Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Recent Progress in the Synthesis of Quinolines

Author(s): Duc Dau Xuan*

Volume 16, Issue 5, 2019

Page: [671 - 708] Pages: 38

DOI: 10.2174/1570179416666190719112423

Price: $65

Abstract

Background: Quinoline-containing compounds present in both natural and synthetic products are an important class of heterocyclic compounds. Many of the substituted quinolines have been used in various areas including medicine as drugs. Compounds with quinoline skeleton possess a wide range of bioactivities such as antimalarial, anti-bacterial, anthelmintic, anticonvulsant, antiviral, anti-inflammatory, and analgesic activity.

Due to such a wide range of applicability, the synthesis of quinoline derivatives has attracted a lot of attention of chemists to develop effective methods. Many known methods have been expanded and improved. Furthermore, various new methods for quinoline synthesis have been established. This review will focus on considerable studies on the synthesis of quinolines date which back to 2014.

Objective: In this review, we discussed recent achievements on the synthesis of quinoline compounds. Some classical methods have been modified and improved, while other new methods have been developed. A vast variety of catalysts were used for these transformations. In some studies, quinoline synthesis reaction mechanisms were also displayed.

Conclusion: Many methods for the synthesis of substituted quinoline rings have been developed recently. Over the past five years, the majority of those reported have been based on cycloisomerization and cyclization processes. Undoubtedly, more imaginative approaches to quinoline synthesis will appear in the literature in the near future. The application of known methods to natural product synthesis is probably the next challenge in the field.

Keywords: Quinolines, Friedländer synthesis, bioactivity, microwave, yield, Povarov reaction, one-pot reaction.

Graphical Abstract

[1]
Delgado, J.N.; Remers, W.A. Wilson and Gisvold’s Text Book of Organic Medicinal and Pharmaceutical Chemistry, 10th ed; , 1998, pp. 235-252.
[2]
Abadi, A.H.; Hegazy, G.H.; El-Zaher, A.A. Synthesis of novel 4-substituted-7-trifluoromethylquinoline derivatives with nitric oxide releasing properties and their evaluation as analgesic and anti-inflammatory agents. Bioorg. Med. Chem., 2005, 13(20), 5759-5765.
[3]
Manera, C.; Cascio, M.G.; Benetti, V.; Allarà, M.; Tuccinardi, T.; Martinelli, A.; Saccomanni, G.; Vivoli, E.; Ghelardini, C.; Di Marzo, V.; Ferrarini, P.L. New 1,8-naphthyridine and quinoline derivatives as CB2 selective agonists. Bioorg. Med. Chem. Lett., 2007, 17(23), 6505-6510.
[4]
Fournet, A.; Barrios, A.A.; Muñoz, V.; Hocquemiller, R.; Cavé, A.; Bruneton, J. 2-substituted quinoline alkaloids as potential antileishmanial drugs. Antimicrob. Agents Chemother., 1993, 37(4), 859-863.
[5]
Fakhfakh, M.A.; Fournet, A.; Prina, E.; Mouscadet, J.F.; Franck, X.; Hocquemiller, R.; Figadère, B. Synthesis and biological evaluation of substituted quinolines: potential treatment of protozoal and retroviral co-infections. Bioorg. Med. Chem., 2003, 11(23), 5013-5023.
[6]
Rossiter, S.; Péron, J.M.; Whitfield, P.J.; Jones, K. Synthesis and anthelmintic properties of arylquinolines with activity against drug-resistant nematodes. Bioorg. Med. Chem. Lett., 2005, 15(21), 4806-4808.
[7]
Upadhayaya, R.S.; Vandavasi, J.K.; Vasireddy, N.R.; Sharma, V.; Dixit, S.S.; Chattopadhyaya, J. Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis. Bioorg. Med. Chem., 2009, 17(7), 2830-2841.
[8]
De Lima Ferreira Bispo, M.; de Faria Cardoso, L.N.; Lourenço, M.C.S.; Bezerra, F.A.F.M.; Soares, R.D.P.; Bertollo, C.M.; de Souza, M.V.N. Synthesis and antitubercular evaluation of 7-chloro-4-alkoxyquinoline derivatives. Mediterr. J. Chem., 2015, 4, 1-8.
[9]
Eswaran, S.; Adhikari, A.V.; Chowdhury, I.H.; Pal, N.K.; Thomas, K.D. New quinoline derivatives: Synthesis and investigation of antibacterial and antituberculosis properties. Eur. J. Med. Chem., 2010, 45(8), 3374-3383.
[10]
Chen, Y.L.; Zhao, Y.L.; Lu, C.M.; Tzeng, C.C.; Wang, J.P. Synthesis, cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy)quinoline derivatives. Part 4. Bioorg. Med. Chem., 2006, 14(13), 4373-4378.
[11]
Baba, A.; Kawamura, N.; Makino, H.; Ohta, Y.; Taketomi, S.; Sohda, T. Studies on disease-modifying antirheumatic drugs: synthesis of novel quinoline and quinazoline derivatives and their anti-inflammatory effect. J. Med. Chem., 1996, 39(26), 5176-5182.
[12]
Gilbert, A.M.; Bursavich, M.G.; Lombardi, S.; Georgiadis, K.E.; Reifenberg, E.; Flannery, C.R.; Morris, E.A.N.N. -((8-hydroxy-5-substituted-quinolin-7-yl)(phenyl)methyl)-2-phenyloxy/amino-acetamide inhibitors of ADAMTS-5 (Aggrecanase-2). Bioorg. Med. Chem. Lett., 2008, 18(24), 6454-6457.
[13]
Caprio, V.; Guyen, B.; Opoku-Boahen, Y.; Mann, J.; Gowan, S.M.; Kelland, L.M.; Read, M.A.; Neidle, S. A novel inhibitor of human telomerase derived from 10H-indolo[3,2-b]quinoline. Bioorg. Med. Chem. Lett., 2000, 10(18), 2063-2066.
[14]
Mikata, Y.; Yokoyama, M.; Ogura, S.; Okura, I.; Kawasaki, M.; Maeda, M.; Yano, S. Effect of side chain location in (2-aminoethyl)-aminomethyl-2-phenylquinolines as antitumor agents. Bioorg. Med. Chem. Lett., 1998, 8(10), 1243-1248.
[15]
Via, L.D.; Gia, O.; Gasparotto, V.; Ferlin, M.G. Discovery of a new anilino-3H-pyrrolo[3,2-f]quinoline derivative as potential anti-cancer agent. Eur. J. Med. Chem., 2008, 43(2), 429-434.
[16]
Sadana, A.K.; Mirza, Y.; Aneja, K.R.; Prakash, O. Hypervalent iodine mediated synthesis of 1-aryl/hetryl-1,2,4-triazolo[4,3-a] pyridines and 1-aryl/hetryl 5-methyl-1,2,4-triazolo[4,3-a]quinolines as antibacterial agents. Eur. J. Med. Chem., 2003, 38(5), 533-536.
[17]
Singh, S.P.; Batra, H.; Naithani, R.; Om, P. Synthesis and antimicrobial activity of 4-(4-pyrazoiyl)-2-amino-pyrimidines. Indian J. Heterocycl. Chem., 1999, 9, 73-74.
[18]
Narender, P.; Srinivas, U.; Ravinder, M.; Rao, B.A.; Ramesh, Ch.; Harakishore, K.; Gangadasu, B.; Murthy, U.S.N.; Rao, V.J. Synthesis of multisubstituted quinolines from Baylis-Hillman adducts obtained from substituted 2-chloronicotinaldehydes and their antimicrobial activity. Bioorg. Med. Chem., 2006, 14(13), 4600-4609.
[19]
Guo, L-J.; Wei, C-X.; Jia, J-H.; Zhao, L-M.; Quan, Z-S. Design and synthesis of 5-alkoxy-[1,2,4]triazolo[4,3-a]quinoline derivatives with anticonvulsant activity. Eur. J. Med. Chem., 2009, 44(3), 954-958.
[20]
Sircar, I.; Haleen, S.J.; Burke, S.E.; Barth, H. Synthesis and biological activity of 4-(diphenylmethyl)-alpha-[(4-quinolinyloxy)methyl]-1-piperazineethanol and related compounds. J. Med. Chem., 1992, 35(23), 4442-4449.
[21]
Ferlin, M.G.; Chiarelotto, G.; Antonucci, F.; Caparrotta, L.; Froldi, G. Mannich bases of 3H-pyrrolo[3,2-f]quinoline having vasorelaxing activity. Eur. J. Med. Chem., 2002, 37(5), 427-434.
[22]
Srimal, R.C.; Gulati, K.; Nityanand, S.; Dhawan, B.N. Pharmacological studies on 2-(2-(4-(3-methylphenyl)-1-piperazinyl)ethyl) quinoline (centhaquin). I. Hypotensive activity. Pharmacol. Res., 1990, 22(3), 319-329.
[23]
Ghosh, J.; Swarup, V.; Saxena, A.; Das, S.; Hazra, A.; Paira, P.; Banerjee, S.; Mondal, N.B.; Basu, A. Therapeutic effect of a novel anilidoquinoline derivative, 2-(2-methyl-quinoline-4ylamino)-N-(2-chlorophenyl)-acetamide, in Japanese encephalitis: Correlation with in vitro neuroprotection. Int. J. Antimicrob. Agents, 2008, 32(4), 349-354.
[24]
Chen, S.; Chen, R.; He, M.; Pang, R.; Tan, Z.; Yang, M. Design, synthesis, and biological evaluation of novel quinoline derivatives as HIV-1 Tat-TAR interaction inhibitors. Bioorg. Med. Chem., 2009, 17(5), 1948-1956.
[25]
Narra, S.R.; Avula, S.; Kuchukulla, R.R.; Nanubolu, J.B.; Banda, N.; Yadla, R. An efficient one-pot protocol for the solvent-free synthesis of novel quinoline-3-thiocarboxamide and 2,3-dihydroquinazolin-4(1H)-one derivatives. Tetrahedron, 2017, 73, 4730-4738.
[26]
Luo, L.; Zhou, Z.; Zhu, J.; Lu, X.; Wang, H. ZnCl2-promoted Friedländer-type synthesis of 4-substituted 3-aroyl quinolines from o-aminoaryl ketones and enaminones. Tetrahedron Lett., 2016, 57, 4987-4990.
[27]
Li, B.; Guo, C.; Fan, X.; Zhang, J.; Zhang, X. Synthesis of substituted quinoline via copper-catalyzed one-pot cascade reactions of 2-bromobenzaldehydes with aryl methyl ketones and aqueous ammonia. Tetrahedron Lett., 2014, 55, 5944-5948.
[28]
Vanajatha, G.; Reddy, V.P. Convenient and efficient method for the synthesis of substituted quinolines via one-pot heteroannulation reaction of o-amino arylketones with α-methylene ketones under solvent-free conditions. Synth. Commun., 2016, 46, 1953-1961.
[29]
Teimouri, A.; Chermahini, A.N. A mild and highly efficient Friedländer synthesis of quinolines in the presence of heterogeneous solid acid nano-catalyst. Arab. J. Chem., 2016, 9, 433-439.
[30]
Jafarzadeh, M.; Soleimani, E.; Norouzi, P.; Adnan, R.; Sepahvand, H. Preparation of trifluoroacetic acid-immobilized Fe3O4@SiO2–APTES nanocatalyst for synthesis of quinolines. J. Fluor. Chem., 2015, 178, 219-224.
[31]
Baghbanian, S.M.; Farhang, M. CuFe2O4 nanoparticles: A magnetically recoverable and reusable catalyst for the synthesis of quinoline and quinazoline derivatives in aqueous media. RSC Advances, 2014, 4, 11624-11633.
[32]
Sarma, P.; Dutta, A.K. Gogoi. P.; Sarma, B.; Borah, R. 3-Methyl-1-sulfoimidazolium ionic liquids as recyclable medium for efficient synthesis of quinoline derivatives by Friedländer annulation. Monatsh. Chem., 2015, 146, 173-180.
[33]
Satheeshkumara, R.; Sayinb, K.; Kaminskyc, W.; Prasad, K.J.R. Indium triflate and ionic liquid-mediated Friedländer synthesis of 2-acylquinolines. Synth. Commun., 2017, 47, 1940-1954.
[34]
Shirini, F.; Yahyazadeh, A.; Mohammadi, K.; Khaligh, N.G. Solvent-free synthesis of quinoline derivatives via the Friedländer reaction using 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient and recyclable ionic liquid catalyst. C. R. Chim., 2014, 17, 370-376.
[35]
Li, H-J.; Wang, C-C.; Zhu, S.; Dai, C-Y.; Wu, Y-C. Ruthenium(II)-catalyzed hydrogen transfer/annulation cascade processes between alcohols and 2-nitrobenzaldehydes. Adv. Synth. Catal., 2015, 357, 583-588.
[36]
Rubio-Presa, R.; Suárez-Pantiga, S.; Pedrosa, M.R.; Sanz, R. Molybdenum-catalyzed sustainable friedländer synthesis of quinolines. Adv. Synth. Catal., 2018, 360, 2216-2220.
[37]
Zhu, M.; Wang, C.; Tang, W.; Xiao, J. Transition-metal-free synthesis of quinolines from 2-nitrobenzyl alcohol in ưater. Tetrahedron Lett., 2015, 56, 6758-6761.
[38]
Wang, Q.; Wang, M.; Li, H-J.; Zhu, S.; Liu, Y.; Wu, Y-C. Synthesis of quinolines via iron-catalyzed redox condensation of alcohols with 2-nitrobenzyl methyl ether/2-nitrobenzyl alcohols. Synthesis, 2016, 48, 3985-3995.
[39]
Zhu, Y.; Cai, C.A. N-heterocyclic carbine-catalyzed approach to the indirect Friedländer quinoline synthesis. RSC Advances, 2014, 4, 52911-52914.
[40]
Bharathkumar, H.; Mohan, C.D.; Ananda, H.; Fuchs, J.E.; Li, F.; Rangappa, S.; Surender, M.; Bulusu, K.C.; Girish, K.S.; Sethi, G.; Bender, A. Basappa, Rangappa, K.S. Microwave-assisted synthesis, characterization and cytotoxic studies of novel estrogen receptor α ligands towards human breast cancer cells. Bioorg. Med. Chem. Lett., 2015, 25(8), 1804-1807.
[41]
Xiong, B.; Wang, Y.; Liu, Y.; Bao, Y.; Liu, Z.; Zhang, Y.; Ling, Y. Straightforward synthesis of quinolines from enones and 2-aminobenzyl alcohols using an iridium-catalyzed transfer hydrogenative strategy. Org. Biomol. Chem., 2018, 16(31), 5707-5711.
[42]
Tan, D-W.; Li, H-X.; Zhu, D.L.; Li, H-Y.; Young, D.J.; Yao, J.L.; Lang, J.P. Ligand-controlled copper(I)-catalyzed cross-coupling of secondary and primary alcohols to α alkylated ketones, pyridines, and quinolines. Org. Lett., 2018, 20(3), 608-611.
[43]
Anand, N.; Koley, S.; Ramulu, B.J.; Singh, M.S. Metal-free aerobic one-pot synthesis of substituted/annulated quinolines from alcohols via indirect Friedländer annulation. Org. Biomol. Chem., 2015, 13(37), 9570-9574.
[44]
Parua, S.; Sikari, R.; Sinha, S.; Das, S.; Chakraborty, G.; Paul, N.D. A nickel catalyzed acceptorless dehydrogenative approach to quinolines. Org. Biomol. Chem., 2018, 16(2), 274-284.
[45]
Chen, S-J.; Lu, G.P.; Cai, C. Synthesis of quinolines from allylic alcohols via ridium catalyzed tandem isomerization/cyclization combined with potassium hydroxide. Synthesis, 2015, 47, 976-984.
[46]
Xi, L-Y.; Zhang, R-Y.; Zhang, L.; Chen, S-Y.; Yu, X-Q. An efficient synthesis of quinolines via copper-catalyzed C-N cleavage. Org. Biomol. Chem., 2015, 13(13), 3924-3930.
[47]
Wu, K.; Huang, Z.; Liu, C.; Zhang, H.; Lei, A. Aerobic C-N bond activation: a simple strategy to construct pyridines and quinolines. Chem. Commun. (Camb.), 2015, 51(12), 2286-2289.
[48]
Min, L.; Pan, B.; Gu, Y. Synthesis of quinoline-fused 1 benzazepines through a mannich type reaction of a C,N-bisnucleophile generated from 2 aminobenzaldehyde and 2 methylindole. Org. Lett., 2016, 18(3), 364-367.
[49]
Selig, P.; Raven, W. A convenient allenoate-based synthesis of 2-quinolin-2-yl malonates and β-ketoesters. Org. Lett., 2014, 16(19), 5192-5195.
[50]
Borel, C.R.; Barbosa, L.C.A.; Maltha, C.R.A.; Fernandes, S.A. A facile one-pot synthesis of 2-(2-pyridyl)quinolines via Povarov reaction. Tetrahedron Lett., 2015, 56, 662-665.
[51]
Gao, Q.; Liu, S.; Wu, X.; Zhang, J.; Wu, A. Coproduct promoted Povarov reaction: Synthesis of substituted quinolines from methyl ketones, arylamines, and α-ketoesters. J. Org. Chem., 2015, 80(11), 5984-5991.
[52]
Liu, G.; Qian, J.; Hua, J.; Cai, F.; Li, X.; Liu, L. An economical synthesis of substituted quinoline-2-carboxylates through the potassium persulfate-mediated cross-dehydrogenative coupling of N-aryl glycine derivatives with olefins. Org. Biomol. Chem., 2016, 14(3), 1147-1152.
[53]
Ni, M.; Zhang, Y.; Gong, T.; Feng, B. Gold-oxazoline complex-catalyzed cross-dehydrogenative coupling of glycine derivatives and alkenes. Adv. Synth. Catal., 2017, 359, 824-831.
[54]
Dong, W.; Hu, B.; Gao, X.; Li, Y.; Xie, X.; Zhang, Z. Visible-light induced photocatalytic aerobic oxidation/Povarov cyclization reaction: Synthesis of substituted quinoline-fused lactones. J. Org. Chem., 2016, 81(19), 8770-8776.
[55]
Liu, F.; Yu, L.; Lv, S.; Yao, J.; Liu, J.; Jia, X. An unexpected construction of 2-arylquinolines from N-cinnamylanilines through sp3 C-H aerobic oxidation induced by a catalytic radical cation salt. Adv. Synth. Catal., 2016, 358, 459-465.
[56]
Li, C.; Li, J.; An, Y.; Peng, J.; Wu, W.; Jiang, H. Palladium-catalyzed allylic C-H oxidative annulation for assembly of functionalized 2-substituted quinoline derivatives. J. Org. Chem., 2016, 81(24), 12189-12196.
[57]
Deshidi, R.; Devari, S.; Shah, B.A. metal free access to quinolines via C-C bond cleavage of styrenes. Org. Chem. Front., 2015, 2, 515-519.
[58]
Liberto, N.A.; Simões, J.B.; de Paiva Silva, S.; da Silva, C.J.; Modolo, L.V.; de Fátima, Â.; Silva, L.M.; Derita, M.; Zacchino, S.; Zuñiga, O.M.P.; Romanelli, G.P.; Fernandes, S.A. Quinolines: Microwave-assisted synthesis and their antifungal, anticancer and radical scavenger properties. Bioorg. Med. Chem., 2017, 25(3), 1153-1162.
[59]
Jia, X.; Lü, S.; Yuan, Y.; Zhang, X.; Zhang, L.; Luo, L. A dual removable activating group enabled the Povarov reaction of N-arylalanine esters: synthesis of quinoline-4-carboxylate esters. Org. Biomol. Chem., 2017, 15(14), 2931-2937.
[60]
Mi, X.; Chen, J.; Xu, L. FeCl3-catalyzed SF5-containing quinoline synthesis: three-component coupling reactions of SF2-anilines, aldehydes and alkynes. Eur. J. Org. Chem., 2015, 1415-1418.
[61]
Andrade, A.; dos Santos, G.C.; da Silva-Filho, L.C. Synthesis of quinoline derivatives by multicomponent reaction using niobium pentachloride as lewis acid. J. Heterocycl. Chem., 2015, 52, 273-277.
[62]
Sarode, P.B.; Bahekar, S.P.; Chandak, H.S. Zn(OTf)2-mediated C-H activation: An expeditious and solvent-free synthesis of aryl/alkyl substituted quinolines. Tetrahedron Lett., 2016, 57, 5753-5756.
[63]
Meyet, C.E.; Larsen, C.H. One-step catalytic synthesis of alkyl-substituted quinolines. J. Org. Chem., 2014, 79(20), 9835-9841.
[64]
Kaur, M.; Pramanik, S.; Kumar, M.; Bhalla, V. Polythiophene-encapsulated bimetallic Au-Fe3O4 nano-hybrid materials: A potential tandem photocatalytic system for nondirected C(sp2)−H activation for the synthesis of quinoline carboxylates. ACS Catal., 2017, 7, 2007-2021.
[65]
Kataria, M.; Kumar, M.; Bhalla, V. Supramolecular ensemble of tetraphenylcyclopentadienone derivative and HgO nanoparticles: A one-pot approach for the synthesis of quinoline and quinolone derivatives. ChemistrySelect, 2017, 2, 3018-3027.
[66]
Sapkota, K.; Han, S.S. Novel environmentally sustainable synthesis of Au-Ag@AgCl nanocomposites and their application as an efficient and recyclable catalyst for quinoline synthesis. New J. Chem., 2017, 41, 5395-5402.
[67]
Asadi, B.; Landarani-Isfahani, A.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Rudbari, H.A. Microwave-assisted, regioselective one-pot synthesis of quinolines and bis-quinolines catalyzed by Bi(III) immobilized on triazine dendrimer stabilized magnetic nanoparticles. Tetrahedron Lett., 2017, 58, 71-74.
[68]
Jiang, K-M.; Kang, J-A.; Jin, Y.; Lin, J. Synthesis of substituted 4-hydroxalkyl-quinoline derivatives by a three-component reaction using CuCl/AuCl as sequential catalysts. Org. Chem. Front., 2018, 5, 434-444.
[69]
Xia, L.; Idhayadhulla, A.; Lee, Y.R.; Kim, S.H.; Wee, Y-J. Microwave-assisted synthesis of diverse pyrrolo[3,4-c]quinoline-1,3-diones and their antibacterial activities. ACS Comb. Sci., 2014, 16(7), 333-341.
[70]
Lindsay-Scott, P.J.; Barlow, H. Utilizing solubility differences to achieve regiocontrol in the synthesis of substituted quinoline-4-carboxylic acids. Synlett, 2016, 27, 1516-1520.
[71]
Elghamry, I.; Al-faiyz, Y. A simple one-pot synthesis of quinoline-4-carboxylic acids by the Pfitzinger reaction of isatin with enaminones in water. Tetrahedron Lett., 2016, 57, 110-112.
[72]
Gao, Q.; Liu, Z.; Wang, Y.; Wu, X.; Zhang, J.; Wu, A. I2-triggered reductive generation of N-centered iminyl radicals: An isatin-to-quinoline strategy for the introduction of primary amides. Adv. Synth. Catal., 2018, 360, 1444-1452.
[73]
Poomathi, N.; Mayakrishnan, S.; Muralidharan, D.; Srinivasan, R.; Perumal, P.T. Reaction of isatins with 6-amino uracils and isoxazoles: Isatin ring-opening vs. annulations and regioselective synthesis of isoxazole fused quinoline scaffolds in water. Green Chem., 2015, 17, 3362-3372.
[74]
Keshavarzipour, F.; Tavakol, H. Zinc cation supported on carrageenan magnetic nanoparticles: A novel, green and efficient catalytic system for one-pot three-component synthesis of quinoline derivatives. Appl. Organomet. Chem, 2017, 31, E3682.
[75]
Shahabi, D.; Tavakol, H. One-pot synthesis of quinoline derivatives using choline chloride/tin (II) chloride deep eutectic solvent as a green catalyst. J. Mol. Liq., 2016, 220, 324-328.
[76]
Guo, Q.; Liao, L.; Teng, W.; Ren, S.; Wang, X.; Lin, Y.; Meng, F. Synthesis of quinoline derivatives from anilines and aldehydes catalyzed by Cp2ZrCl2 and recyclable Cp2ZrCl2/MCM-41 system. Catal. Today, 2016, 263, 117-122.
[77]
Mura, M.G.; Rajamäki, S.; Luca, L.D.; Cini, E.; Porcheddu, A. A mild and efficient synthesis of substituted quinolines via a cross-dehydrogenative coupling of (Bio)available alcohols and aminoarenes. Adv. Synth. Catal., 2015, 357, 576-582.
[78]
Li, Z.; Wang, X.; Ma, L.; Jiao, N. Copper-catalyzed aerobic oxidation and oxygenation of anilines and acetaldehydes with dioxygen for the concise synthesis of 2-aroylquinolines. Synlett, 2017, 28, 1581-1585.
[79]
Bharate, J.B.; Bharate, S.B.; Vishwakarma, R.A. Metal-free, ionic liquid-mediated synthesis of functionalized quinolines. ACS Comb. Sci., 2014, 16(11), 624-630.
[80]
Nan, G-M.; Liu, W. Metal-free one-pot synthesis of quinoline-2,4-carboxylates via a molecular iodinecatalyzed three-component reaction of arylamines, ethyl glyoxylate, and α-ketoesters. Chin. Chem. Lett., 2015, 26, 1289-1292.
[81]
Ramann, G.A.; Cowen, B.J. Quinoline synthesis by improved Skraup–Doebner–Von Miller reactions utilizing acrolein diethyl acetal. Tetrahedron Lett., 2015, 56, 6436-6439.
[82]
Gattu, R.; Basha, S.; Bagdi, P.R.; Khan, A.T. One-pot three component regioselective synthesis of C1-functionalised 3-arylbenzoquinoline. RSC Advances, 2016, 6, 11675-11682.
[83]
Amarasekara, A.S.; Hasan, M.A. 1-(1-Alkylsulfonic)-3-methylimidazolium chloride Brönsted acidic ionic liquid catalyzed Skraup synthesis of quinolines under microwave heating. Tetrahedron Lett., 2014, 55, 3319-3321.
[84]
Saggadi, H.; Luart, D.; Thiebault, N.; Polaert, I.; Estelb, L.; Len, C. Quinoline and phenanthroline preparation starting from glycerol via improved microwave-assisted modified Skraup reaction. RSC Advances, 2014, 4, 21456-21464.
[85]
Aribi, F.; Schmitt, E.; Panossian, A.; Vors, J-P.; Pazenok, S.; Leroux, F.R. A new approach toward the synthesis of 2,4- bis(fluoroalkyl)-substituted quinoline derivatives using fluoroalkyl amino reagent chemistry. Org. Chem. Front., 2016, 3, 1392-1415.
[86]
Chaabouni, S.; Pinkerton, N.M.; Abid, S.; Galaup, C.; Chassaing, S. Photochemistry of ortho-azidocinnamoyl derivatives: facile and modular synthesis of 2-acylated indoles and 2-substituted quinolines under solvent control. Synlett, 2017, 28, 2614-2618.
[87]
Gupta, A.; Khajuria, R.; Kapoor, K.K. Reaction of 3-(2-nitrophenyl)-1-arylprop-2- en-1-ones with triethylphosphite in microwave revisited: One-pot synthesis of 2-aroylindoles and 2-arylquinolines. Synth. Commun., 2016, 46, 31-38.
[88]
Patra, A.; Gelat, F.; Pannecoucke, X.; Poisson, T.; Besset, T.; Biju, A.T. Synthesis of 4 difluoromethylquinolines by NHC-catalyzed umpolung of imines. Org. Lett., 2018, 20(4), 1086-1089.
[89]
Chen, X.; Qiu, S.; Wang, S.; Wang, H.; Zhai, H. Blue-light-promoted carbon-carbon double bond isomerization and its application in the syntheses of quinolines. Org. Biomol. Chem., 2017, 15(30), 6349-6352.
[90]
Wei, W-T.; Cheng, Y-J.; Hu, Y.; Chen, Y-Y.; Zhang, X-J.; Jou, Y.; Yan, M. Concise synthesis of 4-arylquinolines via intramolecular cyclization of allylamines and ketones. Adv. Synth. Catal., 2015, 357, 3474-3478.
[91]
Wang, Q.; Huang, J.; Zhou, L. Synthesis of quinolines by visible-light induced radical reaction of vinyl azides and a-carbonyl benzyl bromides. Adv. Synth. Catal., 2015, 357, 2479-2484.
[92]
Rehan, M.; Hazra, G.; Ghorai, P. Synthesis of polysubstituted quinolines via transition-metal-free oxidative cycloisomerization of o-cinnamylanilines. Org. Lett., 2015, 17(7), 1668-1671.
[93]
Jiang, H.; An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Visible-light-promoted iminyl-radical formation from acyl oximes: A unified approach to pyridines, quinolines, and phenanthridines. Angew. Chem. Int. Ed. Engl., 2015, 54(13), 4055-4059.
[94]
Xong, X-R.; Li, R.; Ding, H.; Chen, X.; Yang, T.; Bai, J.; Xiao, Q.; Liang, Y-M. An efficient approach to 4-chloro quinolines via TMSCl-mediated cascade cyclization of o-propynol phenyl azides. Org. Chem. Front., 2018, 5, 1537-1541.
[95]
Liu, Y-R.; Tu, H-Y.; Zhang, X.G. Silver-catalyzed tandem trifluoromethylation and cyclization of aryl isonitriles with the Langlois reagent. Synthesis, 2015, 47, 3460-3466.
[96]
Zhao, H.; Chen, X.; Jiang, H.; Zhang, M. Copper-catalysed dehydrogenative α-C(sp3)−H amination of tetrahydroquinolines with o–benzoyl hydroxylamines. Org. Chem. Front., 2018, 5, 539-543.
[97]
Iosub, A.V.; Stahl, S.S. Catalytic aerobic dehydrogenation of nitrogen heterocycles using heterogeneous cobalt oxide supported on nitrogen-doped carbon. Org. Lett., 2015, 17(18), 4404-4407.
[98]
Bianchini, G.; Ribelles, P.; Becerra, D. Ramos, T.; Menéndez. J. C. Efficient synthesis of 2-acylquinolines based on an aza-vinylogous Povarov reaction. Org. Chem. Front., 2016, 3, 412-422.
[99]
Chen, W.; Zhang, Y.; Li, P.; Wang, L. tert-Butyl peroxybenzoate mediated formation of 3-alkylated quinolines from N-propargylamines via cascade radical addition/cyclization reaction. Org. Chem. Front., 2018, 5, 855-859.
[100]
Deng, Q.; Xu, Y.; Liu, P.; Tan, L. Sun. P. Photoredox-catalyzed cascade addition/cyclization of N-propargyl aromatic amines: Access to 3-difluoroacetylated or 3-fluoroacetylated quinolines. Org. Chem. Front., 2018, 5, 19-23.
[101]
Zhang, L.; Chen, S.; Gao, Y.; Zhang, P.; Wu, Y.; Tang, G.; Zhao, Y. t-Butyl hydroperoxide mediated cascade synthesis of 3 arylsulfonylquinolines. Org. Lett., 2016, 18(6), 1286-1289.
[102]
Zhang, W.; Zhao, M-N.; Chen, M.; Ren, Z-H.; Guan, Z. Palladium-catalyzed regioselective cyclocarbonylation of N-(3- Phenylprop-2-ynyl)anilines with carbon monoxide and alcohols for the synthesis of quinoline-3-carboxylic Esters. Asian J. Org. Chem., 2018, 7, 1605-1608.
[103]
Li, X-F.; Zhang, X-G.; Hu, B-L.; Zhang, X-H. Palladium-catalyzed dimerization of N-aryl propargylamines for the synthesis of 3-vinylquinolines. Org. Biomol. Chem., 2018, 16(10), 1736-1744.
[104]
Kumar, G.S.; Kumar, P.; Kapur, M. Traceless directing-group strategy in the Ru catalyzed, formal [3 + 3] annulation of anilines with allyl alcohols: A one-pot, domino approach for the synthesis of quinolines. Org. Lett., 2017, 19(10), 2494-2497.
[105]
Kumar, G.S.; Singh, D.; Kumar, M.; Kapur, M. Palladium-catalyzed aerobic oxidative coupling of allylic alcohols with anilines in the synthesis of nitrogen heterocycles. J. Org. Chem., 2018, 83(7), 3941-3951.
[106]
Gadakh, S.K.; Dey, S.; Sudalai, A. Rhodium-catalyzed ortho C-H bond activation of arylamines for the synthesis of quinoline carboxylates. Org. Biomol. Chem., 2016, 14(10), 2969-2977.
[107]
Dai, H.; Li, C-X.; Yu, C.; Wang, Z.; Yan, H.; Lu, C. Copper(II) catalyzed domino synthesis of quinoline derivatives from arylamines and alkynes. Org. Chem. Front., 2017, 4, 2008-2011.
[108]
Zheng, J.; Li, Z.; Huang, L.; Wu, W.; Li, J.; Jiang, H. Palladium-catalyzed intermolecular aerobic annulation of o alkenylanilines and alkynes for quinoline synthesis. Org. Lett., 2016, 18(15), 3514-3517.
[109]
Natarajan, R.; Unnikrishnan, P.A.; Radhamani, S.; Rappai, J.P.; Prathapan, S. Metal-free synthesis of highly substituted quinolines under mild conditions. Tetrahedron Lett., 2016, 57, 2981-2984.
[110]
Duda, B.; Tverdomed, S.N.; Bassil, B.S.; Roschenthaler, G.V. Synthesis of highly substituted quinolines via heterocyclization of fluorinated acetylenephosphonates with ortho-aminoaryl ketones. Tetrahedron, 2014, 70, 8084-8096.
[111]
Zhang, X.; Xu, X.; Wu, Y.; Wng, Z.; Yu, L.; Zhao, Q.; Shi, F. Palladium(II)-catalyzed C–H activation and C–C coupling/cyclization of benzamidine and terminal alkynes using an internal oxidant. Synlett, 2015, 26, 1885-1889.
[112]
Largani, T.H.; Imanzadeh, G.; Pesyan, N.N.; Şahin, E. Unexpected simultaneous synthesis of trisubstituted quinolines and acylhydrazones under catalyst-free conditions. Synth. Commun., 2017, 47, 1077-1084.
[113]
Yan, Q.; Chen, Z.; Liu, Z.; Zhang, Y. Cobalt-catalyzed synthesis of quinolines from the redox-neutral annulation of anilides and alkynes. Org. Chem. Front., 2016, 3, 678-682.
[114]
Stopka, T.; Niggemann, M. Metal free carboamination of internal alkynes--an easy access to polysubstituted quinolines. Chem. Commun. (Camb.), 2016, 52(33), 5761-5764.
[115]
Wu, W.; Guo, Y.; Xu, X.; Zhou, Z.; Zhang, X.; Wu, B.; Yi, W. One-pot regioselective synthesis of 2,4-disubstituted quinolines via copper(II)-catalyzed cascade annulation. Org. Chem. Front., 2018, 5, 1713-1718.
[116]
Zhao, X.; Song, X.; Jin, H.; Zeng, Z.; Wang, Q.; Rudolph, M.; Rominger, F.; Hashm, A.S.K. Gold-catalyzed intermolecular [4+2] annulation of 2-ethynylanilines with ynamides: An access to substituted 2-aminoquinolines. Adv. Synth. Catal., 2018, 360, 2720-2726.
[117]
Wakade, S.B.; Tiwari, D.K.; Ganesh, P.S.K.P.; Phanindrudu, M.; Likhar, P.R.; Tiwari, D.K. Transition-metal-free quinoline synthesis from acetophenones and anthranils via sequential one-carbon homologation/conjugate addition/annulation cascade. Org. Lett., 2017, 19(18), 4948-4951.
[118]
Wang, F.; Xu, P.; Wang, S-Y.; Ji, S-J. Cu(II)/Ag(I)-catalyzed cascade reaction of sulfonylhydrazone with anthranils: synthesis of 2 aryl-3-sulfonyl substituted quinoline derivatives. Org. Lett., 2018, 20(8), 2204-2207.
[119]
Xu, X.; Zhang, X.; Liu, W.; Zhao, Q.; Wang, Z.; Yu, L.; Shi, F. Synthesis of 2-substituted quinolines from alcohols. Tetrahedron Lett., 2015, 56, 3790-3792.
[120]
Zeoly, L.A.; Barcelos, R.C.; Rodrigues, M.T.; Gomes, R.C.; Coelho, F. An improved method for the regioselective synthesis of highly substituted quinolines from Morita-Baylis-Hillman adducts. Tetrahedron Lett., 2015, 56, 2871-2874.
[121]
Anczkiewicz, K.; Krolikiewicz, M.; Wrobel, Z.; Wojciechowski, K. Synthesis of 4-(4-toluenesulfonyl) quinolines from nitroarenes and allyl sulfones using step-by-step procedure. Tetrahedron, 2015, 71, 3924-3931.
[122]
Cheng, J.; Zhai, H.; Bai, J.; Tang, J.; Lv, L.; Sun, B. Electrophile-driven copper-catalyzed one-pot synthesis of 3-halogen quinoline derivatives. Tetrahedron Lett., 2014, 55, 4044-4046.
[123]
Rode, N.D.; Arcadi, A.; Chiarini, M.; Marinelli, F. An improved environmentally friendly approach to 4-nitro-, 4-sulfonyl-, and 4-aminoquinolines and 4-quinolones through conjugate addition of nucleophiles to β-(2-aminophenyl)-α,β- ynones. Synthesis, 2017, 49, 2501-2512.
[124]
Kamath, P. Viner, R.C.; Smith, S.C.; Lal, M. A Novel route to 2-arylquinolines: reductive cleavage of 2′-nitroaryl-∆2-isoxazolines. Synlett, 2017, 28, 1341-1345.
[125]
Nikolaev, A.; Nithiy, N.; Orellana, A. One-Step synthesis of quinolines via palladium-catalyzed cross-coupling of cyclopropanols with unprotected o-bromoanilines. Synlett, 2014, 25, 2301-2305.
[126]
Mortén, M.; Hennum, M.; Bonge-Hansen, T. Synthesis of quinoline-3-carboxylates by a Rh(II)-catalyzed cyclopropanation-ring expansion reaction of indoles with halodiazoacetates. Beilstein J. Org. Chem., 2015, 11, 1944-1949.
[127]
Qu, F.; He, P.; Hu, R-F.; Cheng, X-H.; Wang, S.; Wu, J. Efficient synthesis of quinolines via a Knoevenagel/Staudinger/Aza-Wittig sequence. Synth. Commun., 2015, 45, 2802-2809.
[128]
Muddam, B.; Venkanna, P.; Venkateswarlu, M.; Kumar, M.S.; Rajanna, K.C. Symmetrical trichlorotriazine derivatives as efficient reagents for one-pot synthesis of 3-acetyl-2-chloroquinolines from acetanilides under Vilsmeier–Haack Conditions. Synlett, 2018, 29, 85-88.
[129]
Wang, Q.; Huang, J.; Zhou, L. Synthesis of quinolines by visible-light induced radical reaction of vinyl azides and α-carbonyl benzyl bromides. Adv. Synth. Catal., 2015, 357, 2479-2484.
[130]
Cen, J.; Li, J.; Zhang, Y.; Zhu, Z.; Yang, S.; Jiang, H. Direct assembly of 4 substituted quinolines with vinyl azides as a dual synthon via C-C and C−N bond cleavage. Org. Lett., 2018, 20(15), 4434-4438.
[131]
Bao, L.; Liu, J.; Xu, L.; Hu, Z.; Xu, X. Divergent synthesis of quinoline derivatives via [5+1] annulation of 2-isocyanochalcones with nitroalkanes. Adv. Synth. Catal., 2018, 360, 1870-1875.
[132]
Chi, Y.; Yan, H.; Zhang, W-X.; Xi, Z. Synthesis of quinoline derivatives via Cu catalyzed cascade annulation of heterocumulenes, alkynes, and diaryliodonium salts. Org. Lett., 2017, 19(10), 2694-2697.
[133]
Xu, X.; Liu, W.; Wang, Z.; Feng, Y.; Yan, Y.; Zhang, X. Silver-catalyzed one-Step Synthesis of Multiply Substituted Quinolines. Tetrahedron Lett., 2016, 57, 226-229.
[134]
Dhiman, S.; Saini, H.K.; Nandwana, N.K.; Kumar, D.; Kumar, A. Copper-catalyzed synthesis of quinoline derivatives via tandem Knoevenagel condensation, amination and cyclization. RSC Advances, 2016, 6, 23987-23994.
[135]
Zhang, X.; Liu, W.; Sun, R.; Xu, X.; Wang, Z.; Yan, Y. Silver-catalyzed three-component approach to quinolines starting from anilines, aldehydes, and alcohols. Synlett, 2016, 27, 1563-1568.
[136]
Collet, J.W.; Ackermans, K.; Lambregts, J.; Maes, B.U.W.; Orru, R.V.A.; Ruijter, E. modular three-component synthesis of 4 aminoquinolines via an imidoylative sonogashira/cyclization cascade. J. Org. Chem., 2018, 83(2), 854-861.
[137]
Zhao, P.; Yan, X.; Yin, H.; Xi, C. Alkyltriflate-triggered annulation of arylisothiocyanates and alkynes leading to multiply substituted quinolines through domino electrophilic activation. Org. Lett., 2014, 16(4), 1120-1123.
[138]
Liu, Y.; Hu, Y.; Cao, Z.; Zhan, X.; Luo, W.; Liu, Q.; Guo, C. Copper- catalyzed aerobic oxidative cyclizaton of anilines, aryl methyl ketones and DMSO: Efficient assembly of 2- arylquinolines. Adv. Synth. Catal., 2018, 360, 2691-2695.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy