Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

A New Reactive Ketenaminal: Synthesis, Coupling Reaction, Tautomeric Study, Docking and Antimicrobial Evaluation of the Products

Author(s): Huda K. Mahmoud, Hanadi A. Katouah, Marwa F. Harras and Thoraya A. Farghaly*

Volume 16, Issue 6, 2020

Page: [761 - 773] Pages: 13

DOI: 10.2174/1573406415666190716153425

Price: $65

Abstract

Background: One of the most successful reagents used in the synthesis of the reactive enaminone is DMF-DMA, but it is very expensive with harmful effects on the human health and reacts with special compounds to generate the enaminone such as active methylene centers.

Aim: In this article, we synthesized a new ketenaminal by simple method with inexpensive reagents (through desulfurization in diphenylether).

Methods: Thus, a novel reactive ketenaminal (enaminone) was synthesized from the desulfurization of 2-((2-(4-chlorophenyl)-2-oxoethyl)thio)-5,7-bis(4-methoxyphenyl)pyrido[2,3-d]pyrimidin- 4(3H)-one with diphenylether. The starting keteneaminal was coupled with diazotized anilines via the known coupling conditions to give a new series of 2-(4-chlorophenyl)-1-(2-(arylhydrazono)-2- oxoethyl)-5,7-bis(4-methoxy-phenyl)pyrido[2,3-d]pyrimidin-4(1H)-ones.

Results: The structures of the new compounds were elucidated based on their IR, 1H-NMR, 13CNMR, and Mass spectra. Moreover, the potency of these compounds as antimicrobial agents has been evaluated. The results showed that some of the products have high activity nearly equal to that of the used standard antibiotic. Additionally, the docking study was done to get the binding mode of the synthesized compounds with the binding site of the DHFR enzyme. The results of molecular docking of the synthesized arylhydrazono compounds are able to fit in DHFR binding site with binding energies ranging from -4.989 to -8.178 Kcal/mol.

Conclusion: Our goal was achieved in this context by the synthesis of new ketenaminal from inexpensive reagents, which was utilized in the preparation of bioactive arylhydrazone derivatives.

Keywords: Ketenaminal, pyridopyrimidine, desulfurization, diphenylether, coupling reaction, enaminones.

Graphical Abstract

[1]
Farghaly, T.A.; Abdel Hafez, N.A.; Ragab, E.A.; Awad, H.M.; Abdalla, M.M. Synthesis, anti-HCV, antioxidant, and peroxynitrite inhibitory activity of fused benzosuberone derivatives. Eur. J. Med. Chem., 2010, 45(2), 492-500.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.033] [PMID: 19913334]
[2]
Riyadh, S.M.; Farghaly, T.A.; Abdallah, M.A.; Abdalla, M.M.; Abd El-Aziz, M.R. New pyrazoles incorporating pyrazolylpyrazole moiety: synthesis, anti-HCV and antitumor activity. Eur. J. Med. Chem., 2010, 45(3), 1042-1050.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.050] [PMID: 20022411]
[3]
Farghaly, T.A.; Abdalla, M.M. Synthesis, tautomerism, and antimicrobial, anti-HCV, anti-SSPE, antioxidant, and antitumor activities of arylazobenzosuberones. Bioorg. Med. Chem., 2009, 17(23), 8012-8019.
[http://dx.doi.org/10.1016/j.bmc.2009.10.012] [PMID: 19864149]
[4]
Gaber, H.M.; Muhammad, Z.A.; Gomha, S.M.; Farghaly, T.A.; Bagley, M.C. Recent Synthetic Approaches to N,N-Dimethyl-β-Ketoenamines. Curr. Org. Chem., 2017, 21(21), 2168-2195.
[http://dx.doi.org/10.2174/1385272821666170523115019]
[5]
Shawali, A.S. Bis-Enaminones as versatile precursors for terheterocycles: synthesis and reactions. ARKIVOC, 2012, (i), 383-431.
[6]
Rudenko, D.A.; Shurov, S.N.; Stepanyan, Y.G. 3-Amino-5,5-dimethyl-cyclohex-2-enone in the synthesis of heterocyclic compounds. Chem. Heterocycl. Compd., 2011, 47, 661-683.
[http://dx.doi.org/10.1007/s10593-011-0818-9]
[7]
Alnajjar, A-A.; Abdelkhalik, M.M.; Al-Enezi, A.; Elnagdi, M.H. Enaminones as building blocks in heterocyclic syntheses: reinvestigating the product structures of enaminones with malononitrile. A novel route to 6-substituted-3-oxo-2,3-dihydropyridazine-4-carboxylic acids. Molecules, 2008, 14(1), 68-77.
[http://dx.doi.org/10.3390/molecules14010068] [PMID: 19127238]
[8]
Riyadh, S.M. Enaminones as building blocks for the synthesis of substituted pyrazoles with antitumor and antimicrobial activities. Molecules, 2011, 16(2), 1834-1853.
[http://dx.doi.org/10.3390/molecules16021834] [PMID: 21343888]
[9]
Al-Mousawi, S.; Abdelkhalik, M.M.; John, E.; Elnagdi, M.H. Enaminones as building blocks in heterocyclic syntheses: A new approach to polyfunctionally substituted cyclohexenoazines. J. Heterocycl. Chem., 2003, 40, 689-695.
[http://dx.doi.org/10.1002/jhet.5570400421]
[10]
Al-Saleh, B.; El-Apasery, M.A.; Abdel-Aziz, R.S.; Elnagdi, M.H. Enaminones in heterocyclic synthesis: Synthesis and chemical reactivity of 3-anilino-1-substituted-2-propene-1-one. J. Heterocycl. Chem., 2005, 42, 563-566.
[http://dx.doi.org/10.1002/jhet.5570420414]
[11]
Farghaly, T.A.; Mahmoud, H.K. Synthesis, tautomeric structures, and antitumor activity of new perimidines. Arch. Pharm. (Weinheim), 2013, 346(5), 392-402.
[http://dx.doi.org/10.1002/ardp.201200486] [PMID: 23553920]
[12]
Farghaly, T.A.; Abdallah, M.A.; Masaret, G.S.; Muhammad, Z.A. New and efficient approach for synthesis of novel bioactive [1,3,4]thiadiazoles incorporated with 1,3-thiazole moiety. Eur. J. Med. Chem., 97, 320-333.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.009] [PMID: 26055810]
[13]
Gouda, A.M.; El-Ghamry, H.A.; Bawazeer, T.M.; Farghaly, T.A.; Abdalla, A.N.; Aslam, A. Antitumor activity of pyrrolizines and their Cu(II) complexes: Design, synthesis and cytotoxic screening with potential apoptosis-inducing activity. Eur. J. Med. Chem., 2018, 145, 350-359.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.009] [PMID: 29335201]
[14]
Farghaly, T.A.; Abdallah, M.A.; Muhammad, Z.A. Synthesis and evaluation of the anti-microbial activity of new heterocycles containing the 1,3,4-thiadiazole moiety. Molecules, 2011, 16(12), 10420-10432.
[http://dx.doi.org/10.3390/molecules161210420] [PMID: 22173335]
[15]
Farghaly, T.A.; Abdallah, M.A.; Muhammad, Z.A. 2,7-Diarylidene-cycloheptanone, hydrazonoyl chlorides and heterocyclic amines as precursors for synthesis of bioactive new fused cycloheptapyrimidine derivatives. Curr. Org. Synth., 2016, 13(2), 291-299.
[http://dx.doi.org/10.2174/1570179412666150706183544]
[16]
Awad, H.M.; Fayad, W.; El-Hallouty, S.M.; Farghaly, T.A.; Abdallah, M.M. Anticancer activity of some [1,2,4]triazepino. quinazoline derivatives: monolayer and multicellular spheroids in vitro models. Med. Chem. Res., 2016, 25(9), 1952-1957.
[17]
Hassaneen, H.M.; Eid, E.M.; Eid, H.A.; Farghaly, T.A.; Mabkhot, Y.N. Facial regioselective synthesis of novel bioactive spiropyrrolidine/pyrrolizine-oxindole derivatives via a three components reaction as potential antimicrobial agents. Molecules, 2017, 22(3), 357.
[http://dx.doi.org/10.3390/molecules22030357] [PMID: 28245641]
[18]
Muhammad, Z.A.; Masaret, G.S.; Amin, M.M.; Abdallah, M.A.; Farghaly, T.A. Anti-inflammatory, Analgesic and Anti-ulcerogenic Activities of Novel bis-thiadiazoles, bis-thiazoles and bis formazanes. Med. Chem., 2017, 13(3), 226-238.
[http://dx.doi.org/10.2174/1573406412666160920091146] [PMID: 27659119]
[19]
Abdallah, M.A.; Farghaly, T.A.; Gaber, H.M.; Mabkhot, Y.N.; Muhammad, Z.A. Unexpected hydrazinolysis and antimicrobial activity of 3-[2-aryl-2-oxoethyl]-pyrazolo[3′,4′:4,5] pyrimido[1,6-b][1,2,4]-triazines. Curr. Org. Synth., 2017, 14(7), 1059-1066.
[http://dx.doi.org/10.2174/1570179414666170215093632]
[20]
Ahmed, M.S.A.; Farghaly, T.A. Antimicrobial activity of [1,2,4]triazolo[4,3-a]pyrimidine and new pyrido[3,2-f][1,4]thiazepine derivatives. Lett. Org. Chem., 2018, 15, 183-190.
[21]
Kamlesh, M.K.; Ravindra, M.G.; Taslimahemad, T.K.; Praful, K.P. Microwave and conventional synthesis of novel pyrido [2, 3-d] pyrimidine scaffold as an antimicrobial agent. Chem. Biol. Interact., 2014, 4(2), 119-130.
[22]
Aly, H.M.; Saleh, N.M. Utility of a pyrimidine thione derivative in the synthesis of new fused pyrimido[4,5d]pyrimidine, pyrido[2,3-d]pyrimidine and different types of thienopyrimidine derivatives. Int. J. Adv. Res. (Indore), 2014, 2, 694-702.
[23]
Toogood, P.L.; Harvey, P.J.; Repine, J.T.; Sheehan, D.J.; Vander-Wel, S.N.; Zhou, H.; Keller, P.R.; McNamara, D.J.; Sherry, D.; Zhu, T.; Brodfuehrer, J.; Choi, C.; Barvian, M.R.; Fry, D.W. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J. Med. Chem., 2005, 48(7), 2388-2406.
[http://dx.doi.org/10.1021/jm049354h] [PMID: 15801831]
[24]
VanderWel, S.N.; Harvey, P.J.; McNamara, D.J.; Repine, J.T.; Keller, P.R.; Quin, J., III; Booth, R.J.; Elliott, W.L.; Dobrusin, E.M.; Fry, D.W.; Toogood, P.L. Pyrido[2,3-d]pyrimidin-7-ones as specific inhibitors of cyclin-dependent kinase 4. J. Med. Chem., 2005, 48(7), 2371-2387.
[http://dx.doi.org/10.1021/jm049355+] [PMID: 15801830]
[25]
Palmer, B.D.; Smaill, J.B.; Rewcastle, G.W.; Dobrusin, E.M.; Kraker, A.; Moore, C.W.; Steinkampf, R.W.; Denny, W.A. Structure-activity relationships for 2-anilino-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones as inhibitors of the cellular checkpoint kinase Wee1. Bioorg. Med. Chem. Lett., 2005, 15(7), 1931-1935.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.079] [PMID: 15780636]
[26]
Malagu, K.; Duggan, H.; Menear, K.; Hummersone, M.; Gomez, S.; Bailey, C.; Edwards, P.; Drzewiecki, J.; Leroux, F.; Quesada, M.J.; Hermann, G.; Maine, S.; Molyneaux, C.A.; Le Gall, A.; Pullen, J.; Hickson, I.; Smith, L.; Maguire, S.; Martin, N.; Smith, G.; Pass, M. The discovery and optimisation of pyrido[2,3-d]pyrimidine-2,4-diamines as potent and selective inhibitors of mTOR kinase. Bioorg. Med. Chem. Lett., 2009, 19(20), 5950-5953.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.038] [PMID: 19762236]
[27]
DeGoey, D.A.; Betebenner, D.A.; Grampovnik, D.J.; Liu, D.; Pratt, J.K.; Tufano, M.D.; He, W.; Krishnan, P.; Pilot-Matias, T.J.; Marsh, K.C.; Molla, A.; Kempf, D.J.; Maring, C.J. Discovery of pyrido[2,3-d]pyrimidine-based inhibitors of HCV NS5A. Bioorg. Med. Chem. Lett., 2013, 23(12), 3627-3630.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.009] [PMID: 23642966]
[28]
Farghaly, T.A.; Abbas, I.M.; Abdalla, M.M.; Mahgoub, R.O.A. Synthesis of new pentaheterocyclic ring system as antiandrogene, anti HCV and anti H1N1 agents. ARKIVOC, 2012, vi, 57-70.
[29]
Quintela, J.M.; Peinador, C.; Botana, L.; Estevez, M.; Riguera, R. Synthesis and antihistaminic activity of 2-guanadino-3-cyanopyridines and pyrido[2,3-d]-pyrimidines. Bioorg. Med. Chem., 1997, 5, 1543-1553.
[30]
Gangjee, A.; Adair, O.; Queener, S.F. Synthesis of 2,4-Diamino-6-(thioarylmethyl)pyrido[2,3-d]pyrimidines as dihydrofolatereductase inhibitors. Bioorg. Med. Chem., 2001, 9, 2929-2935.
[31]
Cody, V.; Pace, J.; Namjoshi, O.A.; Gangjee, A. Structure–activity correlations for three pyrido[2,3-d]pyrimidine antifolates binding to human and Pneumocystis cariniidihydrofolatereductase. Acta Crystallogr. F Struct. Biol. Commun., 2015, 71(Pt 6), 799-803.
[32]
Jain, P.; Soni, L.K.; Gupta, A.K.; Kashkedikar, S.G. QSAR analysis of 2,4-diaminopyrido[2.3-d]pyrimidines and 2,4-diaminopyrrolo[2,3-d]pyrimidines as dihydrofolatereductase inhibitors. Indian J. Biochem. Biophys., 2005, 42, 315-320.
[33]
Fares, M.; Eladwy, R.A.; Nocentini, A.; El Hadi, S.R.A.; Ghabbour, H.A.; Abdel-Megeed, A.; Eldehna, W.M.; Abdel-Aziz, H.A.; Supuran, C.T. Synthesis of bulky-tailed sulfonamides incorporating pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-1(5H)-yl) moieties and evaluation of their carbonic anhydrases I, II, IV and IX inhibitory effects. Bioorg. Med. Chem., 2017, 25(7), 2210-2217.
[http://dx.doi.org/10.1016/j.bmc.2017.02.037] [PMID: 28256371]
[34]
Shawali, A.S.; Abdelkader, M.H.; Altalbawy, F.M.A. Synthesis and tautomeric structure of novel 3,7-bis(arylazo)-2,6-diphenyl-1H-imidazo-[1,2-b]pyrazoles in ground and excited states. Tetrahedron, 2002, 58, 2875-2880.
[http://dx.doi.org/10.1016/S0040-4020(02)00157-6]
[35]
Sener, I.; Karci, F.; Ertan, N.; Kilic, E. Synthesis and investigations of the absorption spectra of hetarylazo disperse dyes derived from 2,4-quinolinediol. Dyes Pigments, 2006, 70, 143-148.
[http://dx.doi.org/10.1016/j.dyepig.2005.05.003]
[36]
Pfaller, M.A.; Burmeister, L.; Bartlett, M.S.; Rinaldi, M.G.; Rinaldi, M.G. Multicenter evaluation of four methods of yeast inoculum preparation. J. Clin. Microbiol., 1988, 26(8), 1437-1441.
[PMID: 3049651]
[37]
Hurst, D.T.; Beaumont, C.; Jones, D.T.E.; Kingsley, D.A.; Partridge, J.A.; Rutherford, T.J. The chemistry of pyrimidinethiols. II. The preparation and reactions of some 2-arenecarbonyl-methylthiopyrimidines. Aust. J. Chem., 1988, 41, 1209-1219.
[http://dx.doi.org/10.1071/CH9881209]
[38]
Shawali, A.S.; Farghaly, T.A. Synthesis and tautomeric structure of 2-[N-aryl-2-oxo-2-arylethane hydrazonoyl]-6-methyl-4(3H)-pyrmidinones. Tetrahedron, 2004, 60, 3051-3057.
[http://dx.doi.org/10.1016/j.tet.2004.01.092]
[39]
Shawali, A.S.; Abdalla, M.A.; Mosselhi, M.A.N.; Farghaly, T.A. A Facile one-pot regioselective synthesis of [1,2,4]triazolo[4,3-a]-5(1H)-pyrimidinonesvia tandem Japp-Klingemann, Smiles rearrangement, and cyclization reactions. Heteroatom Chem., 2002, 13(2), 136-140.
[http://dx.doi.org/10.1002/hc.10008]
[40]
Farghaly, T.A.; Riyadh, S.M. Microwave assisted synthesis of annelatedbenzosuberone as new penta-heterocyclic ring system. Arkivok., 2009, (x), 54-64.
[41]
Misra, A.; Sharma, S.; Sharma, D.; Dubey, D.; Mishra, A.; Kishore, D.; Dwivedi, J. Synthesis and molecular docking of pyrimidine incorporated novel analogue of 1,5-benzodiazepine as antibacterial agent. J. Chem. Sci., 2018, 31(12), 130.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy