Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

TOM34,AL1A1,PADI2和KLRBA在NNK诱导的Wistar大鼠肺癌中的差异表达及其意义

卷 19, 期 11, 2019

页: [919 - 929] 页: 11

弟呕挨: 10.2174/1871525717666190717162646

价格: $65

摘要

背景:肺癌是死亡率最高的最常见癌症。仅在晚期进行诊断和缺乏有效治疗是导致高死亡率的主要因素。烟草烟雾是导致肺部炎症和肿瘤发展的主要因素。 目的:进行本研究以鉴定差异表达的蛋白质,并阐明其在癌变过程中的作用。 方法:以NNK为致癌物在Wistar大鼠中发展肺癌,并通过组织病理学检查证实其发展。二维SDS PAGE用于分析总蛋白并找出NNK处理的肺组织相对于对照组织的差异表达蛋白。蛋白质组学分析的结果通过使用实时荧光定量PCR定量相应的转录本进一步得到验证。最后,使用Cytoscape查找蛋白质与蛋白质的相互作用。 结果:NNK治疗后第9个月的组织病理学检查显示有肿瘤。蛋白质组学分析显示了几种差异表达的蛋白质,其中四个被选作进一步研究。在NNK处理的肺组织中上调的TOM34,AL1A1,PADI2和KLRBA实时分析显示编码所选蛋白质的基因过表达。因此,蛋白质组和转录组数据相互证实。此外,这些蛋白显示出与NF-κB家族成员和STAT3的相互作用。 结论:我们得出结论,这些蛋白在通过NF-κB和STAT3途径诱导肺癌中起重要作用。因此,这些可能具有用作治疗靶点和早期检测肺癌的潜力。

关键词: 肺癌,TOM34,AL1A1,PADI2,KLRBA,蛋白质组学。

图形摘要

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[PMID: 30350310]
[2]
Goldstraw, P.; Crowley, J.; Chansky, K.; Giroux, D.J.; Groome, P.A.; Rami-Porta, R.; Postmus, P.E.; Rusch, V.; Sobin, L. The IASLC lung cancer staging project: Proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J. Thorac. Oncol., 2007, 2(8), 706-714.
[http://dx.doi.org/10.1097/JTO.0b013e31812f3c1a] [PMID: 17762336]
[3]
Noone, A.M. SEER cancer statistics review, 1975-2015; National Cancer Institute: Bethesda, MD, 2018.
[4]
Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J., 2003, 17(10), 1195-1214.
[http://dx.doi.org/10.1096/fj.02-0752rev] [PMID: 12832285]
[5]
Ranjpour, M.; Katare, D.P.; Wajid, S.; Jain, S.K. HCC specific protein network involving interactions of EGFR with A-Raf and transthyretin: experimental analysis and computational biology correlates. Anticancer. Agents Med. Chem., 2018, 18(8), 1163-1176.
[http://dx.doi.org/10.2174/1871520618666180507141632] [PMID: 29732980]
[6]
Smoking and cancer. MMWR Morb. Mortal. Wkly. Rep., 1982, 31(7), 77-80.
[PMID: 6801462]
[7]
Hoffmann, D.; Hoffmann, I.; El-Bayoumy, K. The less harmful cigarette: A controversial issue. a tribute to Ernst L. Wynder. Chem. Res. Toxicol., 2001, 14(7), 767-790.
[http://dx.doi.org/10.1021/tx000260u] [PMID: 11453723]
[8]
Hecht, S.S. Tobacco smoke carcinogens and lung cancer. J. Natl. Cancer Inst., 1999, 91(14), 1194-1210.
[http://dx.doi.org/10.1093/jnci/91.14.1194] [PMID: 10413421]
[9]
Hecht, S.S. Cigarette smoking and lung cancer: Chemical mechanisms and approaches to prevention. Lancet Oncol., 2002, 3(8), 461-469.
[http://dx.doi.org/10.1016/S1470-2045(02)00815-X] [PMID: 12147432]
[10]
Bhatnagar, S.; Chaudhary, N.; Katare, D.P.; Jain, S.K. A non-surgical method for induction of lung cancer in Wistar rats using a combination of NNK and high dietary fats. Protoplasma, 2013, 250(4), 919-929.
[http://dx.doi.org/10.1007/s00709-012-0478-3] [PMID: 23315092]
[11]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[12]
Chaudhary, N.; Bhatnagar, S.; Malik, S.; Katare, D.P.; Jain, S.K. Proteomic analysis of differentially expressed proteins in lung cancer in Wistar rats using NNK as an inducer. Chem. Biol. Interact., 2013, 204(2), 125-134.
[http://dx.doi.org/10.1016/j.cbi.2013.05.004] [PMID: 23692979]
[13]
Shevchenko, A.; Jensen, O.N.; Podtelejnikov, A.V.; Sagliocco, F.; Wilm, M.; Vorm, O.; Mortensen, P.; Shevchenko, A.; Boucherie, H.; Mann, M. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl. Acad. Sci. USA, 1996, 93(25), 14440-14445.
[http://dx.doi.org/10.1073/pnas.93.25.14440] [PMID: 8962070]
[14]
Ganaie, I.A.; Naqvi, S.H.; Jain, S.K.; Wajid, S. Reduced expression of SETD2 and SNX9 proteins in chemically induced mammary tumorigenesis in Wistar rats: A prognostic histological and proteomic study. Protoplasma, 2017, 254(3), 1451-1466.
[http://dx.doi.org/10.1007/s00709-016-1035-2] [PMID: 27766425]
[15]
Khowal, S.; Naqvi, S.H.; Monga, S.; Jain, S.K.; Wajid, S. Assessment of cellular and serum proteome from tongue squamous cell carcinoma patient lacking addictive proclivities for tobacco, betel nut, and alcohol: Case study. J. Cell. Biochem., 2018, 119(7), 5186-5221.
[http://dx.doi.org/10.1002/jcb.26554] [PMID: 29236289]
[16]
Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature, 2006, 441(7092), 431-436.
[http://dx.doi.org/10.1038/nature04870] [PMID: 16724054]
[17]
Fan, Y.; Mao, R.; Yang, J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell, 2013, 4(3), 176-185.
[http://dx.doi.org/10.1007/s13238-013-2084-3] [PMID: 23483479]
[18]
Naugler, W.E.; Karin, M. NF-kappaB and cancer-identifying targets and mechanisms. Curr. Opin. Genet. Dev., 2008, 18(1), 19-26.
[http://dx.doi.org/10.1016/j.gde.2008.01.020] [PMID: 18440219]
[19]
Dan, H.C.; Cooper, M.J.; Cogswell, P.C.; Duncan, J.A.; Ting, J.P.; Baldwin, A.S. Akt-dependent regulation of NF-kappaB is controlled by mTOR and Raptor in association with IKK. Genes Dev., 2008, 22(11), 1490-1500.
[http://dx.doi.org/10.1101/gad.1662308] [PMID: 18519641]
[20]
Kortylewski, M.; Kujawski, M.; Wang, T.; Wei, S.; Zhang, S.; Pilon-Thomas, S.; Niu, G.; Kay, H.; Mulé, J.; Kerr, W.G.; Jove, R.; Pardoll, D.; Yu, H. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med., 2005, 11(12), 1314-1321.
[http://dx.doi.org/10.1038/nm1325] [PMID: 16288283]
[21]
Shimokawa, T.; Matsushima, S.; Tsunoda, T.; Tahara, H.; Nakamura, Y.; Furukawa, Y. Identification of TOMM34, which shows elevated expression in the majority of human colon cancers, as a novel drug target. Int. J. Oncol., 2006, 29(2), 381-386.
[http://dx.doi.org/10.3892/ijo.29.2.381] [PMID: 16820880]
[22]
Mukhopadhyay, A.; Avramova, L.V.; Weiner, H. Tom34 unlike Tom20 does not interact with the leader sequences of mitochondrial precursor proteins. Arch. Biochem. Biophys., 2002, 400(1), 97-104.
[http://dx.doi.org/10.1006/abbi.2002.2777] [PMID: 11913975]
[23]
Chewawiwat, N.; Yano, M.; Terada, K.; Hoogenraad, N.J.; Mori, M. Characterization of the novel mitochondrial protein import component, Tom34, in mammalian cells. J. Biochem., 1999, 125(4), 721-727.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022342] [PMID: 10101285]
[24]
Terada, K.; Ueno, S.; Yomogida, K.; Imai, T.; Kiyonari, H.; Takeda, N.; Yano, M.; Abe, S.; Aizawa, S.; Mori, M. Expression of Tom34 splicing isoforms in mouse testis and knockout of Tom34 in mice. J. Biochem., 2003, 133(5), 625-631.
[http://dx.doi.org/10.1093/jb/mvg080] [PMID: 12801914]
[25]
Young, J.C.; Obermann, W.M.; Hartl, F.U. Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90. J. Biol. Chem., 1998, 273(29), 18007-18010.
[http://dx.doi.org/10.1074/jbc.273.29.18007] [PMID: 9660753]
[26]
Yang, C.S.; Weiner, H. Yeast two-hybrid screening identifies binding partners of human Tom34 that have ATPase activity and form a complex with Tom34 in the cytosol. Arch. Biochem. Biophys., 2002, 400(1), 105-110.
[http://dx.doi.org/10.1006/abbi.2002.2778] [PMID: 11913976]
[27]
Dai, R.M.; Li, C.C. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat. Cell Biol., 2001, 3(8), 740-744.
[http://dx.doi.org/10.1038/35087056] [PMID: 11483959]
[28]
Watts, G.D.; Wymer, J.; Kovach, M.J.; Mehta, S.G.; Mumm, S.; Darvish, D.; Pestronk, A.; Whyte, M.P.; Kimonis, V.E. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet., 2004, 36(4), 377-381.
[http://dx.doi.org/10.1038/ng1332] [PMID: 15034582]
[29]
Kittler, R.; Putz, G.; Pelletier, L.; Poser, I.; Heninger, A.K.; Drechsel, D.; Fischer, S.; Konstantinova, I.; Habermann, B.; Grabner, H.; Yaspo, M.L.; Himmelbauer, H.; Korn, B.; Neugebauer, K.; Pisabarro, M.T.; Buchholz, F. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature, 2004, 432(7020), 1036-1040.
[http://dx.doi.org/10.1038/nature03159] [PMID: 15616564]
[30]
Yoshida, A.; Hsu, L.C.; Davé, V. Retinal oxidation activity and biological role of human cytosolic aldehyde dehydrogenase. Enzyme, 1992, 46(4-5), 239-244.
[http://dx.doi.org/10.1159/000468794] [PMID: 1292933]
[31]
Balicki, D. Moving forward in human mammary stem cell biology and breast cancer prognostication using ALDH1. Cell Stem Cell, 2007, 1(5), 485-487.
[http://dx.doi.org/10.1016/j.stem.2007.10.015] [PMID: 18938743]
[32]
Sreerama, L.; Sladek, N.E. Class 1 and class 3 aldehyde dehydrogenase levels in the human tumor cell lines currently used by the National Cancer Institute to screen for potentially useful antitumor agents. Adv. Exp. Med. Biol., 1997, 414, 81-94.
[http://dx.doi.org/10.1007/978-1-4615-5871-2_11] [PMID: 9059610]
[33]
Patel, M.; Lu, L.; Zander, D.S.; Sreerama, L.; Coco, D.; Moreb, J.S. ALDH1A1 and ALDH3A1 expression in lung cancers: Correlation with histologic type and potential precursors. Lung Cancer, 2008, 59(3), 340-349.
[http://dx.doi.org/10.1016/j.lungcan.2007.08.033] [PMID: 17920722]
[34]
Ucar, D.; Cogle, C.R.; Zucali, J.R.; Ostmark, B.; Scott, E.W.; Zori, R.; Gray, B.A.; Moreb, J.S. Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem. Biol. Interact., 2009, 178(1-3), 48-55.
[http://dx.doi.org/10.1016/j.cbi.2008.09.029] [PMID: 18952074]
[35]
Jiang, F.; Qiu, Q.; Khanna, A.; Todd, N.W.; Deepak, J.; Xing, L.; Wang, H.; Liu, Z.; Su, Y.; Stass, S.A.; Katz, R.L. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol. Cancer Res., 2009, 7(3), 330-338.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0393] [PMID: 19276181]
[36]
Li, S.; Jiao, L.; Zhen, H. Identification of novel proteins in chemoresistant lung cancer cells by quantitative proteomics. Int. J. Clin. Exp. Pathol., 2018, 11(3), 1101-1111.
[37]
Park, J.W.; Jung, K.H.; Lee, J.H.; Moon, S.H.; Cho, Y.S.; Lee, K.H. Inhibition of aldehyde dehydrogenase 1 enhances the cytotoxic effect of retinaldehyde on A549 cancer cells. Oncotarget, 2017, 8(59), 99382-99393.
[http://dx.doi.org/10.18632/oncotarget.19544] [PMID: 29245909]
[38]
Ranjpour, M.; Wajid, S. Jain, S.K. Elevated expression of A-Raf and FA2H in hepatocellular carcinoma is associated with lipid metabolism dysregulation and cancer progression. Anticancer. Agents Med. Chem., 2019, 19(2), 236-247.
[39]
Wang, L.; Song, G.; Zhang, X.; Feng, T.; Pan, J.; Chen, W.; Yang, M.; Bai, X.; Pang, Y.; Yu, J.; Han, J.; Han, B. PADI2-mediated citrullination promotes prostate cancer progression. Cancer Res., 2017, 77(21), 5755-5768.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0150] [PMID: 28819028]
[40]
Vossenaar, E.R.; Zendman, A.J.; van Venrooij, W.J.; Pruijn, G.J. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays, 2003, 25(11), 1106-1118.
[http://dx.doi.org/10.1002/bies.10357] [PMID: 14579251]
[41]
McElwee, J.L.; Mohanan, S.; Horibata, S.; Sams, K.L.; Anguish, L.J.; McLean, D.; Cvitaš, I.; Wakshlag, J.J.; Coonrod, S.A. PAD2 overexpression in transgenic mice promotes spontaneous skin neoplasia. Cancer Res., 2014, 74(21), 6306-6317.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0749] [PMID: 25213324]
[42]
Proost, P.; Loos, T.; Mortier, A.; Schutyser, E.; Gouwy, M.; Noppen, S.; Dillen, C.; Ronsse, I.; Conings, R.; Struyf, S.; Opdenakker, G.; Maudgal, P.C.; Van Damme, J. Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J. Exp. Med., 2008, 205(9), 2085-2097.
[http://dx.doi.org/10.1084/jem.20080305] [PMID: 18710930]
[43]
Gasparoto, T.H.; de Oliveira, C.E.; de Freitas, L.T.; Pinheiro, C.R.; Ramos, R.N.; da Silva, A.L.; Garlet, G.P.; da Silva, J.S.; Campanelli, A.P. Inflammatory events during murine squamous cell carcinoma development. J. Inflamm. (Lond.), 2012, 9(1), 46.
[http://dx.doi.org/10.1186/1476-9255-9-46] [PMID: 23176085]
[44]
Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 2009, 30(7), 1073-1081.
[http://dx.doi.org/dx.d oi.org/10.1093/carcin/bgp127] [PMID: 19468060]
[45]
Lanier, L.L.; Chang, C.; Phillips, J.H. Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J. Immunol., 1994, 153(6), 2417-2428.
[PMID: 8077657]
[46]
Poggi, A.; Rubartelli, A.; Moretta, L.; Zocchi, M.R. Expression and function of NKRP1A molecule on human monocytes and dendritic cells. Eur. J. Immunol., 1997, 27(11), 2965-2970.
[http://dx.doi.org/10.1002/eji.1830271132] [PMID: 9394825]
[47]
O’Keeffe, J.; Doherty, D.G.; Kenna, T.; Sheahan, K.; O’Donoghue, D.P.; Hyland, J.M.; O’Farrelly, C. Diverse populations of T cells with NK cell receptors accumulate in the human intestine in health and in colorectal cancer. Eur. J. Immunol., 2004, 34(8), 2110-2119.
[http://dx.doi.org/10.1002/eji.200424958] [PMID: 15259008]
[48]
Iliopoulou, E.G.; Karamouzis, M.V.; Missitzis, I.; Ardavanis, A.; Sotiriadou, N.N.; Baxevanis, C.N.; Rigatos, G.; Papamichail, M.; Perez, S.A. Increased frequency of CD4+ cells expressing CD161 in cancer patients. Clin. Cancer Res., 2006, 12(23), 6901-6909.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0977] [PMID: 17145807]
[49]
Aust, J.G.; Gays, F.; Mickiewicz, K.M.; Buchanan, E.; Brooks, C.G. The expression and function of the NKRP1 receptor family in C57BL/6 mice. J. Immunol., 2009, 183(1), 106-116.
[http://dx.doi.org/10.4049/jimmunol.0804281] [PMID: 19535641]
[50]
Aldemir, H.; Prod’homme, V.; Dumaurier, M.J.; Retiere, C.; Poupon, G.; Cazareth, J.; Bihl, F.; Braud, V.M. Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. J. Immunol., 2005, 175(12), 7791-7795.
[http://dx.doi.org/10.4049/jimmunol.175.12.7791] [PMID: 16339512]
[51]
Rosen, D.B.; Bettadapura, J.; Alsharifi, M.; Mathew, P.A.; Warren, H.S.; Lanier, L.L. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J. Immunol., 2005, 175(12), 7796-7799.
[http://dx.doi.org/10.4049/jimmunol.175.12.7796] [PMID: 16339513]
[52]
Germain, C.; Meier, A.; Jensen, T.; Knapnougel, P.; Poupon, G.; Lazzari, A.; Neisig, A.; Håkansson, K.; Dong, T.; Wagtmann, N.; Galsgaard, E.D.; Spee, P.; Braud, V.M. Induction of lectin-like transcript 1 (LLT1) protein cell surface expression by pathogens and interferon-γ contributes to modulate immune responses. J. Biol. Chem., 2011, 286(44), 37964-37975.
[http://dx.doi.org/10.1074/jbc.M111.285312] [PMID: 21930700]
[53]
Braud, V.M.; Biton, J.; Becht, E.; Knockaert, S.; Mansuet-Lupo, A.; Cosson, E.; Damotte, D.; Alifano, M.; Validire, P. Expression of LLT1 and its receptor CD161 in lung cancer is associated with better clinical outcome. OncoImmunology, 2018, 7(5)e1423184
[54]
Li, B.Q.; You, J.; Chen, L.; Zhang, J.; Zhang, N.; Li, H.P.; Huang, T.; Kong, X.Y.; Cai, Y.D. Identification of lung-cancer-related genes with the shortest path approach in a protein-protein interaction network. BioMed Res. Int., 2013.2013267375
[http://dx.doi.org/10.1155/2013/267375] [PMID: 23762832]
[55]
Taguchi, A.; Politi, K.; Pitteri, S.J.; Lockwood, W.W.; Faça, V.M.; Kelly-Spratt, K.; Wong, C.H.; Zhang, Q.; Chin, A.; Park, K.S.; Goodman, G.; Gazdar, A.F.; Sage, J.; Dinulescu, D.M.; Kucherlapati, R.; Depinho, R.A.; Kemp, C.J.; Varmus, H.E.; Hanash, S.M. Lung cancer signatures in plasma based on proteome profiling of mouse tumor models. Cancer Cell, 2011, 20(3), 289-299.
[http://dx.doi.org/10.1016/j.ccr.2011.08.007] [PMID: 21907921]
[56]
Wang, Y.C.; Chen, B.S. A network-based biomarker approach for molecular investigation and diagnosis of lung cancer. BMC Med. Genomics, 2011, 4, 2.
[http://dx.doi.org/10.1186/1755-8794-4-2] [PMID: 21211025]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy