary adenomas. Exp. Clin. Endocrinol. Diabetes, 2010, 118(2), 121-126.
[http://dx.doi.org/10.1055/s-0029-1215588] [PMID: 19472104]
[5]
Glezer, A.; Bronstein, M.D. Prolactinomas. Endocrinol. Metab. Clin. North Am., 2015, 44(1), 71-78.
[http://dx.doi.org/10.1016/j.ecl.2014.11.003] [PMID: 25732643]
[6]
Farrell, W.E. Pituitary tumours: findings from whole genome analyses. Endocr. Relat. Cancer, 2006, 13(3), 707-716.
[http://dx.doi.org/10.1677/erc.1.01131] [PMID: 16954426]
[7]
Farrell, W.E.; Clayton, R.N. Epigenetic change in pituitary tumorigenesis. Endocr. Relat. Cancer, 2003, 10(2), 323-330.
[http://dx.doi.org/10.1677/erc.0.0100323] [PMID: 12790793]
[8]
Kaltsas, G.A.; Nomikos, P.; Kontogeorgos, G.; Buchfelder, M.; Grossman, A.B. Clinical review: diagnosis and management of pituitary carcinomas. J. Clin. Endocrinol. Metab., 2005, 90(5), 3089-3099.
[http://dx.doi.org/10.1210/jc.2004-2231] [PMID: 15741248]
[9]
Ezzat, S.; Asa, S.L. Mechanisms of disease: The pathogenesis of pituitary tumors. Nat. Clin. Pract. Endocrinol. Metab., 2006, 2(4), 220-230.
[http://dx.doi.org/10.1038/ncpendmet0159] [PMID: 16932287]
[10]
Chesnokova, V.; Melmed, S. Pituitary senescence: the evolving role of PTTG. Mol. Cell. Endocrinol., 2010, 326(1-2), 55-59.
[http://dx.doi.org/10.1016/j.mce.2010.02.012] [PMID: 20153804]
[11]
Levy, A.; Lightman, S. Molecular defects in the pathogenesis of pituitary tumours. Front. Neuroendocrinol., 2003, 24(2), 94-127.
[http://dx.doi.org/10.1016/S0091-30220300012-8] [PMID: 12763000]
[12]
Meij, B.P.; Lopes, M.B.; Ellegala, D.B.; Alden, T.D.; Laws, E.R., Jr The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery. J. Neurosurg., 2002, 96(2), 195-208.
[http://dx.doi.org/10.3171/jns.2002.96.2.0195] [PMID: 11838791]
[13]
Hussaini, I.M.; Trotter, C.; Zhao, Y.; Abdel-Fattah, R.; Amos, S.; Xiao, A.; Agi, C.U.; Redpath, G.T.; Fang, Z.; Leung, G.K.; Lopes, M.B.; Laws, E.R. Jr Matrix metalloproteinase-9 is differentially expressed in nonfunctioning invasive and noninvasive pituitary adenomas and increases invasion in human pituitary adenoma cell line. Am. J. Pathol., 2007, 170(1), 356-365.
[http://dx.doi.org/10.2353/ajpath.2007.060736] [PMID: 17200207]
[14]
Hui, P.; Xu, X.; Xu, L.; Hui, G.; Wu, S.; Lan, Q. Expression of MMP14 in invasive pituitary adenomas: relationship to invasion and angiogenesis. Int. J. Clin. Exp. Pathol., 2015, 8(4), 3556-3567.
[PMID: 26097538]
[15]
Sasagawa, Y.; Tachibana, O.; Doai, M.; Akai, T.; Tonami, H.; Iizuka, H. Internal carotid arterial shift after transsphenoidal surgery in pituitary adenomas with cavernous sinus invasion. Pituitary, 2013, 16(4), 465-470.
[http://dx.doi.org/10.1007/s11102-013-0492-2] [PMID: 23720159]
[16]
Goel, A.; Phalke, U.; Cacciola, F.; Muzumdar, D.P. Giant pituitary adenoma invading the clivus. Neurol. India, 2005, 53(1), 105-107.
[http://dx.doi.org/10.4103/0028-3886.15073] [PMID: 15805667]
[17]
Zhang, X.; Horwitz, G.A.; Heaney, A.P.; Nakashima, M.; Prezant, T.R.; Bronstein, M.D.; Melmed, S. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J. Clin. Endocrinol. Metab., 1999, 84(2), 761-767.
[http://dx.doi.org/10.1210/jcem.84.2.5432] [PMID: 10022450]
[18]
Salehi, F.; Kovacs, K.; Scheithauer, B.W.; Lloyd, R.V.; Cusimano, M. Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update. Endocr. Relat. Cancer, 2008, 15(3), 721-743.
[http://dx.doi.org/10.1677/ERC-08-0012] [PMID: 18753362]
[19]
Hsu, D.W.; Hakim, F.; Biller, B.M.; de la Monte, S.; Zervas, N.T.; Klibanski, A.; Hedley-Whyte, E.T. Significance of proliferating cell nuclear antigen index in predicting pituitary adenoma recurrence. J. Neurosurg., 1993, 78(5), 753-761.
[http://dx.doi.org/10.3171/jns.1993.78.5.0753] [PMID: 8096873]
[20]
Jaffrain-Rea, M.L.; Di Stefano, D.; Minniti, G.; Esposito, V.; Bultrini, A.; Ferretti, E.; Santoro, A.; Faticanti Scucchi, L.; Gulino, A.; Cantore, G. A critical reappraisal of MIB-1 labelling index significance in a large series of pituitary tumours: secreting versus non-secreting adenomas. Endocr. Relat. Cancer, 2002, 9(2), 103-113.
[http://dx.doi.org/10.1677/erc.0.0090103] [PMID: 12121834]
[21]
Ozer, E.; Canda, M.S.; Ulukus, C.; Guray, M.; Erbayraktar, S. Expression of Bcl-2, Bax and p53 proteins in pituitary adenomas: an immunohistochemical study. Tumori, 2003, 89(1), 54-59.
[http://dx.doi.org/10.1177/030089160308900112] [PMID: 12729363]
[22]
McCabe, C.J.; Khaira, J.S.; Boelaert, K.; Heaney, A.P.; Tannahill, L.A.; Hussain, S.; Mitchell, R.; Olliff, J.; Sheppard, M.C.; Franklyn, J.A.; Gittoes, N.J. Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas: relationships to clinical tumour behaviour. Clin. Endocrinol. (Oxf.), 2003, 58(2), 141-150.
[http://dx.doi.org/10.1046/j.1365-2265.2003.01598.x] [PMID: 12580928]
[23]
Lloyd, R.V.; Scheithauer, B.W.; Kuroki, T.; Vidal, S.; Kovacs, K.; Stefaneanu, L. Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr. Pathol., 1999, 10(3), 229-235.
[http://dx.doi.org/10.1007/BF02738884] [PMID: 12114703]
[24]
Tfelt-Hansen, J.; Kanuparthi, D.; Chattopadhyay, N. The emerging role of pituitary tumor transforming gene in tumorigenesis. Clin. Med. Res., 2006, 4(2), 130-137.
[http://dx.doi.org/10.3121/cmr.4.2.130] [PMID: 16809406]
[25]
Chesnokova, V.; Kovacs, K.; Castro, A.V.; Zonis, S.; Melmed, S. Pituitary hypoplasia in Pttg-/- mice is protective for Rb+/- pituitary tumorigenesis. Mol. Endocrinol., 2005, 19(9), 2371-2379.
[http://dx.doi.org/10.1210/me.2005-0137] [PMID: 15919720]
[26]
Zhang, J.; Yang, Y.; Chen, L.; Zheng, D.; Ma, J. Overexpression of pituitary tumor transforming gene (PTTG) is associated with tumor progression and poor prognosis in patients with esophageal squamous cell carcinoma. Acta Histochem., 2014, 116(3), 435-439.
[http://dx.doi.org/10.1016/j.acthis.2013.09.011] [PMID: 24176776]
[27]
Vlotides, G.; Eigler, T.; Melmed, S. Pituitary tumor-transforming gene: physiology and implications for tumorigenesis. Endocr. Rev., 2007, 28(2), 165-186.
[http://dx.doi.org/10.1210/er.2006-0042] [PMID: 17325339]
[28]
Pei, L.; Melmed, S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol. Endocrinol., 1997, 11(4), 433-441.
[http://dx.doi.org/10.1210/mend.11.4.9911] [PMID: 9092795]
[29]
Sapochnik, M.; Nieto, L.E.; Fuertes, M.; Arzt, E. Molecular mechanisms underlying pituitary pathogenesis. Biochem. Genet., 2016, 54(2), 107-119.
[http://dx.doi.org/10.1007/s10528-015-9709-6] [PMID: 26718581]
[30]
Melmed, S. Mechanisms for pituitary tumorigenesis: the plastic pituitary. J. Clin. Invest., 2003, 112(11), 1603-1618.
[http://dx.doi.org/10.1172/JCI20401] [PMID: 14660734]
[31]
McCabe, C.J.; Heaney, A.P. Pituitary tumour transforming gene in endocrine cancer. Clin. Endocrinol. (Oxf.), 2003, 58(6), 673-682.
[http://dx.doi.org/10.1046/j.1365-2265.2003.01687.x] [PMID: 12780741]
[32]
Yu, R.; Ren, S.G.; Horwitz, G.A.; Wang, Z.; Melmed, S. Pituitary tumor transforming gene (PTTG) regulates placental JEG-3 cell division and survival: evidence from live cell imaging. Mol. Endocrinol., 2000, 14(8), 1137-1146.
[http://dx.doi.org/10.1210/mend.14.8.0501] [PMID: 10935539]
[33]
Zur, A.; Brandeis, M. Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. EMBO J., 2001, 20(4), 792-801.
[http://dx.doi.org/10.1093/emboj/20.4.792] [PMID: 11179223]
[34]
Ishikawa, H.; Heaney, A.P.; Yu, R.; Horwitz, G.A.; Melmed, S. Human pituitary tumor-transforming gene induces angiogenesis. J. Clin. Endocrinol. Metab., 2001, 86(2), 867-874.
[http://dx.doi.org/10.1210/jcem.86.2.7184] [PMID: 11158059]
[35]
Zhang, X.; Horwitz, G.A.; Prezant, T.R.; Valentini, A.; Nakashima, M.; Bronstein, M.D.; Melmed, S. Structure, expression, and function of human pituitary tumor-transforming gene (PTTG). Mol. Endocrinol., 1999, 13(1), 156-166.
[http://dx.doi.org/10.1210/mend.13.1.0225] [PMID: 9892021]
[36]
Romero, F.; Multon, M.C.; Ramos-Morales, F.; Domínguez, A.; Bernal, J.A.; Pintor-Toro, J.A.; Tortolero, M. Human securin, hPTTG, is associated with Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase. Nucleic Acids Res., 2001, 29(6), 1300-1307.
[http://dx.doi.org/10.1093/nar/29.6.1300] [PMID: 11238996]
[37]
McCabe, C.J.; Boelaert, K.; Tannahill, L.A.; Heaney, A.P.; Stratford, A.L.; Khaira, J.S.; Hussain, S.; Sheppard, M.C.; Franklyn, J.A.; Gittoes, N.J. Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J. Clin. Endocrinol. Metab., 2002, 87(9), 4238-4244.
[http://dx.doi.org/10.1210/jc.2002-020309] [PMID: 12213878]
[38]
Pei, L. Activation of mitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene transactivation function. J. Biol. Chem., 2000, 275(40), 31191-31198.
[http://dx.doi.org/10.1074/jbc.M002451200] [PMID: 10906323]
[39]
Zatelli, M.C.; Tagliati, F.; Amodio, V.; Buratto, M.; Pelizzo, M.; Pansini, G.; Bondanelli, M.; Ambrosio, M.R.; Degli Uberti, E.C. Role of pituitary tumour transforming gene 1 in medullary thyroid carcinoma. Anal. Cell. Pathol. (Amst.), 2010, 33(5), 207-216.
[http://dx.doi.org/10.1155/2010/472067] [PMID: 20978326]
[40]
Xia, Y.H.; Li, M.; Fu, D.D.; Xu, S.L.; Li, Z.G.; Liu, D.; Tian, Z.W. Effects of PTTG down-regulation on proliferation and metastasis of the SCL-1 cutaneous squamous cell carcinoma cell line. Asian Pac. J. Cancer Prev., 2013, 14(11), 6245-6248.
[http://dx.doi.org/10.7314/APJCP.2013.14.11.6245] [PMID: 24377512]
[41]
Filippella, M.; Galland, F.; Kujas, M.; Young, J.; Faggiano, A.; Lombardi, G.; Colao, A.; Meduri, G.; Chanson, P. Pituitary tumour transforming gene (PTTG) expression correlates with the proliferative activity and recurrence status of pituitary adenomas: a clinical and immunohistochemical study. Clin. Endocrinol. (Oxf.), 2006, 65(4), 536-543.
[http://dx.doi.org/10.1111/j.1365-2265.2006.02630.x] [PMID: 16984249]
[42]
Abbud, R.A.; Takumi, I.; Barker, E.M.; Ren, S.G.; Chen, D.Y.; Wawrowsky, K.; Melmed, S. Early multipotential pituitary focal hyperplasia in the alpha-subunit of glycoprotein hormone-driven pituitary tumor-transforming gene transgenic mice. Mol. Endocrinol., 2005, 19(5), 1383-1391.
[http://dx.doi.org/10.1210/me.2004-0403] [PMID: 15677710]
[43]
El-Naggar, S.M.; Malik, M.T.; Kakar, S.S. Small interfering RNA against PTTG: a novel therapy for ovarian cancer. Int. J. Oncol., 2007, 31(1), 137-143.
[http://dx.doi.org/10.3892/ijo.31.1.137] [PMID: 17549414]
[44]
Cho-Rok, J.; Yoo, J.; Jang, Y.J.; Kim, S.; Chu, I.S.; Yeom, Y.I.; Choi, J.Y. Im, D.S. Adenovirus-mediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. Hepatology, 2006, 43(5), 1042-1052.
[http://dx.doi.org/10.1002/hep.21137] [PMID: 16628636]
[45]
Jia, W.; Lu, R.; Jia, G.; Ni, M.; Xu, Z. Expression of pituitary tumor transforming gene (PTTG) in human pituitary macroadenomas. Tumour Biol., 2013, 34(3), 1559-1567.
[http://dx.doi.org/10.1007/s13277-013-0686-2] [PMID: 23404407]
[46]
Hunter, J.A.; Skelly, R.H.; Aylwin, S.J.; Geddes, J.F.; Evanson, J.; Besser, G.M.; Monson, J.P.; Burrin, J.M. The relationship between pituitary tumour transforming gene (PTTG) expression and in vitro hormone and vascular endothelial growth factor (VEGF) secretion from human pituitary adenomas. Eur. J. Endocrinol., 2003, 148(2), 203-211.
[http://dx.doi.org/10.1530/eje.0.1480203] [PMID: 12590639]
[47]
Wierinckx, A.; Auger, C.; Devauchelle, P.; Reynaud, A.; Chevallier, P.; Jan, M.; Perrin, G.; Fèvre-Montange, M.; Rey, C.; Figarella-Branger, D.; Raverot, G.; Belin, M.F.; Lachuer, J.; Trouillas, J. A diagnostic marker set for invasion, proliferation, and aggressiveness of prolactin pituitary tumors. Endocr. Relat. Cancer, 2007, 14(3), 887-900.
[http://dx.doi.org/10.1677/ERC-07-0062] [PMID: 17914117]
[48]
Raverot, G.; Wierinckx, A.; Dantony, E.; Auger, C.; Chapas, G.; Villeneuve, L.; Brue, T.; Figarella-Branger, D.; Roy, P.; Jouanneau, E.; Jan, M.; Lachuer, J.; Trouillas, J. Prognostic factors in prolactin pituitary tumors: clinical, histological, and molecular data from a series of 94 patients with a long postoperative follow-up. J. Clin. Endocrinol. Metab., 2010, 95(4), 1708-1716.
[http://dx.doi.org/10.1210/jc.2009-1191] [PMID: 20164287]
[49]
Boelaert, K.; Yu, R.; Tannahill, L.A.; Stratford, A.L.; Khanim, F.L.; Eggo, M.C.; Moore, J.S.; Young, L.S.; Gittoes, N.J.; Franklyn, J.A.; Melmed, S.; McCabe, C.J. PTTG’s C-terminal PXXP motifs modulate critical cellular processes in vitro. J. Mol. Endocrinol., 2004, 33(3), 663-677.
[http://dx.doi.org/10.1677/jme.1.01606] [PMID: 15591026]
[50]
Sudakin, V.; Ganoth, D.; Dahan, A.; Heller, H.; Hershko, J.; Luca, F.C.; Ruderman, J.V.; Hershko, A. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell, 1995, 6(2), 185-197.
[http://dx.doi.org/10.1091/mbc.6.2.185] [PMID: 7787245]
[51]
Yaspo, M.L.; Aaltonen, J.; Horelli-Kuitunen, N.; Peltonen, L.; Lehrach, H. Cloning of a novel human putative type Ia integral membrane protein mapping to 21q22.3. Genomics, 1998, 49(1), 133-136.
[http://dx.doi.org/10.1006/geno.1998.5217] [PMID: 9570958]
[52]
Boelaert, K.; Smith, V.E.; Stratford, A.L.; Kogai, T.; Tannahill, L.A.; Watkinson, J.C.; Eggo, M.C.; Franklyn, J.A.; McCabe, C.J. PTTG and PBF repress the human sodium iodide symporter. Oncogene, 2007, 26(30), 4344-4356.
[http://dx.doi.org/10.1038/sj.onc.1210221] [PMID: 17297475]
[53]
Smith, V.E.; Read, M.L.; Turnell, A.S.; Watkins, R.J.; Watkinson, J.C.; Lewy, G.D.; Fong, J.C.; James, S.R.; Eggo, M.C.; Boelaert, K.; Franklyn, J.A.; McCabe, C.J. A novel mechanism of sodium iodide symporter repression in differentiated thyroid cancer. J. Cell Sci., 2009, 122(Pt 18), 3393-3402.
[http://dx.doi.org/10.1242/jcs.045427] [PMID: 19706688]
[54]
Smith, V.E.; Read, M.L.; Turnell, A.S.; Sharma, N.; Lewy, G.D.; Fong, J.C.; Seed, R.I.; Kwan, P.; Ryan, G.; Mehanna, H.; Chan, S.Y.; Darras, V.M.; Boelaert, K.; Franklyn, J.A.; McCabe, C.J. PTTG-binding factor (PBF) is a novel regulator of the thyroid hormone transporter MCT8. Endocrinology, 2012, 153(7), 3526-3536.
[http://dx.doi.org/10.1210/en.2011-2030] [PMID: 22535767]
[55]
Hsueh, C.; Lin, J.D.; Chang, Y.S.; Hsueh, S.; Chao, T.C.; Yu, J.S.; Jung, S.M.; Tseng, N.M.; Sun, J.H.; Kuo, S.Y.; Ueng, S.H. Prognostic significance of pituitary tumour-transforming gene-binding factor (PBF) expression in papillary thyroid carcinoma. Clin. Endocrinol. (Oxf.), 2013, 78(2), 303-309.
[http://dx.doi.org/10.1111/cen.12007] [PMID: 22888961]
[56]
Lewy, G.D.; Sharma, N.; Seed, R.I.; Smith, V.E.; Boelaert, K.; McCabe, C.J. The pituitary tumor transforming gene in thyroid cancer. J. Endocrinol. Invest., 2012, 35(4), 425-433.
[PMID: 22522436]
[57]
Chien, W.; Pei, L. A novel binding factor facilitates nuclear translocation and transcriptional activation function of the pituitary tumor-transforming gene product. J. Biol. Chem., 2000, 275(25), 19422-19427.
[http://dx.doi.org/10.1074/jbc.M910105199] [PMID: 10781616]
[58]
Heaney, A.P.; Horwitz, G.A.; Wang, Z.; Singson, R.; Melmed, S. Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat. Med., 1999, 5(11), 1317-1321.
[http://dx.doi.org/10.1038/15275] [PMID: 10546001]
[59]
Minematsu, T.; Suzuki, M.; Sanno, N.; Takekoshi, S.; Teramoto, A.; Osamura, R.Y. PTTG overexpression is correlated with angiogenesis in human pituitary adenomas. Endocr. Pathol., 2006, 17(2), 143-153.
[http://dx.doi.org/10.1385/EP:17:2:143] [PMID: 17159247]
[60]
Read, M.L.; Lewy, G.D.; Fong, J.C.; Sharma, N.; Seed, R.I.; Smith, V.E.; Gentilin, E.; Warfield, A.; Eggo, M.C.; Knauf, J.A.; Leadbeater, W.E.; Watkinson, J.C.; Franklyn, J.A.; Boelaert, K.; McCabe, C.J. Proto-oncogene PBF/PTTG1IP regulates thyroid cell growth and represses radioiodide treatment. Cancer Res., 2011, 71(19), 6153-6164.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0720] [PMID: 21844185]
[61]
Read, M.L.; Fong, J.C.; Modasia, B.; Fletcher, A.; Imruetaicharoenchoke, W.; Thompson, R.J.; Nieto, H.; Reynolds, J.J.; Bacon, A.; Mallick, U.; Hackshaw, A.; Watkinson, J.C.; Boelaert, K.; Turnell, A.S.; Smith, V.E.; McCabe, C.J. Elevated PTTG and PBF predicts poor patient outcome and modulates DNA damage response genes in thyroid cancer. Oncogene, 2017, 36(37), 5296-5308.
[http://dx.doi.org/10.1038/onc.2017.154] [PMID: 28504713]
[62]
Lewy, G.D.; Ryan, G.A.; Read, M.L.; Fong, J.C.; Poole, V.; Seed, R.I.; Sharma, N.; Smith, V.E.; Kwan, P.P.; Stewart, S.L.; Bacon, A.; Warfield, A.; Franklyn, J.A.; McCabe, C.J.; Boelaert, K. Regulation of pituitary tumor transforming gene (PTTG) expression and phosphorylation in thyroid cells. Endocrinology, 2013, 154(11), 4408-4422.
[http://dx.doi.org/10.1210/en.2012-2156] [PMID: 23867215]
[63]
Li, Y.; Li, M.; Min, W.; Han, G.; Wang, L.; Chen, C.; Li, Z.; Zhang, Y.; Li, J.; Yue, Z. Integrated in silico-in vitro characterization, identification and disruption of the intermolecular interaction between SH3 domain-containing protein kinases and human pituitary tumor-transforming gene 1. Gen. Physiol. Biophys., 2017, 36(1), 91-98.
[http://dx.doi.org/10.4149/gpb_2016035] [PMID: 27787230]
[64]
McCabe, C.J.; Gittoes, N.J. PTTG--a new pituitary tumour transforming gene. J. Endocrinol., 1999, 162(2), 163-166.
[http://dx.doi.org/10.1677/joe.0.1620163] [PMID: 10425453]
[65]
Ramos-Morales, F.; Domínguez, A.; Romero, F.; Luna, R.; Multon, M.C.; Pintor-Toro, J.A.; Tortolero, M. Cell cycle regulated expression and phosphorylation of hpttg proto-oncogene product. Oncogene, 2000, 19(3), 403-409.
[http://dx.doi.org/10.1038/sj.onc.1203320] [PMID: 10656688]
[66]
Smith, V.E.; Franklyn, J.A.; McCabe, C.J. Pituitary tumor-transforming gene and its binding factor in endocrine cancer. Expert Rev. Mol. Med., 2010, 12e38
[http://dx.doi.org/10.1017/S1462399410001699] [PMID: 21129230]
[67]
Bernal, J.A.; Roche, M.; Méndez-Vidal, C.; Espina, A.; Tortolero, M.; Pintor-Toro, J.A. Proliferative potential after DNA damage and non-homologous end joining are affected by loss of securin. Cell Death Differ., 2008, 15(1), 202-212.
[http://dx.doi.org/10.1038/sj.cdd.4402254] [PMID: 17962814]
[68]
Zou, H.; McGarry, T.J.; Bernal, T.; Kirschner, M.W. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science, 1999, 285(5426), 418-422.
[http://dx.doi.org/10.1126/science.285.5426.418] [PMID: 10411507]
[69]
Chesnokova, V.; Zonis, S.; Rubinek, T.; Yu, R.; Ben-Shlomo, A.; Kovacs, K.; Wawrowsky, K.; Melmed, S. Senescence mediates pituitary hypoplasia and restrains pituitary tumor growth. Cancer Res., 2007, 67(21), 10564-10572.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0974] [PMID: 17975001]
[70]
Kim, D.; Pemberton, H.; Stratford, A.L.; Buelaert, K.; Watkinson, J.C.; Lopes, V.; Franklyn, J.A.; McCabe, C.J. Pituitary tumour transforming gene (PTTG) induces genetic instability in thyroid cells. Oncogene, 2005, 24(30), 4861-4866.
[http://dx.doi.org/10.1038/sj.onc.1208659] [PMID: 15897900]
[71]
Kim, D.S.; Franklyn, J.A.; Smith, V.E.; Stratford, A.L.; Pemberton, H.N.; Warfield, A.; Watkinson, J.C.; Ishmail, T.; Wakelam, M.J.; McCabe, C.J. Securin induces genetic instability in colorectal cancer by inhibiting double-stranded DNA repair activity. Carcinogenesis, 2007, 28(3), 749-759.
[http://dx.doi.org/10.1093/carcin/bgl202] [PMID: 17071631]
[72]
Yu, R.; Lu, W.; Chen, J.; McCabe, C.J.; Melmed, S. Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology, 2003, 144(11), 4991-4998.
[http://dx.doi.org/10.1210/en.2003-0305] [PMID: 12960092]
[73]
Yu, R.; Melmed, S. Pituitary tumor transforming gene: an update. Front. Horm. Res., 2004, 32, 175-185.
[http://dx.doi.org/10.1159/000079044] [PMID: 15281346]
[74]
Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science, 2008, 319(5868), 1352-1355.
[http://dx.doi.org/10.1126/science.1140735] [PMID: 18323444]
[75]
Uccella, S.; Tibiletti, M.G.; Bernasconi, B.; Finzi, G.; Oldrini, R.; Capella, C. Aneuploidy, centrosome alteration and securin overexpression as features of pituitary somatotroph and lactotroph adenomas. Anal. Quant. Cytol. Histol., 2005, 27(5), 241-252.
[PMID: 16447816]
[76]
Negrini, S.; Gorgoulis, V.G.; Halazonetis, T.D. Genomic instability-an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol., 2010, 11(3), 220-228.
[http://dx.doi.org/10.1038/nrm2858] [PMID: 20177397]
[77]
Wang, Z.; Yu, R.; Melmed, S. Mice lacking pituitary tumor transforming gene show testicular and splenic hypoplasia, thymic hyperplasia, thrombocytopenia, aberrant cell cycle progression, and premature centromere division. Mol. Endocrinol., 2001, 15(11), 1870-1879.
[http://dx.doi.org/10.1210/mend.15.11.0729] [PMID: 11682618]
[78]
Jallepalli, P.V.; Waizenegger, I.C.; Bunz, F.; Langer, S.; Speicher, M.R.; Peters, J.M.; Kinzler, K.W.; Vogelstein, B.; Lengauer, C. Securin is required for chromosomal stability in human cells. Cell, 2001, 105(4), 445-457.
[http://dx.doi.org/10.1016/S0092-86740100340-3] [PMID: 11371342]
[79]
Artandi, S.E.; DePinho, R.A. Telomeres and telomerase in cancer. Carcinogenesis, 2010, 31(1), 9-18.
[http://dx.doi.org/10.1093/carcin/bgp268] [PMID: 19887512]
[80]
Bermudez, Y.; Yang, H.; Cheng, J.Q.; Kruk, P.A. Pyk2/ERK 1/2 mediate Sp1- and c-Myc-dependent induction of telomerase activity by epidermal growth factor. Growth Factors, 2008, 26(1), 1-11.
[http://dx.doi.org/10.1080/08977190802001389] [PMID: 18365874]
[81]
Prochownik, E.V. c-Myc: linking transformation and genomic instability. Curr. Mol. Med., 2008, 8(6), 446-458.
[http://dx.doi.org/10.2174/156652408785747988] [PMID: 18781952]
[82]
Hamid, T.; Kakar, S.S. PTTG/securin activates expression of p53 and modulates its function. Mol. Cancer, 2004, 3, 18.
[http://dx.doi.org/10.1186/1476-4598-3-18] [PMID: 15242522]
[83]
Chintharlapalli, S.; Papineni, S.; Lee, S.O.; Lei, P.; Jin, U.H.; Sherman, S.I.; Santarpia, L.; Safe, S. Inhibition of pituitary tumor-transforming gene-1 in thyroid cancer cells by drugs that decrease specificity proteins. Mol. Carcinog., 2011, 50(9), 655-667.
[http://dx.doi.org/10.1002/mc.20738] [PMID: 21268135]
[84]
Cui, L.; Xu, S.; Song, Z.; Zhao, G.; Liu, X.; Song, Y. Pituitary tumor transforming gene: a novel therapeutic target for glioma treatment. Acta Biochim. Biophys. Sin. (Shanghai), 2015, 47(6), 414-421.
[http://dx.doi.org/10.1093/abbs/gmv026] [PMID: 25908389]
[85]
Wang, X.; Duan, W.; Li, X.; Liu, J.; Li, D.; Ye, L.; Qian, L.; Yang, A.; Xu, Q.; Liu, H.; Fu, Q.; Wu, E.; Ma, Q.; Shen, X. PTTG regulates the metabolic switch of ovarian cancer cells via the c-myc pathway. Oncotarget, 2015, 6(38), 40959-40969.
[http://dx.doi.org/10.18632/oncotarget.5726] [PMID: 26516926]
[86]
Kong, L.M.; Liao, C.G.; Zhang, Y.; Xu, J.; Li, Y.; Huang, W.; Zhang, Y.; Bian, H.; Chen, Z.N. A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis. Cancer Res., 2014, 74(14), 3764-3778.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3555] [PMID: 24906624]
[87]
Zhou, C.; Wawrowsky, K.; Bannykh, S.; Gutman, S.; Melmed, S. E2F1 induces pituitary tumor transforming gene (PTTG1) expression in human pituitary tumors. Mol. Endocrinol., 2009, 23(12), 2000-2012.
[http://dx.doi.org/10.1210/me.2009-0161] [PMID: 19837943]
[88]
Crosby, M.E.; Almasan, A. Opposing roles of E2Fs in cell proliferation and death. Cancer Biol. Ther., 2004, 3(12), 1208-1211.
[http://dx.doi.org/10.4161/cbt.3.12.1494] [PMID: 15662116]
[89]
Roussel-Gervais, A.; Bilodeau, S.; Vallette, S.; Berthelet, F.; Lacroix, A.; Figarella-Branger, D.; Brue, T.; Drouin, J. Cooperation between cyclin E and p27(Kip1) in pituitary tumorigenesis. Mol. Endocrinol., 2010, 24(9), 1835-1845.
[http://dx.doi.org/10.1210/me.2010-0091] [PMID: 20660298]
[90]
Cory, S.; Adams, J.M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2002, 2(9), 647-656.
[http://dx.doi.org/10.1038/nrc883] [PMID: 12209154]
[91]
Sherr, C.J.; Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev., 1999, 13(12), 1501-1512.
[http://dx.doi.org/10.1101/gad.13.12.1501] [PMID: 10385618]
[92]
Liu, N.A.; Jiang, H.; Ben-Shlomo, A.; Wawrowsky, K.; Fan, X.M.; Lin, S.; Melmed, S. Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc. Natl. Acad. Sci. USA, 2011, 108(20), 8414-8419.
[http://dx.doi.org/10.1073/pnas.1018091108] [PMID: 21536883]
[93]
Cantley, L.C.; Neel, B.G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. USA, 1999, 96(8), 4240-4245.
[http://dx.doi.org/10.1073/pnas.96.8.4240] [PMID: 10200246]
[94]
Cantley, L.C. The phosphoinositide 3-kinase pathway. Science, 2002, 296(5573), 1655-1657.
[http://dx.doi.org/10.1126/science.296.5573.1655] [PMID: 12040186]
[95]
Maehama, T.; Dixon, J.E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem., 1998, 273(22), 13375-13378.
[http://dx.doi.org/10.1074/jbc.273.22.13375] [PMID: 9593664]
[96]
Gimm, O.; Perren, A.; Weng, L.P.; Marsh, D.J.; Yeh, J.J.; Ziebold, U.; Gil, E.; Hinze, R.; Delbridge, L.; Lees, J.A.; Mutter, G.L.; Robinson, B.G.; Komminoth, P.; Dralle, H.; Eng, C. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am. J. Pathol., 2000, 156(5), 1693-1700.
[http://dx.doi.org/10.1016/S0002-94401065040-7] [PMID: 10793080]
[97]
Tena-Suck, M.L.; Ortiz-Plata, A.; de la Vega, H.A. Phosphatase and tensin homologue and pituitary tumor-transforming gene in pituitary adenomas. Clinical-pathologic and immunohistochemical analysis. Ann. Diagn. Pathol., 2008, 12(4), 275-282.
[http://dx.doi.org/10.1016/j.anndiagpath.2008.02.001] [PMID: 18620995]
[98]
Watkins, R.J.; Read, M.L.; Smith, V.E.; Sharma, N.; Reynolds, G.M.; Buckley, L.; Doig, C.; Campbell, M.J.; Lewy, G.; Eggo, M.C.; Loubiere, L.S.; Franklyn, J.A.; Boelaert, K.; McCabe, C.J. Pituitary tumor transforming gene binding factor: a new gene in breast cancer. Cancer Res., 2010, 70(9), 3739-3749.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3531] [PMID: 20406982]
[99]
Wang, Z.; Melmed, S. Pituitary tumor transforming gene (PTTG) transforming and transactivation activity. J. Biol. Chem., 2000, 275(11), 7459-7461.
[http://dx.doi.org/10.1074/jbc.275.11.7459] [PMID: 10713046]
[100]
Boelaert, K.; Tannahill, L.A.; Bulmer, J.N.; Kachilele, S.; Chan, S.Y.; Kim, D.; Gittoes, N.J.; Franklyn, J.A.; Kilby, M.D.; McCabe, C.J. A potential role for PTTG/securin in the developing human fetal brain. FASEB J., 2003, 17(12), 1631-1639.
[http://dx.doi.org/10.1096/fj.02-0948com] [PMID: 12958169]
[101]
Domínguez, A.; Ramos-Morales, F.; Romero, F.; Rios, R.M.; Dreyfus, F.; Tortolero, M.; Pintor-Toro, J.A. hpttg, a human homologue of rat pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hPTTG. Oncogene, 1998, 17(17), 2187-2193.
[http://dx.doi.org/10.1038/sj.onc.1202140] [PMID: 9811450]
[102]
Liu, J. Integrated in silico-in vitro identification and characterization of the SH3-mediated interaction between human PTTG and its cognate partners in medulloblastoma. Cell Biochem. Biophys., 2018, 76(1-2), 83-90.
[http://dx.doi.org/10.1007/s12013-017-0810-9] [PMID: 28646413]
[103]
Smith, V.E.; Franklyn, J.A.; McCabe, C.J. Expression and function of the novel proto-oncogene PBF in thyroid cancer: a new target for augmenting radioiodine uptake. J. Endocrinol., 2011, 210(2), 157-163.
[http://dx.doi.org/10.1530/JOE-11-0064] [PMID: 21450804]
[104]
Vlotides, G.; Cruz-Soto, M.; Rubinek, T.; Eigler, T.; Auernhammer, C.J.; Melmed, S. Mechanisms for growth factor-induced pituitary tumor transforming gene-1 expression in pituitary folliculostellate TtT/GF cells. Mol. Endocrinol., 2006, 20(12), 3321-3335.
[http://dx.doi.org/10.1210/me.2006-0280] [PMID: 16959877]
[105]
Pawlikowski, M. Endocrine/paracrine control of pituitary cell proliferation and its involvement in pituitary tumorigenesis. Pituitary, 1999, 1(3-4), 251-256.
[http://dx.doi.org/10.1023/A:1009998207652] [PMID: 11081205]
[106]
Lv, H.; Li, C.; Gui, S.; Zhang, Y. Expression of estrogen receptor α and growth factors in human prolactinoma and its correlation with clinical features and gender. J. Endocrinol. Invest., 2012, 35(2), 174-180.
[PMID: 21422801]
[107]
Molitch, M.E. Management of prolactinomas during pregnancy. J. Reprod. Med., 1999, 44(12)(Suppl.), 1121-1126.
[PMID: 10649822]
[108]
Shy, K.K.; McTiernan, A.M.; Daling, J.R.; Weiss, N.S. Oral contraceptive use and the occurrence of pituitary prolactinoma. JAMA, 1983, 249(16), 2204-2207.
[http://dx.doi.org/10.1001/jama.1983.03330400050024] [PMID: 6834618]
[109]
Banerjee, S.K.; De, A.; Sarkar, D.K. Colocalization of prolactin and proliferating cell nuclear antigen in the anterior pituitary during estrogen-induced pituitary tumors. Cancer Lett., 1994, 87(2), 139-144.
[http://dx.doi.org/10.1016/0304-38359490214-3] [PMID: 7812932]
[110]
Cristina, C.; Díaz-Torga, G.S.; Goya, R.G.; Kakar, S.S.; Perez-Millán, M.I.; Passos, V.Q.; Giannella-Neto, D.; Bronstein, M.D.; Becu-Villalobos, D. PTTG expression in different experimental and human prolactinomas in relation to dopaminergic control of lactotropes. Mol. Cancer, 2007, 6, 4.
[http://dx.doi.org/10.1186/1476-4598-6-4] [PMID: 17222350]
[111]
Lv, H.; Li, C.; Gui, S.; Sun, M.; Li, D.; Zhang, Y. Effects of estrogen receptor antagonist on biological behavior and expression of growth factors in the prolactinoma MMQ cell line. J. Neurooncol., 2011, 102(2), 237-245.
[http://dx.doi.org/10.1007/s11060-010-0326-2] [PMID: 20700755]
[112]
Avtanski, D.; Novaira, H.J.; Wu, S.; Romero, C.J.; Kineman, R.; Luque, R.M.; Wondisford, F.; Radovick, S. Both estrogen receptor α and β stimulate pituitary GH gene expression. Mol. Endocrinol., 2014, 28(1), 40-52.
[http://dx.doi.org/10.1210/me.2013-1245] [PMID: 24284820]
[113]
Spady, T.J.; McComb, R.D.; Shull, J.D. Estrogen action in the regulation of cell proliferation, cell survival, and tumorigenesis in the rat anterior pituitary gland. Endocrine, 1999, 11(3), 217-233.
[http://dx.doi.org/10.1385/ENDO:11:3:217] [PMID: 10786818]
[114]
Le Goff, P.; Montano, M.M.; Schodin, D.J.; Katzenellenbogen, B.S. Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J. Biol. Chem., 1994, 269(6), 4458-4466.
[PMID: 8308015]
[115]
Zhou, W.; Song, Y.; Xu, H.; Zhou, K.; Zhang, W.; Chen, J.; Qin, M.; Yi, H.; Gustafsson, J.A.; Yang, H.; Fan, X. In nonfunctional pituitary adenomas, estrogen receptors and slug contribute to development of invasiveness. J. Clin. Endocrinol. Metab., 2011, 96(8), E1237-E1245.
[http://dx.doi.org/10.1210/jc.2010-3040] [PMID: 21632819]
[116]
Heaney, A.P.; Fernando, M.; Melmed, S. Functional role of estrogen in pituitary tumor pathogenesis. J. Clin. Invest., 2002, 109(2), 277-283.
[http://dx.doi.org/10.1172/JCI0214264] [PMID: 11805140]
[117]
Cao, L.; Gao, H.; Gui, S.; Bai, G.; Lu, R.; Wang, F.; Zhang, Y. Effects of the estrogen receptor antagonist fulvestrant on F344 rat prolactinoma models. J. Neurooncol., 2014, 116(3), 523-531.
[http://dx.doi.org/10.1007/s11060-013-1351-8] [PMID: 24407733]
[118]
Ignar-Trowbridge, D.M.; Teng, C.T.; Ross, K.A.; Parker, M.G.; Korach, K.S.; McLachlan, J.A. Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element. Mol. Endocrinol., 1993, 7(8), 992-998.
[PMID: 8232319]
[119]
Horwitz, G.A.; Miklovsky, I.; Heaney, A.P.; Ren, S.G.; Melmed, S. Human pituitary tumor-transforming gene (PTTG1) motif suppresses prolactin expression. Mol. Endocrinol., 2003, 17(4), 600-609.
[http://dx.doi.org/10.1210/me.2001-0006] [PMID: 12554778]
[120]
Hao, L.; Zhang, J.; Zhang, Y.; Hu, H.; Shao, W.; Zhang, X.; Geng, C.; Wang, Y.; Jiang, L. Effect of bisphenol A on occurrence and progression of prolactinoma and its underlying mechanisms. Am. J. Transl. Res., 2016, 8(10), 4195-4204.
[PMID: 27830003]
[121]
Wozniak, A.L.; Bulayeva, N.N.; Watson, C.S. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ. Health Perspect., 2005, 113(4), 431-439.
[http://dx.doi.org/10.1289/ehp.7505] [PMID: 15811834]
[122]
Filova, B.; Malinova, M.; Babickova, J.; Tothova, L.; Ostatnikova, D.; Celec, P.; Hodosy, J. Effects of testosterone and estradiol on anxiety and depressive-like behavior via a non-genomic pathway. Neurosci. Bull., 2015, 31(3), 288-296.
[http://dx.doi.org/10.1007/s12264-014-1510-8] [PMID: 25754146]
[123]
Fokidis, H.B.; Adomat, H.H.; Kharmate, G.; Hosseini-Beheshti, E.; Guns, E.S.; Soma, K.K. Regulation of local steroidogenesis in the brain and in prostate cancer: lessons learned from interdisciplinary collaboration. Front. Neuroendocrinol., 2015, 36, 108-129.
[http://dx.doi.org/10.1016/j.yfrne.2014.08.005] [PMID: 25223867]
[124]
Ozkaya, H.M.; Comunoglu, N.; Keskin, F.E.; Oz, B.; Haliloglu, O.A.; Tanriover, N.; Gazioglu, N.; Kadioglu, P. Locally produced estrogen through aromatization might enhance tissue expression of pituitary tumor transforming gene and fibroblast growth factor 2 in growth hormone-secreting adenomas. Endocrine, 2016, 52(3), 632-640.
[http://dx.doi.org/10.1007/s12020-015-0802-8] [PMID: 26578364]
[125]
Selek, A.; Cetinarslan, B.; Gurbuz, Y.; Tarkun, I.; Canturk, Z.; Cabuk, B. Aromatase enzyme expression in acromegaly and its possible relationship with disease prognosis. Endocrine, 2015, 49(1), 250-257.
[http://dx.doi.org/10.1007/s12020-014-0445-1] [PMID: 25300784]
[126]
Weissberger, A.J.; Ho, K.K. Activation of the somatotropic axis by testosterone in adult males: evidence for the role of aromatization. J. Clin. Endocrinol. Metab., 1993, 76(6), 1407-1412.
[PMID: 8501143]
[127]
Birzniece, V.; Sata, A.; Sutanto, S.; Ho, K.K. Paracrine regulation of growth hormone secretion by estrogen in women. J. Clin. Endocrinol. Metab., 2010, 95(8), 3771-3776.
[http://dx.doi.org/10.1210/jc.2010-0476] [PMID: 20444909]
[128]
Gill, K.; Kirma, N.; Tekmal, R.R. Overexpression of aromatase in transgenic male mice results in the induction of gynecomastia and other biochemical changes in mammary glands. J. Steroid Biochem. Mol. Biol., 2001, 77(1), 13-18.
[http://dx.doi.org/10.1016/S0960-07600100032-2] [PMID: 11358670]
[129]
Schmidt, M.; Löffler, G. Induction of aromatase in stromal vascular cells from human breast adipose tissue depends on cortisol and growth factors. FEBS Lett., 1994, 341(2-3), 177-181.
[http://dx.doi.org/10.1016/0014-57939480452-4] [PMID: 8137936]
[130]
Cronier, L.; Crespin, S.; Strale, P.O.; Defamie, N.; Mesnil, M. Gap junctions and cancer: new functions for an old story. Antioxid. Redox Signal., 2009, 11(2), 323-338.
[http://dx.doi.org/10.1089/ars.2008.2153] [PMID: 18834328]
[131]
Vitale, M.L.; Cardin, J.; Gilula, N.B.; Carbajal, M.E.; Pelletier, R.M. Dynamics of connexin 43 levels and distribution in the mink (Mustela vison) anterior pituitary are associated with seasonal changes in anterior pituitary prolactin content. Biol. Reprod., 2001, 64(2), 625-633.
[http://dx.doi.org/10.1095/biolreprod64.2.625] [PMID: 11159366]
[132]
Lewis, B.M.; Pexa, A.; Francis, K.; Verma, V.; McNicol, A.M.; Scanlon, M.; Deussen, A.; Evans, W.H.; Rees, D.A.; Ham, J. Adenosine stimulates connexin 43 expression and gap junctional communication in pituitary folliculostellate cells. FASEB J., 2006, 20(14), 2585-2587.
[http://dx.doi.org/10.1096/fj.06-6121fje] [PMID: 17065216]
[133]
Hentges, S.; Pastorcic, M.; De, A.; Boyadjieva, N.; Sarkar, D.K. Opposing actions of two transforming growth factor-beta isoforms on pituitary lactotropic cell proliferation. Endocrinology, 2000, 141(4), 1528-1535.
[http://dx.doi.org/10.1210/endo.141.4.7419] [PMID: 10746660]
[134]
Soji, T.; Mabuchi, Y.; Kurono, C.; Herbert, D.C. Folliculo-stellate cells and intercellular communication within the rat anterior pituitary gland. Microsc. Res. Tech., 1997, 39(2), 138-149.
[http://dx.doi.org/10.1002/(SICI)1097-00291997101539:2<138:AID-JEMT5>3.0.CO;2-H] [PMID: 9361265]
[135]
Wang, H.; Zhang, Y.; Zhou, A.; Zhang, R.; Meng, Q. Effects of silencing connexin43 on expression of pituitary tumor-transforming gene in prolactinomas. Neurol. Res., 2015, 37(2), 153-158.
[http://dx.doi.org/10.1179/1743132814Y.0000000419] [PMID: 25023895]
[136]
Onofri, C.; Carbia Nagashima, A.; Schaaf, L.; Feirer, M.; Lohrer, P.; Stummer, W.; Berner, S.; Chervin, A.; Goldberg, V.; Stalla, G.K.; Renner, U.; Arzt, E. Estradiol stimulates vascular endothelial growth factor and interleukin-6 in human lactotroph and lactosomatotroph pituitary adenomas. Exp. Clin. Endocrinol. Diabetes, 2004, 112(1), 18-23.
[http://dx.doi.org/10.1055/s-2004-815722] [PMID: 14758567]
[137]
Vlotides, G.; Chen, Y.H.; Eigler, T.; Ren, S.G.; Melmed, S. Fibroblast growth factor-2 autofeedback regulation in pituitary folliculostellate TtT/GF cells. Endocrinology, 2009, 150(7), 3252-3258.
[http://dx.doi.org/10.1210/en.2008-1625] [PMID: 19359387]
[138]
Zimering, M.B.; Katsumata, N.; Sato, Y.; Brandi, M.L.; Aurbach, G.D.; Marx, S.J.; Friesen, H.G. Increased basic fibroblast growth factor in plasma from multiple endocrine neoplasia type 1: relation to pituitary tumor. J. Clin. Endocrinol. Metab., 1993, 76(5), 1182-1187.
[http://dx.doi.org/10.1210/jcem.76.5.8098714] [PMID: 8098714]
[139]
Li, Y.; Koga, M.; Kasayama, S.; Matsumoto, K.; Arita, N.; Hayakawa, T.; Sato, B. Identification and characterization of high molecular weight forms of basic fibroblast growth factor in human pituitary adenomas. J. Clin. Endocrinol. Metab., 1992, 75(6), 1436-1441.
[http://dx.doi.org/10.1210/jcem.75.6.1464644] [PMID: 1464644]
[140]
Ezzat, S.; Smyth, H.S.; Ramyar, L.; Asa, S.L. Heterogenous in vivo and in vitro expression of basic fibroblast growth factor by human pituitary adenomas. J. Clin. Endocrinol. Metab., 1995, 80(3), 878-884.
[http://dx.doi.org/10.1210/jcem.80.3.7883846] [PMID: 7883846]
[141]
Pei, L. Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J. Biol. Chem., 2001, 276(11), 8484-8491.
[http://dx.doi.org/10.1074/jbc.M009654200] [PMID: 11115508]
[142]
Cristina, C.; Luque, G.M.; Demarchi, G.; Lopez Vicchi, F.; Zubeldia-Brenner, L.; Perez Millan, M.I.; Perrone, S.; Ornstein, A.M.; Lacau-Mengido, I.M.; Berner, S.I.; Becu-Villalobos, D. Angiogenesis in pituitary adenomas: human studies and new mutant mouse models. Int. J. Endocrinol., 2014, 2014608497
[http://dx.doi.org/10.1155/2014/608497] [PMID: 25505910]
[143]
Kim, D.S.; Fong, J.; Read, M.L.; McCabe, C.J. The emerging role of pituitary tumour transforming gene (PTTG) in endocrine tumourigenesis. Mol. Cell. Endocrinol., 2007, 278(1-2), 1-6.
[http://dx.doi.org/10.1016/j.mce.2007.08.006] [PMID: 17928133]
[144]
Mo, Z.; Zu, X.; Xie, Z.; Li, W.; Ning, H.; Jiang, Y.; Xu, W. Antitumor effect of F-PBF(beta-TrCP)-induced targeted PTTG1 degradation in HeLa cells. J. Biotechnol., 2009, 139(1), 6-11.
[http://dx.doi.org/10.1016/j.jbiotec.2008.09.004] [PMID: 18977400]
[145]
Yu, G.; Wang, H.; Yu, S.; Li, C.; Bai, J.; Gui, S.; Zhang, Y.; Zhao, P. Study on miRNAs’ expression for the invasion of pituitary adenomas. Turk Neurosurg., 2017. [epub ahead of print
[http://dx.doi.org/10.5137/1019-5149.JTN.20760-17.1] [PMID: 29091246]
[146]
Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[147]
Schechter, J.; Goldsmith, P.; Wilson, C.; Weiner, R. Morphological evidence for the presence of arteries in human prolactinomas. J. Clin. Endocrinol. Metab., 1988, 67(4), 713-719.
[http://dx.doi.org/10.1210/jcem-67-4-713] [PMID: 3417848]
[148]
Banerjee, S.K.; Zoubine, M.N.; Tran, T.M.; Weston, A.P.; Campbell, D.R. Overexpression of vascular endothelial growth factor164 and its co-receptor neuropilin-1 in estrogen-induced rat pituitary tumors and GH3 rat pituitary tumor cells. Int. J. Oncol., 2000, 16(2), 253-260.
[http://dx.doi.org/10.3892/ijo.16.2.253] [PMID: 10639567]
[149]
Kim, K.; Yoshida, D.; Teramoto, A. Expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in pituitary adenomas. Endocr. Pathol., 2005, 16(2), 115-121.
[http://dx.doi.org/10.1385/EP:16:2:115] [PMID: 16199896]
[150]
Abdelrahim, M.; Baker, C.H.; Abbruzzese, J.L.; Safe, S. Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. J. Natl. Cancer Inst., 2006, 98(12), 855-868.
[http://dx.doi.org/10.1093/jnci/djj232] [PMID: 16788159]
[151]
Liang, H.; Zhong, Y.; Luo, Z.; Huang, Y.; Lin, H.; Zhan, S.; Xie, K.; Li, Q.Q. Diagnostic value of 16 cellular tumor markers for metastatic thyroid cancer: an immunohistochemical study. Anticancer Res., 2011, 31(10), 3433-3440.
[PMID: 21965758]
[152]
Cristina, C.; Perez-Millan, M.I.; Luque, G.; Dulce, R.A.; Sevlever, G.; Berner, S.I.; Becu-Villalobos, D. VEGF and CD31 association in pituitary adenomas. Endocr. Pathol., 2010, 21(3), 154-160.
[http://dx.doi.org/10.1007/s12022-010-9119-6] [PMID: 20473646]
[153]
Kim, C.S.; Ying, H.; Willingham, M.C.; Cheng, S.Y. The pituitary tumor-transforming gene promotes angiogenesis in a mouse model of follicular thyroid cancer. Carcinogenesis, 2007, 28(5), 932-939.
[http://dx.doi.org/10.1093/carcin/bgl231] [PMID: 17127711]
[154]
Chamaon, K.; Kirches, E.; Kanakis, D.; Braeuninger, S.; Dietzmann, K.; Mawrin, C. Regulation of the pituitary tumor transforming gene by insulin-like-growth factor-I and insulin differs between malignant and non-neoplastic astrocytes. Biochem. Biophys. Res. Commun., 2005, 331(1), 86-92.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.124] [PMID: 15845362]
[155]
Hartog, H.; Wesseling, J.; Boezen, H.M.; van der Graaf, W.T. The insulin-like growth factor 1 receptor in cancer: old focus, new future. Eur. J. Cancer, 2007, 43(13), 1895-1904.
[http://dx.doi.org/10.1016/j.ejca.2007.05.021] [PMID: 17624760]
[156]
Sánchez-Tejada, L.; Sánchez-Ortiga, R.; Moreno-Pérez, O.; Montañana, C.F.; Niveiro, M.; Tritos, N.A.; Alfonso, A.M. Pituitary tumor transforming gene and insulin-like growth factor 1 receptor expression and immunohistochemical measurement of Ki-67 as potential prognostic markers of pituitary tumors aggressiveness. Endocrinol. Nutr., 2013, 60(7), 358-367.
[http://dx.doi.org/10.1016/j.endonu.2012.09.005] [PMID: 23416216]
[157]
Zhang, D.; Samani, A.A.; Brodt, P. The role of the IGF-I receptor in the regulation of matrix metalloproteinases, tumor invasion and metastasis. Horm. Metab. Res., 2003, 35(11-12), 802-808.
[PMID: 14710361]
[158]
Coppola, D.; Ferber, A.; Miura, M.; Sell, C.; D’Ambrosio, C.; Rubin, R.; Baserga, R. A functional insulin-like growth factor I receptor is required for the mitogenic and transforming activities of the epidermal growth factor receptor. Mol. Cell. Biol., 1994, 14(7), 4588-4595.
[http://dx.doi.org/10.1128/MCB.14.7.4588] [PMID: 8007963]
[159]
Samani, A.A.; Brodt, P. The receptor for the type I insulin-like growth factor and its ligands regulate multiple cellular functions that impact on metastasis. Surg. Oncol. Clin. N. Am., 2001, 10(2), 289-312.
[http://dx.doi.org/10.1016/S1055-32071830066-8] [PMID: 11382588]
[160]
Safe, S.; Abdelrahim, M. Sp transcription factor family and its role in cancer. Eur. J. Cancer, 2005, 41(16), 2438-2448.
[http://dx.doi.org/10.1016/j.ejca.2005.08.006] [PMID: 16209919]
[161]
Grinstein, E.; Jundt, F.; Weinert, I.; Wernet, P.; Royer, H.D. Sp1 as G1 cell cycle phase specific transcription factor in epithelial cells. Oncogene, 2002, 21(10), 1485-1492.
[http://dx.doi.org/10.1038/sj.onc.1205211] [PMID: 11896576]
[162]
Khan, S.; Abdelrahim, M.; Samudio, I.; Safe, S. Estrogen receptor/Sp1 complexes are required for induction of cad gene expression by 17beta-estradiol in breast cancer cells. Endocrinology, 2003, 144(6), 2325-2335.
[http://dx.doi.org/10.1210/en.2002-0149] [PMID: 12746293]
[163]
Clem, A.L.; Hamid, T.; Kakar, S.S. Characterization of the role of Sp1 and NF-Y in differential regulation of PTTG/securin expression in tumor cells. Gene, 2003, 322, 113-121.
[http://dx.doi.org/10.1016/j.gene.2003.08.012] [PMID: 14644503]
[164]
Tong, Y.; Tan, Y.; Zhou, C.; Melmed, S. Pituitary tumor transforming gene interacts with Sp1 to modulate G1/S cell phase transition. Oncogene, 2007, 26(38), 5596-5605.
[http://dx.doi.org/10.1038/sj.onc.1210339] [PMID: 17353909]
[165]
Milanini-Mongiat, J.; Pouysségur, J.; Pagès, G. Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J. Biol. Chem., 2002, 277(23), 20631-20639.
[http://dx.doi.org/10.1074/jbc.M201753200] [PMID: 11904305]
[166]
Pore, N.; Liu, S.; Shu, H.K.; Li, B.; Haas-Kogan, D.; Stokoe, D.; Milanini-Mongiat, J.; Pages, G.; O’Rourke, D.M.; Bernhard, E.; Maity, A. Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol. Biol. Cell, 2004, 15(11), 4841-4853.
[http://dx.doi.org/10.1091/mbc.e04-05-0374] [PMID: 15342781]
[167]
Aggarwal, B.B.; Kunnumakkara, A.B.; Harikumar, K.B.; Gupta, S.R.; Tharakan, S.T.; Koca, C.; Dey, S.; Sung, B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann. N. Y. Acad. Sci., 2009, 1171, 59-76.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04911.x] [PMID: 19723038]
[168]
Zhou, C.; Tong, Y.; Wawrowsky, K.; Melmed, S. PTTG acts as a STAT3 target gene for colorectal cancer cell growth and motility. Oncogene, 2014, 33(7), 851-861.
[http://dx.doi.org/10.1038/onc.2013.16] [PMID: 23416975]
[169]
Zhou, C.; Jiao, Y.; Wang, R.; Ren, S.G.; Wawrowsky, K.; Melmed, S. STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion. J. Clin. Invest., 2015, 125(4), 1692-1702.
[http://dx.doi.org/10.1172/JCI78173] [PMID: 25774503]
[170]
Chesnokova, V.; Wong, C.; Zonis, S.; Gruszka, A.; Wawrowsky, K.; Ren, S.G.; Benshlomo, A.; Yu, R. Diminished pancreatic beta-cell mass in securin-null mice is caused by beta-cell apoptosis and senescence. Endocrinology, 2009, 150(6), 2603-2610.
[http://dx.doi.org/10.1210/en.2008-0972] [PMID: 19213844]
[171]
Bravo, R.; Frank, R.; Blundell, P.A.; Macdonald-Bravo, H. Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta. Nature, 1987, 326(6112), 515-517.
[http://dx.doi.org/10.1038/326515a0] [PMID: 2882423]
[172]
Pawlikowski, M.; Gruszka, A.; Kurnatowska, I.; Winczyk, K.; Kunert-Radek, J.; Radek, A. Proliferating cell nuclear antigen (PCNA) expression in pituitary adenomas: relationship to the endocrine phenotype of adenoma. Folia Histochem. Cytobiol., 2006, 44(1), 37-41.
[PMID: 16584090]
[173]
Gartel, A.L.; Tyner, A.L. The growth-regulatory role of p21 (WAF1/CIP1). Prog. Mol. Subcell. Biol., 1998, 20, 43-71.
[http://dx.doi.org/10.1007/978-3-642-72149-6_4] [PMID: 9928526]
[174]
Qu, X.; Yang, W.; Jiang, M.; Han, T.; Han, L.; Qu, Y.; Wang, G.; Shi, D.; Xu, G. CD147 expression in pituitary adenomas and its significance for clinical outcome. Hum. Pathol., 2010, 41(8), 1165-1171.
[http://dx.doi.org/10.1016/j.humpath.2009.10.023] [PMID: 20381119]
[175]
Mete, O.; Ezzat, S.; Asa, S.L. Biomarkers of aggressive pituitary adenomas. J. Mol. Endocrinol., 2012, 49(2), R69-R78.
[http://dx.doi.org/10.1530/JME-12-0113] [PMID: 22822048]
[176]
Gruppetta, M.; Formosa, R.; Falzon, S.; Ariff Scicluna, S.; Falzon, E.; Degeatano, J.; Vassallo, J. Expression of cell cycle regulators and biomarkers of proliferation and regrowth in human pituitary adenomas. Pituitary, 2017, 20(3), 358-371.
[http://dx.doi.org/10.1007/s11102-017-0803-0] [PMID: 28342098]
[177]
Noh, T.W.; Jeong, H.J.; Lee, M.K.; Kim, T.S.; Kim, S.H.; Lee, E.J. Predicting recurrence of nonfunctioning pituitary adenomas. J. Clin. Endocrinol. Metab., 2009, 94(11), 4406-4413.
[http://dx.doi.org/10.1210/jc.2009-0471] [PMID: 19820025]
[178]
Yoshida, S.; Kato, T.; Kato, Y. EMT Involved in migration of stem/progenitor cells for pituitary development and regeneration. J. Clin. Med., 2016, 5(4)E43
[http://dx.doi.org/10.3390/jcm5040043] [PMID: 27058562]
[179]
Simões-Costa, M.; Bronner, M.E. Establishing neural crest identity: a gene regulatory recipe. Development, 2015, 142(2), 242-257.
[http://dx.doi.org/10.1242/dev.105445] [PMID: 25564621]
[180]
Derynck, R.; Akhurst, R.J. Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat. Cell Biol., 2007, 9(9), 1000-1004.
[http://dx.doi.org/10.1038/ncb434] [PMID: 17762890]
[181]
Jia, W.; Zhu, J.; Martin, T.A.; Jiang, A.; Sanders, A.J.; Jiang, W.G. Epithelial-mesenchymal Transition (EMT) Markers in Human Pituitary Adenomas Indicate a Clinical Course. Anticancer Res., 2015, 35(5), 2635-2643.
[PMID: 25964539]
[182]
Shah, P.P.; Kakar, S.S. Pituitary tumor transforming gene induces epithelial to mesenchymal transition by regulation of Twist, Snail, Slug, and E-cadherin. Cancer Lett., 2011, 311(1), 66-76.
[http://dx.doi.org/10.1016/j.canlet.2011.06.033] [PMID: 21839581]
[183]
Buko, V.; Belonovskaya, E.; Naruta, E.; Lukivskaya, O.; Kanyuka, O.; Zhuk, O.; Kranc, R.; Stoika, R.; Sybirna, N. Pituitary tumor transforming gene as a novel regulatory factor of liver fibrosis. Life Sci., 2015, 132, 34-40.
[http://dx.doi.org/10.1016/j.lfs.2015.04.010] [PMID: 25936962]
[184]
Murakami, M.; Suzuki, M.; Nishino, Y.; Funaba, M. Regulatory expression of genes related to metastasis by TGF-beta and activin A in B16 murine melanoma cells. Mol. Biol. Rep., 2010, 37(3), 1279-1286.
[http://dx.doi.org/10.1007/s11033-009-9502-x] [PMID: 19288218]
[185]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[186]
Alexander, N.R.; Tran, N.L.; Rekapally, H.; Summers, C.E.; Glackin, C.; Heimark, R.L. N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Res., 2006, 66(7), 3365-3369.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3401] [PMID: 16585154]
[187]
Thiery, J.P.; Sleeman, J.P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol., 2006, 7(2), 131-142.
[http://dx.doi.org/10.1038/nrm1835] [PMID: 16493418]
[188]
Shah, P.P.; Fong, M.Y.; Kakar, S.S. PTTG induces EMT through integrin αVβ3-focal adhesion kinase signaling in lung cancer cells. Oncogene, 2012, 31(26), 3124-3135.
[http://dx.doi.org/10.1038/onc.2011.488] [PMID: 22081074]
[189]
Deng, B.; Yang, X.; Liu, J.; He, F.; Zhu, Z.; Zhang, C. Focal adhesion kinase mediates TGF-beta1-induced renal tubular epithelial-to-mesenchymal transition in vitro. Mol. Cell. Biochem., 2010, 340(1-2), 21-29.
[http://dx.doi.org/10.1007/s11010-010-0396-7] [PMID: 20177740]
[190]
Gao, H.; Zhong, F.; Xie, J.; Peng, J.; Han, Z. PTTG promotes invasion in human breast cancer cell line by upregulating EMMPRIN via FAK/Akt/mTOR signaling. Am. J. Cancer Res., 2016, 6(2), 425-439.
[PMID: 27186413]
[191]
Kuang, Y.H.; Chen, X.; Su, J.; Wu, L.S.; Liao, L.Q.; Li, D.; Chen, Z.S.; Kanekura, T. RNA interference targeting the CD147 induces apoptosis of multi-drug resistant cancer cells related to XIAP depletion. Cancer Lett., 2009, 276(2), 189-195.
[http://dx.doi.org/10.1016/j.canlet.2008.11.010] [PMID: 19097686]
[192]
Sun, J.; Hemler, M.E. Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res., 2001, 61(5), 2276-2281.
[PMID: 11280798]
[193]
Reimers, N.; Zafrakas, K.; Assmann, V.; Egen, C.; Riethdorf, L.; Riethdorf, S.; Berger, J.; Ebel, S.; Jänicke, F.; Sauter, G.; Pantel, K. Expression of extracellular matrix metalloproteases inducer on micrometastatic and primary mammary carcinoma cells. Clin. Cancer Res., 2004, 10(10), 3422-3428.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0610] [PMID: 15161697]
[194]
Wu, J.; Ru, N.Y.; Zhang, Y.; Li, Y.; Wei, D.; Ren, Z.; Huang, X.F.; Chen, Z.N.; Bian, H. HAb18G/CD147 promotes epithelial-mesenchymal transition through TGF-β signaling and is transcriptionally regulated by Slug. Oncogene, 2011, 30(43), 4410-4427.
[http://dx.doi.org/10.1038/onc.2011.149] [PMID: 21532623]
[195]
Zhang, Y.; He, N.; Zhou, J.; Chen, Y. The relationship between MRI invasive features and expression of EMMPRIN, galectin-3, and microvessel density in pituitary adenoma. Clin. Imaging, 2011, 35(3), 165-173.
[http://dx.doi.org/10.1016/j.clinimag.2010.06.002] [PMID: 21513851]
[196]
Itoh, Y.; Nagase, H. Matrix metalloproteinases in cancer. Essays Biochem., 2002, 38, 21-36.
[http://dx.doi.org/10.1042/bse0380021] [PMID: 12463159]
[197]
Shang, H.S.; Chang, J.B.; Lin, J.H.; Lin, J.P.; Hsu, S.C.; Liu, C.M.; Liu, J.Y.; Wu, P.P.; Lu, H.F.; Au, M.K.; Chung, J.G. Deguelin inhibits the migration and invasion of U-2 OS human osteosarcoma cells via the inhibition of matrix metalloproteinase-2/-9 in vitro. Molecules, 2014, 19(10), 16588-16608.
[http://dx.doi.org/10.3390/molecules191016588] [PMID: 25322282]
[198]
Lee, K.R.; Lee, J.S.; Song, J.E.; Ha, S.J.; Hong, E.K. Inonotus obliquus-derived polysaccharide inhibits the migration and invasion of human non-small cell lung carcinoma cells via suppression of MMP-2 and MMP-9. Int. J. Oncol., 2014, 45(6), 2533-2540.
[http://dx.doi.org/10.3892/ijo.2014.2685] [PMID: 25270791]
[199]
Bogusiewicz, M.; Stryjecka-Zimmer, M.; Szymanski, M.; Rechberger, T.; Golabek, W. Activity of matrix metalloproteinases-2 and -9 in advanced laryngeal cancer. Otolaryngol. Head Neck Surg., 2003, 128(1), 132-136.
[http://dx.doi.org/10.1067/mhn.2003.8] [PMID: 12574771]
[200]
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[201]
Fang, J.; Shing, Y.; Wiederschain, D.; Yan, L.; Butterfield, C.; Jackson, G.; Harper, J.; Tamvakopoulos, G.; Moses, M.A. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc. Natl. Acad. Sci. USA, 2000, 97(8), 3884-3889.
[http://dx.doi.org/10.1073/pnas.97.8.3884] [PMID: 10760260]
[202]
London, C.A.; Sekhon, H.S.; Arora, V.; Stein, D.A.; Iversen, P.L.; Devi, G.R. A novel antisense inhibitor of MMP-9 attenuates angiogenesis, human prostate cancer cell invasion and tumorigenicity. Cancer Gene Ther., 2003, 10(11), 823-832.
[http://dx.doi.org/10.1038/sj.cgt.7700642] [PMID: 14605668]
[203]
Liu, X. Expression of MMP-9, PTTG, HMGA2, and Ki-67 in ACTH-secreting pituitary tumors and their association with tumor recurrence. World Neurosurg., 2018, 113, e213-e221.
[204]
Liu, W.; Matsumoto, Y.; Okada, M.; Miyake, K.; Kunishio, K.; Kawai, N.; Tamiya, T.; Nagao, S. Matrix metalloproteinase 2 and 9 expression correlated with cavernous sinus invasion of pituitary adenomas. J. Med. Invest., 2005, 52(3-4), 151-158.
[http://dx.doi.org/10.2152/jmi.52.151] [PMID: 16167532]
[205]
Malik, M.T.; Kakar, S.S. Regulation of angiogenesis and invasion by human Pituitary tumor transforming gene (PTTG) through increased expression and secretion of matrix metalloproteinase-2 (MMP-2). Mol. Cancer, 2006, 5, 61.
[http://dx.doi.org/10.1186/1476-4598-5-61] [PMID: 17096843]
[206]
Attia, M.; Huet, E.; Gossard, C.; Menashi, S.; Tassoni, M.C.; Martelly, I. Early events of overused supraspinatus tendons involve matrix metalloproteinases and EMMPRIN/CD147 in the absence of inflammation. Am. J. Sports Med., 2013, 41(4), 908-917.
[http://dx.doi.org/10.1177/0363546512473817] [PMID: 23404084]
[207]
Sato, H.; Takino, T.; Okada, Y.; Cao, J.; Shinagawa, A.; Yamamoto, E.; Seiki, M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature, 1994, 370(6484), 61-65.
[http://dx.doi.org/10.1038/370061a0] [PMID: 8015608]
[208]
Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 2007, 8(3), 221-233.
[http://dx.doi.org/10.1038/nrm2125] [PMID: 17318226]
[209]
Rowe, R.G.; Weiss, S.J. Navigating ECM barriers at the invasive front: the cancer cell-stroma interface. Annu. Rev. Cell Dev. Biol., 2009, 25, 567-595.
[http://dx.doi.org/10.1146/annurev.cellbio.24.110707.175315] [PMID: 19575644]
[210]
Watanabe, A.; Hoshino, D.; Koshikawa, N.; Seiki, M.; Suzuki, T.; Ichikawa, K. Critical role of transient activity of MT1-MMP for ECM degradation in invadopodia. PLOS Comput. Biol., 2013, 9(5)e1003086
[http://dx.doi.org/10.1371/journal.pcbi.1003086] [PMID: 23737743]
[211]
Nambiar, J.; Bose, C.; Venugopal, M.; Banerji, A.; Patel, T.B.; Kumar, G.B.; Nair, B.G. Anacardic acid inhibits gelatinases through the regulation of Spry2, MMP-14, EMMPRIN and RECK. Exp. Cell Res., 2016, 349(1), 139-151.
[http://dx.doi.org/10.1016/j.yexcr.2016.10.007] [PMID: 27737732]
[212]
Rostad, S. Pituitary adenoma pathogenesis: an update. Curr. Opin. Endocrinol. Diabetes Obes., 2012, 19(4), 322-327.
[http://dx.doi.org/10.1097/MED.0b013e328354b2e2] [PMID: 22617628]
[213]
Campisi, J. Suppressing cancer: the importance of being senescent. Science, 2005, 309(5736), 886-887.
[http://dx.doi.org/10.1126/science.1116801] [PMID: 16081723]
[214]
Collado, M.; Gil, J.; Efeyan, A.; Guerra, C.; Schuhmacher, A.J.; Barradas, M.; Benguría, A.; Zaballos, A.; Flores, J.M.; Barbacid, M.; Beach, D.; Serrano, M. Tumour biology: senescence in premalignant tumours. Nature, 2005, 436(7051), 642.
[http://dx.doi.org/10.1038/436642a] [PMID: 16079833]
[215]
Collado, M.; Blasco, M.A.; Serrano, M. Cellular senescence in cancer and aging. Cell, 2007, 130(2), 223-233.
[http://dx.doi.org/10.1016/j.cell.2007.07.003] [PMID: 17662938]
[216]
Mooi, W.J.; Peeper, D.S. Oncogene-induced cell senescence--halting on the road to cancer. N. Engl. J. Med., 2006, 355(10), 1037-1046.
[http://dx.doi.org/10.1056/NEJMra062285] [PMID: 16957149]
[217]
Cichowski, K.; Hahn, W.C. Unexpected pieces to the senescence puzzle. Cell, 2008, 133(6), 958-961.
[http://dx.doi.org/10.1016/j.cell.2008.05.027] [PMID: 18555773]
[218]
Michaloglou, C.; Vredeveld, L.C.; Soengas, M.S.; Denoyelle, C.; Kuilman, T.; van der Horst, C.M.; Majoor, D.M.; Shay, J.W.; Mooi, W.J.; Peeper, D.S. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 2005, 436(7051), 720-724.
[http://dx.doi.org/10.1038/nature03890] [PMID: 16079850]
[219]
Braig, M.; Lee, S.; Loddenkemper, C.; Rudolph, C.; Peters, A.H.; Schlegelberger, B.; Stein, H.; Dörken, B.; Jenuwein, T.; Schmitt, C.A. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature, 2005, 436(7051), 660-665.
[http://dx.doi.org/10.1038/nature03841] [PMID: 16079837]
[220]
Chesnokova, V.; Zonis, S.; Zhou, C.; Ben-Shlomo, A.; Wawrowsky, K.; Toledano, Y.; Tong, Y.; Kovacs, K.; Scheithauer, B.; Melmed, S. Lineage-specific restraint of pituitary gonadotroph cell adenoma growth. PLoS One, 2011, 6(3)e17924
[http://dx.doi.org/10.1371/journal.pone.0017924] [PMID: 21464964]
[221]
Sharpless, N.E.; DePinho, R.A. Telomeres, stem cells, senescence, and cancer. J. Clin. Invest., 2004, 113(2), 160-168.
[http://dx.doi.org/10.1172/JCI20761] [PMID: 14722605]
[222]
Vousden, K.H. Outcomes of p53 activation--spoilt for choice. J. Cell Sci., 2006, 119(Pt 24), 5015-5020.
[http://dx.doi.org/10.1242/jcs.03293] [PMID: 17158908]
[223]
Fong, M.Y.; Farghaly, H.; Kakar, S.S. Tumorigenic potential of pituitary tumor transforming gene (PTTG) in vivo investigated using a transgenic mouse model, and effects of cross breeding with p53 (+/-) transgenic mice. BMC Cancer, 2012, 12, 532.
[http://dx.doi.org/10.1186/1471-2407-12-532] [PMID: 23164239]
[224]
Bernal, J.A.; Luna, R.; Espina, A.; Lázaro, I.; Ramos-Morales, F.; Romero, F.; Arias, C.; Silva, A.; Tortolero, M.; Pintor-Toro, J.A. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat. Genet., 2002, 32(2), 306-311.
[http://dx.doi.org/10.1038/ng997] [PMID: 12355087]
[225]
Liang, H.Q.; Wang, R.J.; Diao, C.F.; Li, J.W.; Su, J.L.; Zhang, S. The PTTG1-targeting miRNAs miR-329, miR-300, miR-381, and miR-655 inhibit pituitary tumor cell tumorigenesis and are involved in a p53/PTTG1 regulation feedback loop. Oncotarget, 2015, 6(30), 29413-29427.
[http://dx.doi.org/10.18632/oncotarget.5003] [PMID: 26320179]
[226]
Zhou, Y.; Mehta, K.R.; Choi, A.P.; Scolavino, S.; Zhang, X. DNA damage-induced inhibition of securin expression is mediated by p53. J. Biol. Chem., 2003, 278(1), 462-470.
[http://dx.doi.org/10.1074/jbc.M203793200] [PMID: 12403781]
[227]
Kho, P.S.; Wang, Z.; Zhuang, L.; Li, Y.; Chew, J.L.; Ng, H.H.; Liu, E.T.; Yu, Q. p53-regulated transcriptional program associated with genotoxic stress-induced apoptosis. J. Biol. Chem., 2004, 279(20), 21183-21192.
[http://dx.doi.org/10.1074/jbc.M311912200] [PMID: 15016801]
[228]
Barboza, J.A.; Liu, G.; Ju, Z.; El-Naggar, A.K.; Lozano, G. p21 delays tumor onset by preservation of chromosomal stability. Proc. Natl. Acad. Sci. USA, 2006, 103(52), 19842-19847.
[http://dx.doi.org/10.1073/pnas.0606343104] [PMID: 17170138]
[229]
Chesnokova, V.; Zonis, S.; Kovacs, K.; Ben-Shlomo, A.; Wawrowsky, K.; Bannykh, S.; Melmed, S. p21(Cip1) restrains pituitary tumor growth. Proc. Natl. Acad. Sci. USA, 2008, 105(45), 17498-17503.
[http://dx.doi.org/10.1073/pnas.0804810105] [PMID: 18981426]
[230]
Harris, S.L.; Levine, A.J. The p53 pathway: positive and negative feedback loops. Oncogene, 2005, 24(17), 2899-2908.
[http://dx.doi.org/10.1038/sj.onc.1208615] [PMID: 15838523]
[231]
Hsu, Y.H.; Liao, L.J.; Yu, C.H.; Chiang, C.P.; Jhan, J.R.; Chang, L.C.; Chen, Y.J.; Lou, P.J.; Lin, J.J. Overexpression of the pituitary tumor transforming gene induces p53-dependent senescence through activating DNA damage response pathway in normal human fibroblasts. J. Biol. Chem., 2010, 285(29), 22630-22638.
[http://dx.doi.org/10.1074/jbc.M109.096255] [PMID: 20452981]
[232]
Schmitt, C.A.; Fridman, J.S.; Yang, M.; Lee, S.; Baranov, E.; Hoffman, R.M.; Lowe, S.W. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell, 2002, 109(3), 335-346.
[http://dx.doi.org/10.1016/S0092-86740200734-1] [PMID: 12015983]
[233]
Asa, S.L.; Ezzat, S. The pathogenesis of pituitary tumors. Annu. Rev. Pathol., 2009, 4, 97-126.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092259] [PMID: 19400692]
[234]
Chayka, O.; Corvetta, D.; Dews, M.; Caccamo, A.E.; Piotrowska, I.; Santilli, G.; Gibson, S.; Sebire, N.J.; Himoudi, N.; Hogarty, M.D.; Anderson, J.; Bettuzzi, S.; Thomas-Tikhonenko, A.; Sala, A. Clusterin, a haploinsufficient tumor suppressor gene in neuroblastomas. J. Natl. Cancer Inst., 2009, 101(9), 663-677.
[http://dx.doi.org/10.1093/jnci/djp063] [PMID: 19401549]
[235]
Jenne, D.E.; Tschopp, J. Molecular structure and functional characterization of a human complement cytolysis inhibitor found in blood and seminal plasma: identity to sulfated glycoprotein 2, a constituent of rat testis fluid. Proc. Natl. Acad. Sci. USA, 1989, 86(18), 7123-7127.
[http://dx.doi.org/10.1073/pnas.86.18.7123] [PMID: 2780565]
[236]
Kim, H.J.; Yoo, E.K.; Kim, J.Y.; Choi, Y.K.; Lee, H.J.; Kim, J.K.; Jeoung, N.H.; Lee, K.U.; Park, I.S.; Min, B.H.; Park, K.G.; Lee, C.H.; Aronow, B.J.; Sata, M.; Lee, I.K. Protective role of clusterin/apolipoprotein J against neointimal hyperplasia via antiproliferative effect on vascular smooth muscle cells and cytoprotective effect on endothelial cells. Arterioscler. Thromb. Vasc. Biol., 2009, 29(10), 1558-1564.
[http://dx.doi.org/10.1161/ATVBAHA.109.190058] [PMID: 19696405]
[237]
Sivamurthy, N.; Stone, D.H.; Logerfo, F.W.; Quist, W.C. Apolipoprotein J inhibits the migration, adhesion, and proliferation of vascular smooth muscle cells. J. Vasc. Surg., 2001, 34(4), 716-723.
[http://dx.doi.org/10.1067/mva.2001.116301] [PMID: 11668329]
[238]
Chen, X.; Halberg, R.B.; Ehrhardt, W.M.; Torrealba, J.; Dove, W.F. Clusterin as a biomarker in murine and human intestinal neoplasia. Proc. Natl. Acad. Sci. USA, 2003, 100(16), 9530-9535.
[http://dx.doi.org/10.1073/pnas.1233633100] [PMID: 12886021]
[239]
Sala, A.; Bettuzzi, S.; Pucci, S.; Chayka, O.; Dews, M.; Thomas-Tikhonenko, A. Regulation of CLU gene expression by oncogenes and epigenetic factors implications for tumorigenesis. Adv. Cancer Res., 2009, 105, 115-132.
[http://dx.doi.org/10.1016/S0065-230X(09)05007-6] [PMID: 19879426]
[240]
Goetz, E.M.; Shankar, B.; Zou, Y.; Morales, J.C.; Luo, X.; Araki, S.; Bachoo, R.; Mayo, L.D.; Boothman, D.A. ATM-dependent IGF-1 induction regulates secretory clusterin expression after DNA damage and in genetic instability. Oncogene, 2011, 30(35), 3745-3754.
[http://dx.doi.org/10.1038/onc.2011.92] [PMID: 21460853]
[241]
Criswell, T.; Klokov, D.; Beman, M.; Lavik, J.P.; Boothman, D.A. Repression of IR-inducible clusterin expression by the p53 tumor suppressor protein. Cancer Biol. Ther., 2003, 2(4), 372-380.
[http://dx.doi.org/10.4161/cbt.2.4.430] [PMID: 14508108]
[242]
Criswell, T.; Beman, M.; Araki, S.; Leskov, K.; Cataldo, E.; Mayo, L.D.; Boothman, D.A. Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor. J. Biol. Chem., 2005, 280(14), 14212-14221.
[http://dx.doi.org/10.1074/jbc.M412569200] [PMID: 15689620]
[243]
Trougakos, I.P.; Djeu, J.Y.; Gonos, E.S.; Boothman, D.A. Advances and challenges in basic and translational research on clusterin. Cancer Res., 2009, 69(2), 403-406.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2912] [PMID: 19147550]
[244]
Ramji, D.P.; Foka, P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem. J., 2002, 365(Pt 3), 561-575.
[http://dx.doi.org/10.1042/bj20020508] [PMID: 12006103]
[245]
Nerlov, C. The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol., 2007, 17(7), 318-324.
[http://dx.doi.org/10.1016/j.tcb.2007.07.004] [PMID: 17658261]
[246]
Chesnokova, V.; Zonis, S.; Wawrowsky, K.; Tani, Y.; Ben-Shlomo, A.; Ljubimov, V.; Mamelak, A.; Bannykh, S.; Melmed, S. Clusterin and FOXL2 act concordantly to regulate pituitary gonadotroph adenoma growth. Mol. Endocrinol., 2012, 26(12), 2092-2103.
[http://dx.doi.org/10.1210/me.2012-1158] [PMID: 23051594]
[247]
Vousden, K.H.; Prives, C. Blinded by the light: the growing complexity of p53. Cell, 2009, 137(3), 413-431.
[http://dx.doi.org/10.1016/j.cell.2009.04.037] [PMID: 19410540]
[248]
Egashira, N.; Takekoshi, S.; Takei, M.; Teramoto, A.; Osamura, R.Y. Expression of FOXL2 in human normal pituitaries and pituitary adenomas. Mod. Pathol., 2011, 24(6), 765-773.
[http://dx.doi.org/10.1038/modpathol.2010.169] [PMID: 21478824]
[249]
Ellsworth, B.S.; Egashira, N.; Haller, J.L.; Butts, D.L.; Cocquet, J.; Clay, C.M.; Osamura, R.Y.; Camper, S.A. FOXL2 in the pituitary: molecular, genetic, and developmental analysis. Mol. Endocrinol., 2006, 20(11), 2796-2805.
[http://dx.doi.org/10.1210/me.2005-0303] [PMID: 16840539]
[250]
Rizzi, F.; Bettuzzi, S. The clusterin paradigm in prostate and breast carcinogenesis. Endocr. Relat. Cancer, 2010, 17(1), R1-R17.
[http://dx.doi.org/10.1677/ERC-09-0140] [PMID: 19903745]
[251]
Chen, T.; Turner, J.; McCarthy, S.; Scaltriti, M.; Bettuzzi, S.; Yeatman, T.J. Clusterin-mediated apoptosis is regulated by adenomatous Polyposis coli and is p21 dependent but p53 independent. Cancer Res., 2004, 64(20), 7412-7419.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2077] [PMID: 15492264]
[252]
Tapella, L.; Sesta, A.; Cassarino, M.F.; Zunino, V.; Catalano, M.G.; Pecori Giraldi, F. Benzene and 2-ethyl-phthalate induce proliferation in normal rat pituitary cells. Pituitary, 2017, 20(3), 311-318.
[http://dx.doi.org/10.1007/s11102-016-0777-3] [PMID: 27853917]
[253]
Melloni, G.E.; Ogier, A.G.; de Pretis, S.; Mazzarella, L.; Pelizzola, M.; Pelicci, P.G.; Riva, L. DOTS-Finder: a comprehensive tool for assessing driver genes in cancer genomes. Genome Med., 2014, 6(6), 44.
[http://dx.doi.org/10.1186/gm563] [PMID: 25690659]
[254]
Read, M.L.; Seed, R.I.; Fong, J.C.; Modasia, B.; Ryan, G.A.; Watkins, R.J.; Gagliano, T.; Smith, V.E.; Stratford, A.L.; Kwan, P.K.; Sharma, N.; Dixon, O.M.; Watkinson, J.C.; Boelaert, K.; Franklyn, J.A.; Turnell, A.S.; McCabe, C.J. The PTTG1-binding factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells. Endocrinology, 2014, 155(4), 1222-1234.
[http://dx.doi.org/10.1210/en.2013-1646] [PMID: 24506068]
[255]
Read, M.L.; Seed, R.I.; Modasia, B.; Kwan, P.P.; Sharma, N.; Smith, V.E.; Watkins, R.J.; Bansal, S.; Gagliano, T.; Stratford, A.L.; Ismail, T.; Wakelam, M.J.; Kim, D.S.; Ward, S.T.; Boelaert, K.; Franklyn, J.A.; Turnell, A.S.; McCabe, C.J. The proto-oncogene PBF binds p53 and is associated with prognostic features in colorectal cancer. Mol. Carcinog., 2016, 55(1), 15-26.
[http://dx.doi.org/10.1002/mc.22254] [PMID: 25408419]
[256]
Vajtai, I.; Kappeler, A.; Sahli, R. Folliculo-stellate cells of “true dendritic” type are involved in the inflammatory microenvironment of tumor immunosurveillance of pituitary adenomas. Diagn. Pathol., 2007, 2, 20.
[http://dx.doi.org/10.1186/1746-1596-2-20] [PMID: 17597515]
[257]
Sbarbati, A.; Fakhreddine, A.; Zancanaro, C.; Bontempini, L.; Cinti, S. Ultrastructural morphology of folliculo-stellate cells in human pituitary adenomas. Ultrastruct. Pathol., 1991, 15(3), 241-248.
[http://dx.doi.org/10.3109/01913129109021886] [PMID: 1871899]
[258]
Kuilman, T.; Peeper, D.S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer, 2009, 9(2), 81-94.
[http://dx.doi.org/10.1038/nrc2560] [PMID: 19132009]
[259]
Li, Y.; Zhou, L.P.; Ma, P.; Sui, C.G.; Meng, F.D.; Tian, X.; Fu, L.Y.; Jiang, Y.H. Relationship of PTTG expression with tumor invasiveness and microvessel density of pituitary adenomas: a meta-analysis. Genet. Test. Mol. Biomarkers, 2014, 18(4), 279-285.
[http://dx.doi.org/10.1089/gtmb.2013.0447] [PMID: 24611443]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy