Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Therapeutic Potentials of A2B Adenosine Receptor Ligands: Current Status and Perspectives

Author(s): Balakumar Chandrasekaran*, Sara Samarneh , Abdul Muttaleb Yousef Jaber, Ghadir Kassab and Nikhil Agrawal

Volume 25, Issue 25, 2019

Page: [2741 - 2771] Pages: 31

DOI: 10.2174/1381612825666190717105834

Price: $65

Abstract

Background: Adenosine receptors (ARs) are classified as A1, A2A, A2B, and A3 subtypes belong to the superfamily of G-protein coupled receptors (GPCRs). More than 40% of modern medicines act through either activation or inhibition of signaling processes associated with GPCRs. In particular, A2B AR signaling pathways are implicated in asthma, inflammation, cancer, ischemic hyperfusion, diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, and kidney disease.

Methods: This article reviews different disease segments wherein A2B AR is implicated and discusses the potential role of subtype-selective A2B AR ligands in the management of such diseases or disorders. All the relevant publications on this topic are reviewed and presented scientifically.

Results: This review provides an up-to-date highlight of the recent advances in the development of novel and selective A2B AR ligands and their therapeutic role in treating various disease conditions. A special focus has been given to the therapeutic potentials of selective A2B AR ligands in the management of airway inflammatory conditions and cancer.

Conclusions: This systematic review demonstrates the current status and perspectives of A2B AR ligands as therapeutically useful agents that would assist medicinal chemists and pharmacologists in discovering novel and subtype-selective A2B AR ligands as potential drug candidates.

Keywords: A2B adenosine receptor, asthma, cancer, diabetes, GIT disorders, G-protein coupled receptors (GPCRs).

[1]
Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacol Rev 2011; 63(1): 1-34.
[http://dx.doi.org/10.1124/pr.110.003285] [PMID: 21303899]
[2]
Burnstock G. Purinergic receptors. J Theor Biol 1976; 62(2): 491-503.
[http://dx.doi.org/10.1016/0022-5193(76)90133-8] [PMID: 994531]
[3]
Moro S, Gao ZG, Jacobson KA, Spalluto G. Progress in the pursuit of therapeutic adenosine receptor antagonists. Med Res Rev 2006; 26(2): 131-59.
[http://dx.doi.org/10.1002/med.20048] [PMID: 16380972]
[4]
Londos C, Cooper DM, Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 1980; 77(5): 2551-4.
[http://dx.doi.org/10.1073/pnas.77.5.2551] [PMID: 6248853]
[5]
Daly JW, Butts-Lamb P, Padgett W. Subclasses of adenosine receptors in the central nervous system: Interaction with caffeine and related methylxanthines. Cell Mol Neurobiol 1983; 3(1): 69-80.
[http://dx.doi.org/10.1007/BF00734999] [PMID: 6309393]
[6]
Elfman L, Lindgren E, Walum E, Fredholm BB. Adenosine analogues stimulate cyclic AMP-accumulation in cultured neuroblastoma and glioma cells. Acta Pharmacol Toxicol (Copenh) 1984; 55(4): 297-302.
[http://dx.doi.org/10.1111/j.1600-0773.1984.tb01985.x] [PMID: 6095594]
[7]
Bruns RF, Lu GH, Pugsley TA. Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 1986; 29(4): 331-46.
[PMID: 3010074]
[8]
Olah ME, Stiles GL. Adenosine receptor subtypes: Characterization and therapeutic regulation. Annu Rev Pharmacol Toxicol 1995; 35: 581-606.
[http://dx.doi.org/10.1146/annurev.pa.35.040195.003053] [PMID: 7598508]
[9]
Townsend-Nicholson A, Baker E, Schofield PR, Sutherland GR. Localization of the adenosine A1 receptor subtype gene (ADORA1) to chromosome 1q32.1. Genomics 1995; 26(2): 423-5.
[http://dx.doi.org/10.1016/0888-7543(95)80236-F] [PMID: 7601478]
[10]
Livingston M, Heaney LG, Ennis M. Adenosine, inflammation and asthma--a review. Inflamm Res 2004; 53(5): 171-8.
[http://dx.doi.org/10.1007/s00011-004-1248-2] [PMID: 15105965]
[11]
Yuzlenko O, Kieć-Kononowicz K. Potent adenosine A1 and A2A receptors antagonists: Recent developments. Curr Med Chem 2006; 13(30): 3609-25.
[http://dx.doi.org/10.2174/092986706779026093] [PMID: 17168726]
[12]
Boison D, Singer P, Shen HY, Feldon J, Yee BK. Adenosine hypothesis of schizophrenia--opportunities for pharmacotherapy. Neuropharmacology 2012; 62(3): 1527-43.
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.048] [PMID: 21315743]
[13]
Agrawal N, Chandrasekaran B, Al-Aboudi A. Recent advances in the in-silico structure-based and ligand-based approaches for the design and discovery of agonists and antagonists of A2A adenosine receptor. Curr Pharm Des 2019; 25(7): 774-82.
[http://dx.doi.org/10.2174/1381612825666190306162006] [PMID: 30848185]
[14]
Fredholm BB, Cunha RA, Svenningsson P. Pharmacology of adenosine A2A receptors and therapeutic applications. Curr Top Med Chem 2003; 3(4): 413-26.
[http://dx.doi.org/10.2174/1568026033392200] [PMID: 12570759]
[15]
Feoktistov I, Biaggioni I. Adenosine A2B receptors. Pharmacol Rev 1997; 49(4): 381-402.
[PMID: 9443164]
[16]
Feoktistov I, Biaggioni I. Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest 1995; 96(4): 1979-86.
[http://dx.doi.org/10.1172/JCI118245] [PMID: 7560091]
[17]
Chandrasekaran B, Deb PK, Kachler S, Akkinepalli RR, Mailavaram R, Klotz KN. Synthesis and adenosine receptors binding studies of new fluorinated analogues of pyrido[2,3-d]pyrimidines and quinazolines. Med Chem Res 2018; 27: 756-67.
[http://dx.doi.org/10.1007/s00044-017-2099-z]
[18]
Deb PK, Mailavaram R, Chandrasekaran B, et al. Synthesis, adenosine receptor binding and molecular modelling studies of novel thieno[2,3-d]pyrimidine derivatives. Chem Biol Drug Des 2018; 91(4): 962-9.
[http://dx.doi.org/10.1111/cbdd.13155] [PMID: 29194979]
[19]
Chandrasekaran B, Deb PK, Rao AR. Structure-based design and pharmacological study of fluorinated fused quinazolines as adenosine A2B receptor antagonists. JSM Chem 2017; 5: 1-10.
[20]
Banda V, Chandrasekaran B, Köse M, et al. Synthesis of novel pyrido[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives: Potent and selective adenosine A3 receptor antagonists. Arch Pharm (Weinheim) 2013; 346(10): 699-707.
[http://dx.doi.org/10.1002/ardp.201300003] [PMID: 23996524]
[21]
Pran Kishore D, Balakumar C, Raghuram Rao A, Roy PP, Roy K. QSAR of adenosine receptor antagonists: Exploring physicochemical requirements for binding of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives with human adenosine A(3) receptor subtype. Bioorg Med Chem Lett 2011; 21(2): 818-23.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.094] [PMID: 21163647]
[22]
Chandrasekaran B, Deb PK, Rao KV, et al. Design, microwave-assisted synthesis and in silico docking studies of new 4H-pyrimido[2,1-b]benzo- thiazole-2-arylamino-3-cyano-4-ones as possible adenosine A2B receptor antagonists. Indian J Chem B 2012; 51: 1105-13.
[23]
Dungo R, Deeks ED. Istradefylline: first global approval. Drugs 2013; 73(8): 875-82.
[http://dx.doi.org/10.1007/s40265-013-0066-7] [PMID: 23700273]
[24]
Hikichi M, Hashimoto S, Gon Y. Asthma and COPD overlap pathophysiology of ACO. Allergol Int 2018; 67(2): 179-86.
[http://dx.doi.org/10.1016/j.alit.2018.01.001] [PMID: 29550368]
[25]
Feoktistov I, Polosa R, Holgate ST, Biaggioni I. Adenosine A2B receptors: A novel therapeutic target in asthma? Trends Pharmacol Sci 1998; 19(4): 148-53.
[http://dx.doi.org/10.1016/S0165-6147(98)01179-1] [PMID: 9612090]
[26]
Sun CX, Zhong H, Mohsenin A, et al. Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J Clin Invest 2006; 116(8): 2173-82.
[http://dx.doi.org/10.1172/JCI27303] [PMID: 16841096]
[27]
Chen J-F, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets--what are the challenges? Nat Rev Drug Discov 2013; 12(4): 265-86.
[http://dx.doi.org/10.1038/nrd3955] [PMID: 23535933]
[28]
Aherne CM, Kewley EM, Eltzschig HK. The resurgence of A2B adenosine receptor signaling. Biochim Biophys Acta 2011; 1808(5): 1329-39.
[http://dx.doi.org/10.1016/j.bbamem.2010.05.016] [PMID: 20546702]
[29]
Zhong H, Belardinelli L, Maa T, Feoktistov I, Biaggioni I, Zeng DA. (2B) adenosine receptors increase cytokine release by bronchial smooth muscle cells. Am J Respir Cell Mol Biol 2004; 30(1): 118-25.
[http://dx.doi.org/10.1165/rcmb.2003-0118OC] [PMID: 12855406]
[30]
Russo C, Arcidiacono G, Polosa R. Adenosine receptors: Promising targets for the development of novel therapeutics and diagnostics for asthma. Fundam Clin Pharmacol 2006; 20(1): 9-19.
[http://dx.doi.org/10.1111/j.1472-8206.2005.00388.x] [PMID: 16448391]
[31]
Muller CE. Adenosine receptor ligands-recent developments part I. Agonists. Curr Med Chem 2000; 7(12): 1269-88.
[http://dx.doi.org/10.2174/0929867003374101] [PMID: 11032971]
[32]
Rosentreter U, Henning R, Bauser M, et al. Bayer Aktiengeselischaft (Leverkusen, DE), Substituted 2-thio-3,5-dicyano-4-aryl- 6-aminopyridines and the use thereof. United States Patent US7135486. 2006.
[33]
de Zwart M, Link R, von Frijtag Drabbe Künzel JK, et al. A functional screening of adenosine analogues at the adenosine A2B receptor: a search for potent agonists. Nucleosides Nucleotides 1998; 17(6): 969-85.
[http://dx.doi.org/10.1080/07328319808004215] [PMID: 9708319]
[34]
Williams M, Kowaluk EA, Arneric SP. Emerging molecular approaches to pain therapy. J Med Chem 1999; 42(9): 1481-500.
[http://dx.doi.org/10.1021/jm9805034] [PMID: 10229619]
[35]
Clancy JP, Ruiz FE, Sorscher EJ. Adenosine and its nucleotides activate wild-type and R117H CFTR through an A2B receptor-coupled pathway. Am J Physiol 1999; 276(2): C361-9.
[http://dx.doi.org/10.1152/ajpcell.1999.276.2.C361] [PMID: 9950763]
[36]
de Zwart M, de Groote M, van der Klein PAM, et al. Phenyl-substituted N6-phenyladenosines and N6-phenyl-5′-N-ethylcarboxamido-adenosines with high activity at human adenosine A2B receptors. Drug Dev Res 2000; 49: 85-93.
[http://dx.doi.org/10.1002/(SICI)1098-2299(200002)49:2<85:AID-DDR2>3.0.CO;2-W]
[37]
Vittori S, Costanzi S, Lambertucci C, et al. A2B adenosine receptor agonists: Synthesis and biological evaluation of 2-phenylhydroxypropynyl adenosine and NECA derivatives. Nucleosides Nucleotides Nucleic Acids 2004; 23(1-2): 471-81.
[http://dx.doi.org/10.1081/NCN-120028340] [PMID: 15043167]
[38]
Adachi H, Palaniappan KK, Ivanov AA, Bergman N, Gao ZG, Jacobson KA. Structure-activity relationships of 2,N(6),5′-substituted adenosine derivatives with potent activity at the A2B adenosine receptor. J Med Chem 2007; 50(8): 1810-27.
[http://dx.doi.org/10.1021/jm061278q] [PMID: 17378544]
[39]
Jacobson KA, Ohno M, Duong HT, et al. A neoceptor approach to unraveling microscopic interactions between the human A2A adenosine receptor and its agonists. Chem Biol 2005; 12(2): 237-47.
[http://dx.doi.org/10.1016/j.chembiol.2004.12.010] [PMID: 15734651]
[40]
Baraldi PG, Preti D, Tabrizi MA, et al. Synthesis and biological evaluation of novel 1-deoxy-1-[6-[((hetero)arylcarbonyl)hydrazino]- 9H-purin-9-yl]-N-ethyl-β-D-ribofuranuronamide derivatives as useful templates for the development of A2B adenosine receptor agonists. J Med Chem 2007; 50(2): 374-80.
[http://dx.doi.org/10.1021/jm061170a] [PMID: 17228880]
[41]
Baraldi PG, Preti D, Tabrizi MA, et al. N(6)-[(hetero)aryl/(cyclo)alkyl-carbamoyl-methoxy-phenyl]-(2-chloro)-5′-N-ethylcarboxamido-adenosines: The first example of adenosine-related structures with potent agonist activity at the human A(2B) adenosine receptor. Bioorg Med Chem 2007; 15(7): 2514-27.
[http://dx.doi.org/10.1016/j.bmc.2007.01.055] [PMID: 17306548]
[42]
Beukers MW, Chang LCW, von Frijtag Drabbe Künzel JK, et al. New, non-adenosine, high-potency agonists for the human adenosine A2B receptor with an improved selectivity profile compared to the reference agonist N-ethylcarboxamidoadenosine. J Med Chem 2004; 47(15): 3707-9.
[http://dx.doi.org/10.1021/jm049947s] [PMID: 15239649]
[43]
Beukers MW, Meurs I, Ijzerman AP. Structure-affinity relationships of adenosine A2B receptor ligands. Med Res Rev 2006; 26(5): 667-98.
[http://dx.doi.org/10.1002/med.20069] [PMID: 16847822]
[44]
Eckle T, Grenz A, Laucher S, Eltzschig HK. A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. J Clin Invest 2008; 118(10): 3301-15.
[http://dx.doi.org/10.1172/JCI34203] [PMID: 18787641]
[45]
Baraldi PG, Romagnoli R, Preti D, Fruttarolo F, Carrion MD, Tabrizi MA. Ligands for A2B adenosine receptor subtype. Curr Med Chem 2006; 13(28): 3467-82.
[http://dx.doi.org/10.2174/092986706779010306] [PMID: 17168717]
[46]
Hayallah AM, Sandoval-Ramírez J, Reith U, et al. 1,8-disubstituted xanthine derivatives: Synthesis of potent A2B-selective adenosine receptor antagonists. J Med Chem 2002; 45(7): 1500-10.
[http://dx.doi.org/10.1021/jm011049y] [PMID: 11906291]
[47]
Kim Y-C, Ji X, Melman N, Linden J, Jacobson KA. Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A(2B) adenosine receptors. J Med Chem 2000; 43(6): 1165-72.
[http://dx.doi.org/10.1021/jm990421v] [PMID: 10737749]
[48]
Baraldi PG, Tabrizi MA, Preti D, et al. [3H]-MRE 2029-F20, a selective antagonist radioligand for the human A2B adenosine receptors. Bioorg Med Chem Lett 2004; 14(13): 3607-10.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.084] [PMID: 15177484]
[49]
Baraldi PG, Tabrizi MA, Preti D, et al. Design, synthesis, and biological evaluation of new 8-heterocyclic xanthine derivatives as highly potent and selective human A2B adenosine receptor antagonists. J Med Chem 2004; 47(6): 1434-47.
[http://dx.doi.org/10.1021/jm0309654] [PMID: 14998332]
[50]
Zablocki J, Kalla R, Perry T, et al. The discovery of a selective, high affinity A(2B) adenosine receptor antagonist for the potential treatment of asthma. Bioorg Med Chem Lett 2005; 15(3): 609-12.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.044] [PMID: 15664822]
[51]
Kalla R, Perry T, Elzein E, et al. Dengming Xiao JZ. CV Therapeutics, Inc., A2B adenosine receptor antagonists. United States patent US 2005.2005947708.
[52]
Yan L, Bertarelli DCG, Hayallah AM, Meyer H, Klotz K-N, Müller CE. A new synthesis of sulfonamides by aminolysis of p-nitrophenylsulfonates yielding potent and selective adenosine A2B receptor antagonists. J Med Chem 2006; 49(14): 4384-91.
[http://dx.doi.org/10.1021/jm060277v] [PMID: 16821798]
[53]
Grahner B, Winiwarter S, Lanzner W, Müller CE. Synthesis and structure-activity relationships of deazaxanthines: analogs of potent A1- and A2-adenosine receptor antagonists. J Med Chem 1994; 37(10): 1526-34.
[http://dx.doi.org/10.1021/jm00036a019] [PMID: 8182711]
[54]
Carotti A, Cadavid MI, Centeno NB, et al. Design, synthesis, and structure-activity relationships of 1-,3-,8-, and 9-substituted-9-deazaxanthines at the human A2B adenosine receptor. J Med Chem 2006; 49(1): 282-99.
[http://dx.doi.org/10.1021/jm0506221] [PMID: 16392813]
[55]
Camaioni E, Costanzi S, Vittori S, Volpini R, Klotz K-N, Cristalli G. New substituted 9-alkylpurines as adenosine receptor ligands. Bioorg Med Chem 1998; 6(5): 523-33.
[http://dx.doi.org/10.1016/S0968-0896(98)00007-8] [PMID: 9629466]
[56]
Lambertucci K, Camaioni E, Costanzi S, et al. Abstracts from purines 2000: Biochemical, pharmacological, and clinical perspectives. Drug Dev Res 2000; 50: 66-83.
[http://dx.doi.org/10.1002/1098-2299(200005)50:1<66:AID-DDR8>3.0.CO;2-B]
[57]
Stewart M, Steinig AG, Ma C, et al. [3H]OSIP339391, a selective, novel, and high affinity antagonist radioligand for adenosine A2B receptors. Biochem Pharmacol 2004; 68(2): 305-12.
[http://dx.doi.org/10.1016/j.bcp.2004.03.026] [PMID: 15194002]
[58]
Webb TR, Lvovskiy D, Kim SA, et al. Quinazolines as adenosine receptor antagonists: SAR and selectivity for A2B receptors. Bioorg Med Chem 2003; 11(1): 77-85.
[http://dx.doi.org/10.1016/S0968-0896(02)00323-1] [PMID: 12467710]
[59]
Deb PK, Al-Attraqchi O, Al-Qattan MN, Raghu Prasad M, Tekade RK. Applications of computers in pharmaceutical product formulation 2018; 665-703.
[http://dx.doi.org/10.1016/B978-0-12-814421-3.00019-1]
[60]
Kim Y-C, de Zwart M, Chang L, et al. Derivatives of the triazoloquinazoline adenosine antagonist (CGS 15943) having high potency at the human A2B and A3 receptor subtypes. J Med Chem 1998; 41(15): 2835-45.
[http://dx.doi.org/10.1021/jm980094b] [PMID: 9667972]
[61]
Baraldi PG, Cacciari B, Romagnoli R, et al. Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives as highly potent and selective human A(3) adenosine receptor antagonists: Influence of the chain at the N(8) pyrazole nitrogen. J Med Chem 2000; 43(25): 4768-80.
[http://dx.doi.org/10.1021/jm001047y] [PMID: 11123985]
[62]
Ji XD, Jacobson KA. Use of the triazolotriazine [3H]ZM 241385 as a radioligand at recombinant human A2B adenosine receptors. Drug Des Discov 1999; 16(3): 217-26.
[PMID: 10624567]
[63]
de Zwart M, Vollinga RC, Beukers MW, et al. Potent antagonists for the human adenosine A2B receptor. Derivatives of the triazolo- triazine adenosine receptor antagonist ZM241385 with high affinity. Drug Dev Res 1999; 48: 95-103.
[http://dx.doi.org/10.1002/(SICI)1098-2299(199911)48:3<95:AID-DDR1>3.0.CO;2-B]
[64]
Juan BV, Trias CE. Pyrimidin-2-amine derivatives and their use as A2B adenosine receptor antagonist. United States Patent US 2007.20070265273..
[65]
Vidal B, Nueda A, Esteve C, et al. Discovery and characterization of 4′-(2-furyl)-N-pyridin-3-yl-4,5′-bipyrimidin-2′-amine (LAS38096), a potent, selective, and efficacious A2B adenosine receptor antagonist. J Med Chem 2007; 50(11): 2732-6.
[http://dx.doi.org/10.1021/jm061333v] [PMID: 17469811]
[66]
Fukumoto S, Yamamoto T, Okaniwa M, Tanaka T. Takeda Pharmaceutical Company (Osaka, JP) Pyrazoloquinolone derivative and use thereof. United States Patent US 2007.20070281963..
[67]
Press NJ, Taylor RJ, Fullerton JD, et al. A new orally bioavailable dual adenosine A2B/A3 receptor antagonist with therapeutic potential. Bioorg Med Chem Lett 2005; 15(12): 3081-5.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.021] [PMID: 15876531]
[68]
Vidal JB, Fonquerna PS, Eastwood PR, et al. Laboratorios Almirall, S.A. (Barcelona, ES), Imidazopyridine derivatives as A2B adenosine receptor antagonists. United States Patent US 2010.7855202..
[69]
Harada H, Asano O, Miyazawa S, Ueda M, Yasuda M, Yasuda N. 2-Aminopyridine compounds and use thereof as drugs. United States Patent US 2004.20040006082..
[70]
Vidal BJ, Esteve CT, Soca LP, Eastwood PR, Laboratorios Almirall SA. (Barcelona, ES).Pyrazine derivatives useful as adenosine receptor antagonists. 2007.
[71]
Bedford ST, Benwell KR, Brooks T, et al. Discovery and optimization of potent and selective functional antagonists of the human adenosine A2B receptor. Bioorg Med Chem Lett 2009; 19(20): 5945-9.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.040] [PMID: 19733067]
[72]
Firooznia F, Cheung AWH, Brinkman J, et al. Discovery of benzothiazole-based adenosine A2B receptor antagonists with improved A2A selectivity. Bioorg Med Chem Lett 2011; 21(7): 1933-6.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.053] [PMID: 21388809]
[73]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68(1): 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[74]
Sousa JB, Fresco P, Diniz C, Goncalves J. Adenosine receptor ligands on cancer therapy: A review of patent literature. Recent Patents Anticancer Drug Discov 2018; 13(1): 40-69.
[http://dx.doi.org/10.2174/1574892812666171108115959] [PMID: 29119938]
[75]
Sorrentino C, Morello S. Role of adenosine in tumor progression: Focus on A2B receptor as potential therapeutic target. J Cancer Metastasis Treat 2017; 3: 127-38.
[http://dx.doi.org/10.20517/2394-4722.2017.29]
[76]
Allard D, Turcotte M, Stagg J. Targeting A2 adenosine receptors in cancer. Immunol Cell Biol 2017; 95(4): 333-9.
[http://dx.doi.org/10.1038/icb.2017.8] [PMID: 28174424]
[77]
Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA. Adenosine receptors and cancer. Biochim Biophys Acta 2011; 1808(5): 1400-12.
[http://dx.doi.org/10.1016/j.bbamem.2010.09.020] [PMID: 20888788]
[78]
Corona SP, Sobhani N, Generali D. Adenosine A2B receptor: Novel anti-cancer therapeutic implications. J Cancer Metastasis Treat 2017; 3: 206.
[http://dx.doi.org/10.20517/2394-4722.2017.50]
[79]
Xiang H jun, Liu Z cai, Wang D sheng, Chen Y, Yang Y ling, Dou K feng. Adenosine A2B receptor is highly expressed in human hepatocellular carcinoma. Hepatol Res 2006; 36: 56-60.
[http://dx.doi.org/10.1016/j.hepres.2006.06.008]
[80]
Kasama H, Sakamoto Y, Kasamatsu A, et al. Adenosine A2b receptor promotes progression of human oral cancer. BMC Cancer 2015; 15: 563.
[http://dx.doi.org/10.1186/s12885-015-1577-2] [PMID: 26228921]
[81]
Nakatsukasa H, Tsukimoto M, Harada H, Kojima S. Adenosine A2B receptor antagonist suppresses differentiation to regulatory T cells without suppressing activation of T cells. Biochem Biophys Res Commun 2011; 409(1): 114-9.
[http://dx.doi.org/10.1016/j.bbrc.2011.04.125] [PMID: 21557932]
[82]
Xaus J, Valledor AF, Cardó M, et al. Adenosine inhibits macrophage colony-stimulating factor-dependent proliferation of macrophages through the induction of p27kip-1 expression. J Immunol 1999; 163(8): 4140-9.
[PMID: 10510349]
[83]
Novitskiy SV, Ryzhov S, Zaynagetdinov R, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112(5): 1822-31.
[http://dx.doi.org/10.1182/blood-2008-02-136325] [PMID: 18559975]
[84]
Merighi S, Simioni C, Gessi S, et al. A(2B) and A(3) adenosine receptors modulate vascular endothelial growth factor and interleukin-8 expression in human melanoma cells treated with etoposide and doxorubicin. Neoplasia 2009; 11(10): 1064-73.
[http://dx.doi.org/10.1593/neo.09768] [PMID: 19794965]
[85]
Sorrentino C, Miele L, Porta A, Pinto A, Morello S. Activation of the A2B adenosine receptor in B16 melanomas induces CXCL12 expression in FAP-positive tumor stromal cells, enhancing tumor progression. Oncotarget 2016; 7(39): 64274-88.
[http://dx.doi.org/10.18632/oncotarget.11729] [PMID: 27590504]
[86]
Daniele S, Zappelli E, Natali L, Martini C, Trincavelli ML. Modulation of A1 and A2B adenosine receptor activity: A new strategy to sensitise glioblastoma stem cells to chemotherapy. Cell Death Dis 2014; 5e1539
[http://dx.doi.org/10.1038/cddis.2014.487] [PMID: 25429616]
[87]
Feoktistov I, Ryzhov S, Goldstein AE, Biaggioni I. Mast cell-mediated stimulation of angiogenesis: cooperative interaction between A2B and A3 adenosine receptors. Circ Res 2003; 92(5): 485-92.
[http://dx.doi.org/10.1161/01.RES.0000061572.10929.2D] [PMID: 12600879]
[88]
Feoktistov I, Garland EM, Goldstein AE, et al. Inhibition of human mast cell activation with the novel selective adenosine A(2B) receptor antagonist 3-isobutyl-8-pyrrolidinoxanthine (IPDX)(2). Biochem Pharmacol 2001; 62(9): 1163-73.
[http://dx.doi.org/10.1016/S0006-2952(01)00765-1] [PMID: 11705449]
[89]
Ma DF, Kondo T, Nakazawa T, et al. Hypoxia-inducible adenosine A2B receptor modulates proliferation of colon carcinoma cells. Hum Pathol 2010; 41(11): 1550-7.
[http://dx.doi.org/10.1016/j.humpath.2010.04.008] [PMID: 20619442]
[90]
Stagg J, Divisekera U, McLaughlin N, et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci USA 2010; 107(4): 1547-52.
[http://dx.doi.org/10.1073/pnas.0908801107] [PMID: 20080644]
[91]
Mølck C, Ryall J, Failla LM, et al. The A2b adenosine receptor antagonist PSB-603 promotes oxidative phosphorylation and ROS production in colorectal cancer cells via adenosine receptor-independent mechanism. Cancer Lett 2016; 383(1): 135-43.
[http://dx.doi.org/10.1016/j.canlet.2016.09.018] [PMID: 27693637]
[92]
Cekic C, Sag D, Li Y, Theodorescu D, Strieter RM, Linden J. Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J Immunol 2012; 188(1): 198-205.
[http://dx.doi.org/10.4049/jimmunol.1101845] [PMID: 22116822]
[93]
Kolachala V, Ruble B, Vijay-Kumar M, et al. Blockade of adenosine A2B receptors ameliorates murine colitis. Br J Pharmacol 2008; 155(1): 127-37.
[http://dx.doi.org/10.1038/bjp.2008.227] [PMID: 18536750]
[94]
Wei Q, Costanzi S, Balasubramanian R, Gao Z-G, Jacobson KA. A2B adenosine receptor blockade inhibits growth of prostate cancer cells. Purinergic Signal 2013; 9(2): 271-80.
[http://dx.doi.org/10.1007/s11302-012-9350-3] [PMID: 23315335]
[95]
Iannone R, Miele L, Maiolino P, Pinto A, Morello S. Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia 2013; 15(12): 1400-9.
[http://dx.doi.org/10.1593/neo.131748] [PMID: 24403862]
[96]
Desmet CJ, Gallenne T, Prieur A, et al. Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc Natl Acad Sci USA 2013; 110(13): 5139-44.
[http://dx.doi.org/10.1073/pnas.1222085110] [PMID: 23483055]
[97]
Acurio J, Troncoso F, Bertoglia P, et al. Potential role of A2B adenosine receptors on proliferation/migration of fetal endothelium derived from preeclamptic pregnancies. BioMed Res Int 2014; 2014274507
[http://dx.doi.org/10.1155/2014/274507] [PMID: 24877077]
[98]
Sorrentino C, Miele L, Porta A, et al. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget 2015; 6(29): 27478-89.
[http://dx.doi.org/10.18632/oncotarget.4393] [PMID: 26317647]
[99]
Du X, Ou X, Song T, et al. Adenosine A2B receptor stimulates angiogenesis by inducing VEGF and eNOS in human microvascular endothelial cells. Exp Biol Med (Maywood) 2015; 240(11): 1472-9.
[http://dx.doi.org/10.1177/1535370215584939] [PMID: 25966978]
[100]
Long JS, Schoonen PM, Graczyk D, O’Prey J, Ryan KM. p73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene 2015; 34(40): 5152-62.
[http://dx.doi.org/10.1038/onc.2014.436] [PMID: 25659586]
[101]
Hajiahmadi S, Panjehpour M, Aghaei M, Shabani M. Activation of A2b adenosine receptor regulates ovarian cancer cell growth: Involvement of Bax/Bcl-2 and caspase-3. Biochem Cell Biol 2015; 93(4): 321-9.
[http://dx.doi.org/10.1139/bcb-2014-0117] [PMID: 25877700]
[102]
Vecchio EA, Tan CYR, Gregory KJ, Christopoulos A, White PJ, May LT. Ligand-independent adenosine A2B receptor constitutive activity as a promoter of prostate cancer cell proliferation. J Pharmacol Exp Ther 2016; 357(1): 36-44.
[http://dx.doi.org/10.1124/jpet.115.230003] [PMID: 26791603]
[103]
Fernandez-Gallardo M, González-Ramírez R, Sandoval A, Felix R, Monjaraz E. Adenosine stimulate proliferation and migration in triple negative breast cancer cells. PLoS One 2016; 11(12)e0167445
[http://dx.doi.org/10.1371/journal.pone.0167445] [PMID: 27911956]
[104]
Mittal D, Sinha D, Barkauskas D, et al. Adenosine 2B receptor expression on cancer cells promotes metastasis. Cancer Res 2016; 76(15): 4372-82.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0544] [PMID: 27221704]
[106]
Finks SW, Airee A, Chow SL, et al. Key articles of dietary interventions that influence cardiovascular mortality. Pharmacotherapy 2012; 32(4): e54-87.
[http://dx.doi.org/10.1002/j.1875-9114.2011.01087.x] [PMID: 22392596]
[107]
Kathiresan S, Srivastava D. Genetics of human cardiovascular disease. Cell 2012; 148(6): 1242-57.
[http://dx.doi.org/10.1016/j.cell.2012.03.001] [PMID: 22424232]
[108]
Vane JR, Botting RM. The mechanism of action of aspirin. Thromb Res 2003; 110(5-6): 255-8.
[http://dx.doi.org/10.1016/S0049-3848(03)00379-7] [PMID: 14592543]
[109]
Heagerty AM. functional and structural effects of ACE inhibitors on the cardiovascular system. Cardiology 1991; 79(Suppl. 1): 3-9.
[110]
Mladěnka P, Applová L, Patočka J, et al. TOX-OER and CARDIOTOX Hradec Králové Researchers and Collaborators. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev 2018; 38(4): 1332-403.
[http://dx.doi.org/10.1002/med.21476] [PMID: 29315692]
[111]
Wiklund NP, Cederqvist B, Gustafsson LE. Adenosine enhancement of adrenergic neuroeffector transmission in guinea-pig pulmonary artery. Br J Pharmacol 1989; 96(2): 425-33.
[http://dx.doi.org/10.1111/j.1476-5381.1989.tb11834.x] [PMID: 2538193]
[112]
Tabrizchi R, Bedi S. Pharmacology of adenosine receptors in the vasculature. Pharmacol Ther 2001; 91(2): 133-47.
[http://dx.doi.org/10.1016/S0163-7258(01)00152-8] [PMID: 11728606]
[113]
Chen Y, Epperson S, Makhsudova L, et al. Functional effects of enhancing or silencing adenosine A2b receptors in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2004; 287(6): H2478-86.
[http://dx.doi.org/10.1152/ajpheart.00217.2004] [PMID: 15284071]
[114]
Epperson SA, Brunton LL, Ramirez-Sanchez I, Villarreal F. Adenosine receptors and second messenger signaling pathways in rat cardiac fibroblasts. Am J Physiol Cell Physiol 2009; 296(5): C1171-7.
[http://dx.doi.org/10.1152/ajpcell.00290.2008] [PMID: 19244482]
[115]
Vecchio EA, Chuo CH, Baltos J-A, et al. The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling. Biochem Pharmacol 2016; 117: 46-56.
[http://dx.doi.org/10.1016/j.bcp.2016.08.007] [PMID: 27520486]
[116]
Yadav VR, Nayeem MA, Tilley SL, Mustafa SJ. Angiotensin II stimulation alters vasomotor response to adenosine in mouse mesenteric artery: Role for A1 and A2B adenosine receptors. Br J Pharmacol 2015; 172(20): 4959-69.
[http://dx.doi.org/10.1111/bph.13265] [PMID: 26227882]
[117]
Yang D, Zhang Y, Nguyen HG, et al. The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest 2006; 116(7): 1913-23.
[http://dx.doi.org/10.1172/JCI27933] [PMID: 16823489]
[118]
Yang D, Koupenova M, McCrann DJ, et al. The A2b adenosine receptor protects against vascular injury. Proc Natl Acad Sci USA 2008; 105(2): 792-6.
[http://dx.doi.org/10.1073/pnas.0705563105] [PMID: 18184815]
[119]
Jackson EK, Ren J, Gillespie DG. 2′,3′-cAMP, 3′-AMP, and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors. Am J Physiol Heart Circ Physiol 2011; 301(2): H391-401.
[http://dx.doi.org/10.1152/ajpheart.00336.2011] [PMID: 21622827]
[120]
Raghvendra K. Dubey, Delbert G. Gillespie, Holly Shue EKJ. A2B receptors mediate anti-mitogenesis in vascular smooth muscle cells. Hypertension 2000; 35: 267-72.
[http://dx.doi.org/10.1161/01.HYP.35.1.267]
[121]
Burnstock G. Purinergic signaling and vascular cell proliferation and death. Arterioscler Thromb Vasc Biol 2002; 22(3): 364-73.
[http://dx.doi.org/10.1161/hq0302.105360] [PMID: 11884276]
[122]
Gessi S, Fogli E, Sacchetto V, et al. Adenosine modulates HIF-1α, VEGF, IL-8, and foam cell formation in a human model of hypoxic foam cells. Arterioscler Thromb Vasc Biol 2010; 30(1): 90-7.
[http://dx.doi.org/10.1161/ATVBAHA.109.194902] [PMID: 19834107]
[123]
Bot I, de Vries H, Korporaal SJA, et al. Adenosine A2B receptor agonism inhibits neointimal lesion development after arterial injury in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2012; 32(9): 2197-205.
[http://dx.doi.org/10.1161/ATVBAHA.112.252924] [PMID: 22743060]
[124]
Karmouty-Quintana H, Zhong H, Acero L, et al. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. FASEB J 2012; 26(6): 2546-57.
[http://dx.doi.org/10.1096/fj.11-200907] [PMID: 22415303]
[125]
Toldo S, Zhong H, Mezzaroma E, et al. GS-6201, a selective blocker of the A2B adenosine receptor, attenuates cardiac remodeling after acute myocardial infarction in the mouse. J Pharmacol Exp Ther 2012; 343(3): 587-95.
[http://dx.doi.org/10.1124/jpet.111.191288] [PMID: 22923737]
[126]
Zhang W, Zhang Y, Wang W, et al. Elevated ecto-5′-nucleotidase-mediated increased renal adenosine signaling via A2B adenosine receptor contributes to chronic hypertension. Circ Res 2013; 112(11): 1466-78.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.300166] [PMID: 23584256]
[127]
Nayak S, Khan MAH, Wan TC, et al. Characterization of Dahl salt-sensitive rats with genetic disruption of the A2B adenosine receptor gene: Implications for A2B adenosine receptor signaling during hypertension. Purinergic Signal 2015; 11(4): 519-31.
[http://dx.doi.org/10.1007/s11302-015-9470-7] [PMID: 26385692]
[128]
Tian Y, Piras BA, Kron IL, French BA, Yang Z. Adenosine 2B receptor activation reduces myocardial reperfusion injury by promoting anti-inflammatory macrophages differentiation via PI3K/Akt pathway. Oxid Med Cell Longev 2015; 2015585297
[http://dx.doi.org/10.1155/2015/585297] [PMID: 26161239]
[129]
Koupenova M, Johnston-Cox H, Vezeridis A, et al. A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation 2012; 125(2): 354-63.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.057596] [PMID: 22144568]
[130]
Eckle T, Faigle M, Grenz A, Laucher S, Thompson LF, Eltzschig HK. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 2008; 111(4): 2024-35.
[http://dx.doi.org/10.1182/blood-2007-10-117044] [PMID: 18056839]
[131]
Eckle T, Köhler D, Lehmann R, El Kasmi K, Eltzschig HK. Hypoxia-inducible factor-1 is central to cardioprotection: A new paradigm for ischemic preconditioning. Circulation 2008; 118(2): 166-75.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.758516] [PMID: 18591435]
[132]
Maas JE, Wan TC, Figler RA, Gross GJ, Auchampach JA. Evidence that the acute phase of ischemic preconditioning does not require signaling by the A 2B adenosine receptor. J Mol Cell Cardiol 2010; 49(5): 886-93.
[http://dx.doi.org/10.1016/j.yjmcc.2010.08.015] [PMID: 20797398]
[133]
Kuno A, Critz SD, Cui L, et al. Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A2b-dependent signaling during early reperfusion. J Mol Cell Cardiol 2007; 43(3): 262-71.
[http://dx.doi.org/10.1016/j.yjmcc.2007.05.016] [PMID: 17632123]
[134]
Busse H, Bitzinger D, Höcherl K, et al. Adenosine A2A and A2B receptor substantially attenuate ischemia/reperfusion injury in septic rat hearts. Cardiovasc Drugs Ther 2016; 30(6): 551-8.
[http://dx.doi.org/10.1007/s10557-016-6693-y] [PMID: 27757725]
[135]
Kharroubi AT, Darwish HM. Diabetes mellitus: The epidemic of the century. World J Diabetes 2015; 6(6): 850-67.
[http://dx.doi.org/10.4239/wjd.v6.i6.850] [PMID: 26131326]
[136]
Okur ME, Karantas ID, Siafaka PI. Diabetes mellitus: A review on pathophysiology, current status of oral medications and future perspectives. Acta Pharm Sci 2017; 55: 61-82.
[138]
DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers 2015; 1: 15019.
[http://dx.doi.org/10.1038/nrdp.2015.19] [PMID: 27189025]
[139]
Koupenova M, Ravid K. Adenosine, adenosine receptors and their role in glucose homeostasis and lipid metabolism. J Cell Physiol 2013; 228: 1703-12.
[http://dx.doi.org/10.1002/jcp.24352] [PMID: 23460239]
[140]
Grden M, Podgorska M, Szutowicz A, Pawelczyk T. Diabetes-induced alterations of adenosine receptors expression level in rat liver. Exp Mol Pathol 2007; 83(3): 392-8.
[http://dx.doi.org/10.1016/j.yexmp.2007.03.005] [PMID: 17490639]
[141]
Haskó G, Linden J, Cronstein B, Pacher P. Adenosine receptors: Therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 2008; 7(9): 759-70.
[http://dx.doi.org/10.1038/nrd2638] [PMID: 18758473]
[142]
Ohtani M, Oka T, Ohura K. Possible involvement of A2A and A3 receptors in modulation of insulin secretion and β-cell survival in mouse pancreatic islets. Gen Comp Endocrinol 2013; 187: 86-94.
[http://dx.doi.org/10.1016/j.ygcen.2013.02.011] [PMID: 23453966]
[143]
Andersson O. Role of adenosine signalling and metabolism in β-cell regeneration. Exp Cell Res 2014; 321(1): 3-10.
[http://dx.doi.org/10.1016/j.yexcr.2013.11.019] [PMID: 24315942]
[144]
Faulhaber-Walter R, Jou W, Mizel D, et al. Impaired glucose tolerance in the absence of adenosine A1 receptor signaling. Diabetes 2011; 60(10): 2578-87.
[http://dx.doi.org/10.2337/db11-0058] [PMID: 21831968]
[145]
Németh ZH, Bleich D, Csóka B, et al. Adenosine receptor activation ameliorates type 1 diabetes. FASEB J 2007; 21(10): 2379-88.
[http://dx.doi.org/10.1096/fj.07-8213com] [PMID: 17405852]
[146]
Chia JSJ, McRae JL, Thomas HE, et al. The protective effects of CD39 overexpression in multiple low-dose streptozotocin-induced diabetes in mice. Diabetes 2013; 62(6): 2026-35.
[http://dx.doi.org/10.2337/db12-0625] [PMID: 23364452]
[147]
Johnston-Cox H, Koupenova M, Yang D, et al. The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS One 2012; 7(7)e40584
[http://dx.doi.org/10.1371/journal.pone.0040584] [PMID: 22848385]
[148]
Johnston-Cox H, Eisenstein AS, Koupenova M, Carroll S, Ravid K. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity. PLoS One 2014; 9(6)e98775
[http://dx.doi.org/10.1371/journal.pone.0098775] [PMID: 24892847]
[149]
Figler RA, Wang G, Srinivasan S, et al. Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes 2011; 60(2): 669-79.
[http://dx.doi.org/10.2337/db10-1070] [PMID: 21270276]
[150]
Yasuda N, Inoue T, Horizoe T, et al. Functional characterization of the adenosine receptor contributing to glycogenolysis and gluconeogenesis in rat hepatocytes. Eur J Pharmacol 2003; 459(2-3): 159-66.
[http://dx.doi.org/10.1016/S0014-2999(02)02832-7] [PMID: 12524141]
[151]
Harada H, Asano O, Hoshino Y, et al. 2-Alkynyl-8-aryl-9-methyladenines as novel adenosine receptor antagonists: Their synthesis and structure-activity relationships toward hepatic glucose production induced via agonism of the A(2B) receptor. J Med Chem 2001; 44(2): 170-9.
[http://dx.doi.org/10.1021/jm990499b] [PMID: 11170626]
[152]
Harada H, Asano O, Kawata T, et al. 2-Alkynyl-8-aryladenines possessing an amide moiety: Their synthesis and structure-activity relationships of effects on hepatic glucose production induced via agonism of the A(2B) adenosine receptor. Bioorg Med Chem 2001; 9(10): 2709-26.
[http://dx.doi.org/10.1016/S0968-0896(01)00201-2] [PMID: 11557358]
[153]
Rüsing D, Müller CE, Verspohl EJ. The impact of adenosine and A(2B) receptors on glucose homoeostasis. J Pharm Pharmacol 2006; 58(12): 1639-45.
[http://dx.doi.org/10.1211/jpp.58.12.0011] [PMID: 17331328]
[154]
Csóka B, Koscsó B, Töro G, et al. A2B adenosine receptors prevent insulin resistance by inhibiting adipose tissue inflammation via maintaining alternative macrophage activation. Diabetes 2014; 63(3): 850-66.
[http://dx.doi.org/10.2337/db13-0573] [PMID: 24194503]
[155]
Talley NJ. Functional gastrointestinal disorders as a public health problem. Neurogastroenterol Motil 2008; 20(Suppl. 1): 121-9.
[http://dx.doi.org/10.1111/j.1365-2982.2008.01097.x] [PMID: 18402649]
[156]
Drossman DA. Functional gastrointestinal disorders: History, pathophysiology, clinical features, and Rome IV. Gastroenterology 2016; 150: 1262-1279.e2.
[http://dx.doi.org/10.1053/j.gastro.2016.02.032] [PMID: 27144617]
[157]
Makharia GK. Functional and GI motility disorders. Indian J Med Res 2016; 143: 669.
[http://dx.doi.org/10.4103/0971-5916.187120]
[158]
Chang L, Lembo A, Sultan S. American Gastroenterological Association Institute Technical Review on the pharmacological management of irritable bowel syndrome. Gastroenterology 2014; 147(5): 1149-72.e2.
[http://dx.doi.org/10.1053/j.gastro.2014.09.002] [PMID: 25224525]
[159]
Ford AC, Lacy BE, Talley NJ. Irritable bowel syndrome. N Engl J Med 2017; 376(26): 2566-78.
[http://dx.doi.org/10.1056/NEJMra1607547] [PMID: 28657875]
[160]
Lacy BE. Emerging treatments in neurogastroenterology: eluxadoline - a new therapeutic option for diarrhea-predominant IBS. Neurogastroenterol Motil 2016; 28(1): 26-35.
[http://dx.doi.org/10.1111/nmo.12716] [PMID: 26690872]
[161]
Wouters MM, Vicario M, Santos J. The role of mast cells in functional GI disorders. Gut 2016; 65(1): 155-68.
[http://dx.doi.org/10.1136/gutjnl-2015-309151] [PMID: 26194403]
[162]
Antonioli L, Fornai M, Colucci R, et al. Regulation of enteric functions by adenosine: Pathophysiological and pharmacological implications. Pharmacol Ther 2008; 120(3): 233-53.
[http://dx.doi.org/10.1016/j.pharmthera.2008.08.010] [PMID: 18848843]
[163]
Strohmeier GR, Reppert SM, Lencer WI, Madara JL. The A2b adenosine receptor mediates cAMP responses to adenosine receptor agonists in human intestinal epithelia. J Biol Chem 1995; 270(5): 2387-94.
[http://dx.doi.org/10.1074/jbc.270.5.2387] [PMID: 7836474]
[164]
Chin A, Svejda B, Gustafsson BI, et al. The role of mechanical forces and adenosine in the regulation of intestinal enterochromaffin cell serotonin secretion. Am J Physiol Gastrointest Liver Physiol 2012; 302(3): G397-405.
[http://dx.doi.org/10.1152/ajpgi.00087.2011] [PMID: 22038827]
[165]
Aherne CM, Saeedi B, Collins CB, et al. Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis. Mucosal Immunol 2015; 8(6): 1324-38.
[http://dx.doi.org/10.1038/mi.2015.22] [PMID: 25850656]
[166]
Arin RM, Vallejo AI, Rueda Y, Fresnedo O, Ochoa B. Expression of adenosine A2B receptor and adenosine deaminase in rabbit gastric mucosa ECL cells. Molecules 2017; 22(4): 1-12.
[http://dx.doi.org/10.3390/molecules22040625] [PMID: 28417934]
[167]
Chandrasekharan BP, Kolachala VL, Dalmasso G, et al. Adenosine 2B receptors (A(2B)AR) on enteric neurons regulate murine distal colonic motility. FASEB J 2009; 23(8): 2727-34.
[http://dx.doi.org/10.1096/fj.09-129544] [PMID: 19357134]
[168]
Frick JS, MacManus CF, Scully M, Glover LE, Eltzschig HK, Colgan SP. Contribution of adenosine A2B receptors to inflammatory parameters of experimental colitis. J Immunol 2009; 182(8): 4957-64.
[http://dx.doi.org/10.4049/jimmunol.0801324] [PMID: 19342675]
[169]
Michael S, Warstat C, Michel F, Yan L, Müller CE, Nieber K. Adenosine A(2A) agonist and A(2B) antagonist mediate an inhibition of inflammation-induced contractile disturbance of a rat gastrointestinal preparation. Purinergic Signal 2010; 6(1): 117-24.
[http://dx.doi.org/10.1007/s11302-009-9174-y] [PMID: 20020217]
[170]
El-Tayeb A, Michael S, Abdelrahman A, et al. Development of polar adenosine A2A receptor agonists for inflammatory bowel disease: Synergism with A2B antagonists. ACS Med Chem Lett 2011; 2(12): 890-5.
[http://dx.doi.org/10.1021/ml200189u] [PMID: 24900277]
[171]
Warren CA, Li Y, Calabrese GM, et al. Contribution of adenosine A(2B) receptors in Clostridium difficile intoxication and infection. Infect Immun 2012; 80(12): 4463-73.
[http://dx.doi.org/10.1128/IAI.00782-12] [PMID: 23045479]
[172]
Asano T, Tanaka KI, Tada A, et al. Aminophylline suppresses stress-induced visceral hypersensitivity and defecation in irritable bowel syndrome. Sci Rep 2017; 7: 40214.
[http://dx.doi.org/10.1038/srep40214] [PMID: 28054654]
[173]
Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006; 17(12): 1726-33.
[http://dx.doi.org/10.1007/s00198-006-0172-4] [PMID: 16983459]
[174]
Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 2014; 25(10): 2359-81.
[http://dx.doi.org/10.1007/s00198-014-2794-2] [PMID: 25182228]
[175]
Sözen T, Özışık L, Başaran NÇ. An overview and management of osteoporosis. Eur J Rheumatol 2017; 4(1): 46-56.
[http://dx.doi.org/10.5152/eurjrheum.2016.048] [PMID: 28293453]
[176]
Strazzulla LC, Cronstein BN. Regulation of bone and cartilage by adenosine signaling. Purinergic Signal 2016; 12(4): 583-93.
[http://dx.doi.org/10.1007/s11302-016-9527-2] [PMID: 27473363]
[177]
Ham J, Evans BAJ, Mackenzie NC, Roslin T. An emerging role for adenosine and its receptors in bone homeostasis. Front Endocrinol (Lausanne) 2012; 3: 113.
[http://dx.doi.org/10.3389/fendo.2012.00113] [PMID: 23024635]
[178]
Gharibi B, Abraham AA, Ham J, Evans BAJ. Adenosine receptor subtype expression and activation to osteoblasts and adipocytes. J Bone Miner Res 2011; 26: 2112-24.
[http://dx.doi.org/10.1002/jbmr.424] [PMID: 21590734]
[179]
Teramachi J, Kukita A, Li YJ, et al. Adenosine abolishes MTX-induced suppression of osteoclastogenesis and inflammatory bone destruction in adjuvant-induced arthritis. Lab Invest 2011; 91(5): 719-31.
[http://dx.doi.org/10.1038/labinvest.2011.9] [PMID: 21339747]
[180]
He W, Cronstein BN. Adenosine A1 receptor regulates osteoclast formation by altering TRAF6/TAK1 signaling. Purinergic Signal 2012; 8(2): 327-37.
[http://dx.doi.org/10.1007/s11302-012-9292-9] [PMID: 22311477]
[181]
Trincavelli ML, Daniele S, Giacomelli C, et al. Osteoblast differentiation and survival: A role for A2B adenosine receptor allosteric modulators. Biochim Biophys Acta 2014; 1843(12): 2957-66.
[http://dx.doi.org/10.1016/j.bbamcr.2014.09.013] [PMID: 25241343]
[182]
Taliani S, Trincavelli ML, Cosimelli B, et al. Modulation of A2B adenosine receptor by 1-Benzyl-3-ketoindole derivatives. Eur J Med Chem 2013; 69: 331-7.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.001] [PMID: 24077183]
[183]
Costa MA, Barbosa A, Neto E, et al. On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells. J Cell Physiol 2011; 226(5): 1353-66.
[http://dx.doi.org/10.1002/jcp.22458] [PMID: 20945394]
[184]
Gharibi B, Abraham AA, Ham J, Evans BAJ. Contrasting effects of A1 and A2b adenosine receptors on adipogenesis. Int J Obes 2012; 36(3): 397-406.
[http://dx.doi.org/10.1038/ijo.2011.129] [PMID: 21730968]
[185]
Takedachi M, Oohara H, Smith BJ, et al. CD73-generated adenosine promotes osteoblast differentiation. J Cell Physiol 2012; 227(6): 2622-31.
[http://dx.doi.org/10.1002/jcp.23001] [PMID: 21882189]
[186]
Carroll SH, Wigner NA, Kulkarni N, Johnston-Cox H, Gerstenfeld LC, Ravid K. A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem 2012; 287(19): 15718-27.
[http://dx.doi.org/10.1074/jbc.M112.344994] [PMID: 22403399]
[187]
Corciulo C, Wilder T, Cronstein BN. Adenosine A2B receptors play an important role in bone homeostasis. Purinergic Signal 2016; 12(3): 537-47.
[http://dx.doi.org/10.1007/s11302-016-9519-2] [PMID: 27289226]
[188]
Williams M, Kowaluk EA, Arneric SP. Emerging molecular approaches to pain therapy. J Med Chem 1999; 42(9): 1481-500.
[http://dx.doi.org/10.1021/jm9805034] [PMID: 10229619]
[189]
Segerdahl M, Sollevi A. Adenosine and pain relief: A clinical overview. Drug Dev Res 1999; 45: 151-8.
[http://dx.doi.org/10.1002/(SICI)1098-2299(199811/12)45:3/4<151:AID-DDR10>3.0.CO;2-2]
[190]
Feoktistov I, Biaggioni I. Role of adenosine A(2B) receptors in inflammation. Adv Pharmacol 2011; 61: 115-44.
[http://dx.doi.org/10.1016/B978-0-12-385526-8.00005-9] [PMID: 21586358]
[191]
Eckle T, Grenz A, Laucher S, Eltzschig HK. A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. J Clin Invest 2008; 118(10): 3301-15.
[http://dx.doi.org/10.1172/JCI34203] [PMID: 18787641]
[192]
Csóka B, Németh ZH, Rosenberger P, et al. A2B adenosine receptors protect against sepsis-induced mortality by dampening excessive inflammation. J Immunol 2010; 185(1): 542-50.
[http://dx.doi.org/10.4049/jimmunol.0901295] [PMID: 20505145]
[193]
Grenz A, Osswald H, Eckle T, et al. The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med 2008; 5(6)e137
[http://dx.doi.org/10.1371/journal.pmed.0050137] [PMID: 18578565]
[194]
Rosi S, McGann K, Hauss-Wegrzyniak B, Wenk GL. The influence of brain inflammation upon neuronal adenosine A2B receptors. J Neurochem 2003; 86(1): 220-7.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01825.x] [PMID: 12807441]
[195]
Ernst PB, Garrison JC, Thompson LF. Much ado about adenosine: Adenosine synthesis and function in regulatory T cell biology. J Immunol 2010; 185(4): 1993-8.
[http://dx.doi.org/10.4049/jimmunol.1000108] [PMID: 20686167]
[196]
Abo-Salem OM, Hayallah AM, Bilkei-Gorzo A, Filipek B, Zimmer A, Müller CE. Antinociceptive effects of novel A2B adenosine receptor antagonists. J Pharmacol Exp Ther 2004; 308(1): 358-66.
[http://dx.doi.org/10.1124/jpet.103.056036] [PMID: 14563788]
[197]
Bilkei-Gorzo A, Abo-Salem OM, Hayallah AM, Michel K, Müller CE, Zimmer A. Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia. Naunyn Schmiedebergs Arch Pharmacol 2008; 377(1): 65-76.
[http://dx.doi.org/10.1007/s00210-007-0252-9] [PMID: 18188542]
[198]
Savegnago L, Jesse CR, Nogueira CW. Caffeine and a selective adenosine A(2B) receptor antagonist but not imidazoline receptor antagonists modulate antinociception induced by diphenyl diselenide in mice. Neurosci Lett 2008; 436(2): 120-3.
[http://dx.doi.org/10.1016/j.neulet.2008.03.003] [PMID: 18375062]
[199]
Hu X, Adebiyi MG, Luo J, et al. Sustained Elevated adenosine via ADOR A2B promotes chronic pain through neuro-immune interaction. Cell Rep 2016; 16(1): 106-19.
[http://dx.doi.org/10.1016/j.celrep.2016.05.080] [PMID: 27320922]
[200]
National Chronic Kidney Disease Fact Sheet 2017 [homepage on the Internet] National Center for Chronic Disease Prevention and Health Promotion [cited 2018 Dec 25] Available from:. https://www.cdc.gov/kidneydisease/pdf/kidney_factsheet
[201]
Luyckx VA, Tonelli M, Stanifer JW. The global burden of kidney disease and the sustainable development goals. Bull World Health Organ 2018; 96(6): 414-422D.
[http://dx.doi.org/10.2471/BLT.17.206441] [PMID: 29904224]
[202]
Sun Y, Huang P. Adenosine A2B receptor: From cell biology to human diseases. Front Chem 2016; 4: 37.
[http://dx.doi.org/10.3389/fchem.2016.00037] [PMID: 27606311]
[203]
Grenz A, Kim J-H, Bauerle JD, Tak E, Eltzschig HK, Clambey ET. Ador A2B adenosine receptor signaling protects during acute kidney injury via inhibition of neutrophil-dependent TNF-α release. J Immunol 2012; 189: 4566-73.
[204]
Grenz A, Bauerle JD, Dalton JH, et al. Equilibrative nucleoside transporter 1 (ENT1) regulates postischemic blood flow during acute kidney injury in mice. J Clin Invest 2012; 122(2): 693-710.
[http://dx.doi.org/10.1172/JCI60214] [PMID: 22269324]
[205]
Dai Y, Zhang W, Wen J, Zhang Y, Kellems RE, Xia Y. A2B adenosine receptor-mediated induction of IL-6 promotes CKD. J Am Soc Nephrol 2011; 22(5): 890-901.
[http://dx.doi.org/10.1681/ASN.2010080890] [PMID: 21511827]
[206]
Valladares D, Quezada C, Montecinos P, et al. Adenosine A(2B) receptor mediates an increase on VEGF-A production in rat kidney glomeruli. Biochem Biophys Res Commun 2008; 366(1): 180-5.
[http://dx.doi.org/10.1016/j.bbrc.2007.11.113] [PMID: 18060864]
[207]
Patel L, Thaker A. The effects of adenosine A2B receptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropathy. Ren Fail 2014; 36(6): 916-24.
[http://dx.doi.org/10.3109/0886022X.2014.900404] [PMID: 24678970]
[208]
Tak E, Ridyard D, Kim JH, et al. CD73-dependent generation of adenosine and endothelial Adora2b signaling attenuate diabetic nephropathy. J Am Soc Nephrol 2014; 25(3): 547-63.
[http://dx.doi.org/10.1681/ASN.2012101014] [PMID: 24262796]
[209]
Zhang W, Zhang Y, Wang W, et al. Elevated ecto-5′-nucleotidase-mediated increased renal adenosine signaling via A2B adenosine receptor contributes to chronic hypertension. Circ Res 2013; 112(11): 1466-78.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.300166] [PMID: 23584256]
[211]
Faghihi MA, Mottagui-Tabar S, Wahlestedt C. Genetics of neurological disorders. Expert Rev Mol Diagn 2004; 4(3): 317-32.
[http://dx.doi.org/10.1586/14737159.4.3.317] [PMID: 15137899]
[212]
Haskó G, Pacher P, Vizi ES, Illes P. Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci 2005; 26(10): 511-6.
[http://dx.doi.org/10.1016/j.tips.2005.08.004] [PMID: 16125796]
[213]
Fiebich BL, Akundi RS, Biber K, et al. IL-6 expression induced by adenosine A2b receptor stimulation in U373 MG cells depends on p38 mitogen activated kinase and protein kinase C. Neurochem Int 2005; 46(6): 501-12.
[http://dx.doi.org/10.1016/j.neuint.2004.11.009] [PMID: 15769552]
[214]
Moidunny S, Vinet J, Wesseling E, et al. Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity. J Neuroinflammation 2012; 9: 198.
[http://dx.doi.org/10.1186/1742-2094-9-198] [PMID: 22894638]
[215]
Genzen JR, Yang D, Ravid K, Bordey A. Activation of adenosine A2B receptors enhances ciliary beat frequency in mouse lateral ventricle ependymal cells. Cerebrospinal Fluid Res 2009; 6: 15.
[http://dx.doi.org/10.1186/1743-8454-6-15] [PMID: 19922651]
[216]
Wei W, Du C, Lv J, et al. Blocking A2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL-6 production and Th17 differentiation. J Immunol 2013; 190(1): 138-46.
[http://dx.doi.org/10.4049/jimmunol.1103721] [PMID: 23225885]
[217]
Lue TF. Erectile dysfunction. N Engl J Med 2000; 342(24): 1802-13.
[http://dx.doi.org/10.1056/NEJM200006153422407] [PMID: 10853004]
[218]
Thorve VS, Kshirsagar AD, Vyawahare NS, Joshi VS, Ingale KG, Mohite RJ. Diabetes-induced erectile dysfunction: Epidemiology, pathophysiology and management. J Diabetes Complications 2011; 25(2): 129-36.
[http://dx.doi.org/10.1016/j.jdiacomp.2010.03.003] [PMID: 20462773]
[219]
Faria M, Magalhães-Cardoso T, Lafuente-de-Carvalho J-M, Correia-de-Sá P. Corpus cavernosum from men with vasculogenic impotence is partially resistant to adenosine relaxation due to endothelial A(2B) receptor dysfunction. J Pharmacol Exp Ther 2006; 319(1): 405-13.
[http://dx.doi.org/10.1124/jpet.106.107821] [PMID: 16837560]
[220]
Wen J, Grenz A, Zhang Y, et al. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation. FASEB J 2011; 25(8): 2823-30.
[http://dx.doi.org/10.1096/fj.11-181057] [PMID: 21566208]
[221]
Wen J, Jiang X, Dai Y, et al. Increased adenosine contributes to penile fibrosis, a dangerous feature of priapism, via A2B adenosine receptor signaling. FASEB J 2010; 24(3): 740-9.
[http://dx.doi.org/10.1096/fj.09-144147] [PMID: 19858092]
[222]
Wen J, Wang B, Du C, et al. A2B adenosine receptor agonist improves erectile function in diabetic rats. Tohoku J Exp Med 2015; 237(2): 141-8.
[http://dx.doi.org/10.1620/tjem.237.141] [PMID: 26447087]
[223]
Zhang Y, Dai Y, Wen J, et al. Detrimental effects of adenosine signaling in sickle cell disease. Nat Med 2011; 17(1): 79-86.
[http://dx.doi.org/10.1038/nm.2280] [PMID: 21170046]
[224]
Sun K, Zhang Y, Bogdanov M, et al. Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity. Blood 2014; 124: 4067.
[PMID: 25587035]
[225]
Shaikh G, Cronstein B. Signaling pathways involving adenosine A2A and A2B receptors in wound healing and fibrosis. Purinergic Signal 2016; 12(2): 191-7.
[http://dx.doi.org/10.1007/s11302-016-9498-3] [PMID: 26847815]
[226]
Bouma MG, Stad RK, van den Wildenberg FA, Buurman WA. Differential regulatory effects of adenosine on cytokine release by activated human monocytes. J Immunol 1994; 153(9): 4159-68.
[PMID: 7930619]
[227]
Finger TE, Danilova V, Barrows J, et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 2005; 310(5753): 1495-9.
[http://dx.doi.org/10.1126/science.1118435] [PMID: 16322458]
[228]
Kataoka S, Baquero A, Yang D, et al. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds. PLoS One 2012; 7(1)e30032
[http://dx.doi.org/10.1371/journal.pone.0030032] [PMID: 22253866]
[229]
Dando R, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD. Adenosine enhances sweet taste through A2B receptors in the taste bud. J Neurosci 2012; 32(1): 322-30.
[http://dx.doi.org/10.1523/JNEUROSCI.4070-11.2012] [PMID: 22219293]
[230]
Samanta PN, Kar S, Leszczynski J. Recent advances of in-silico modeling of potent antagonists for the adenosine receptors. Curr Pharm Des 2019; 25(7): 750-73.
[http://dx.doi.org/10.2174/1381612825666190304123545] [PMID: 30836910]
[231]
Al-Shar’i NA, Al-Balas QA. Molecular dynamics simulations of adenosine receptors: advances, applications and trends. Curr Pharm Des 2019; 25(7): 783-816.
[http://dx.doi.org/10.2174/1381612825666190304123414] [PMID: 30834825]
[232]
Mahmod Al-Qattan MN, Mordi MN. Molecular basis of modulating adenosine receptors activities. Curr Pharm Des 2019; 25(7): 817-31.
[http://dx.doi.org/10.2174/1381612825666190304122624] [PMID: 30834826]
[233]
Deb PK. Recent updates in the computer aided drug design strategies for the discovery of agonists and antagonists of adenosine receptors. Curr Pharm Des 2019; 25(7): 747-9.
[http://dx.doi.org/10.2174/1381612825999190515120510] [PMID: 31232230]
[234]
Khasim S, Deb PK, Mailavaram R, et al. 7-Amino-2-aryl/heteroaryl-5-oxo-5,8-dihydro[1,2,4]triazolo[1,5-a]pyridine-6-carbonitriles: Synthesis and adenosine receptor binding studies. Chem Biol Drug Des 2019; 94: 1568-73.
[http://dx.doi.org/10.1111/cbdd.13528]
[235]
Deb PK, Chandrasekaran B, Mailavaram R, Tekade RK, Jaber AMY. Molecular modeling approaches for the discovery of adenosine A2B receptor antagonists: Current status and future perspectives. Drug Discov Today 2019; S1359-6446(19): 30045-5..
[http://dx.doi.org/10.1016/j.drudis.2019.05.011] [PMID: 31103731]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy