Generic placeholder image

Recent Advances in Computer Science and Communications

Editor-in-Chief

ISSN (Print): 2666-2558
ISSN (Online): 2666-2566

General Review Article

Dynamic Consolidation of Virtual Machine: A Survey of Challenges for Resource Optimization in Cloud Computing

Author(s): A.M. Serma Kani* and D. Paulraj

Volume 13, Issue 3, 2020

Page: [491 - 501] Pages: 11

DOI: 10.2174/2213275912666190716124749

Price: $65

Abstract

Background: Virtualization is an efficient technology that accelerates available data center to support efficient workload for the application. It completely based on guest operating system which keeps track of infrastructure that keeps track of real time usage of hardware and utilization of software.

Objective: To address the issues with Virtualization this paper analyzed various virtualization terminology for treating best effective way to reduce IT expenses while boosting efficiency and deployment for all levels of businesses.

Methods: This paper discusses about the scenarios where various challenges met by Dynamic VM consolidation. Dynamic conclusion of virtual machines has the ability to increase the consumption of physical setup and focus on reducing power utilization with VM movement for stipulated period. Gathering the needs of all VM working in the application, adjusting the Virtual machine and suitably fit the virtual resource on a physical machine. Profiling and scheduling the virtual CPU to another Physical resource. This can be increased by making live migration with regards to planned schedule of virtual machine allotment.

Results: The recent trends followed in comprehending dynamic VM consolidation is applicable either in heuristic-based techniques which has further approaches based on static as well as adaptive utilization threshold. SLA with unit of time with variant HOST adoption (SLATAH) which is dependent on CPU utilization threshold with 100% for active host.

Conclusion: The cloud provider decision upon choosing the virtual machine for their application also varies with their decision support system that considers data storage and other parameters. It is being compared for the continuous workload distribution as well as eventually compared with changing demands of computation and in various optimization VM placement strategies.

Keywords: Cloud computing, Virtual machine, Resource Optimization, resource adoption, power utilization, Virtualization.

Graphical Abstract

[1]
B. Feng, X. Ma, C. Guo, H. Shi, and Z. Fu, "An efficient protocol with bidirectional verification for storage security in cloud computing", IEEE Access On Emerging Trends, Issues And Challenges In Energy-Efficient Cloud Computing, vol. 4, 2016.
[2]
M. Ali, S.U. Khan, and A.V. Vasilakos, "Security in cloud computing: Opportunities and challenges", Inf. Sci., vol. 305, pp. 357-383, 2015.
[http://dx.doi.org/10.1016/j.ins.2015.01.025]
[3]
T.A. Velte, and R. Elsenpeter, "Cloud computing, a practical approach", Spatial Sci., vol. 60, no. 1, pp. 197-198, 2015.
[http://dx.doi.org/10.1080/14498596.2015.1011588]
[4]
Z. Xia, X. Wang, X. Sun, and Q. Wang, "A secure and dynamic multikeyword ranked search scheme over encrypted cloud data", IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 340-352, 2016.
[http://dx.doi.org/10.1109/TPDS.2015.2401003]
[5]
Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, "Enabling personalized search over encrypted outsourced data with efficiency improvement", IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 9, pp. 2546-2559, 2016.
[http://dx.doi.org/10.1109/TPDS.2015.2506573]
[6]
Y. Ren, J. Shen, J. Wang, J. Han, and S. Lee, "Mutual verifiable provable data auditing in public cloud storage", J. Internet Technol., vol. 16, no. 2, pp. 317-323, 2015.
[7]
C. Liu, "Authorized public auditing of dynamic big data storage on cloud with efficient verifiable fine-grained updates", IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 9, pp. 2234-2244, 2014.
[http://dx.doi.org/10.1109/TPDS.2013.191]
[8]
M. Sookhak, A. Gania, M.K. Khanb, and R. Buyyac, "Dynamic remote data auditing for securing big data storage in cloud computing", Inf. Sci", Online (Bergh.), 2015.
[http://dx.doi.org/10.1016/j.ins.2015.09.004]
[9]
Y. Jia, R. Kui, W. Cong, and V. Varadharajan, "Enabling cloud storage auditing with key-exposure resistance", IEEE Trans. Inf. Forensics Security, vol. 10, no. 6, pp. 1167-1179, 2015.
[http://dx.doi.org/10.1109/TIFS.2015.2400425]
[10]
M. Sookhak, H. Talebiana, E. Ahmeda, A. Gania, and M.K. Khanb, "A review on remote data auditing in single cloud server: Taxonomy and open issues", J. Netw. Comput. Appl., vol. 43, no. 5, pp. 121-141, 2014.
[http://dx.doi.org/10.1016/j.jnca.2014.04.011]
[11]
S. Ismaeel, R. Karim, and A. Miri, “Proactive dynamic virtual-machine consolidation for energy conservation in cloud data centres”, J. Cloud Comput., Adva. Sys. Appl, 2018.
[http://dx.doi.org/10.1186/s13677-018-0111-x]
[12]
T. Qiu, X. Liu, L. Feng, Y. Zhou, and K. Zheng, "An efficient tree-based self-organizing protocol for Internet of Things", IEEE Access, vol. 4, no. 6, pp. 3535-3546, 2016.
[http://dx.doi.org/10.1109/ACCESS.2016.2578298]
[13]
G. Han, W. Que, G. Jia, and L. Shu, "An efficient virtual machine consolidation scheme for multimedia cloud computing", Sensors (Basel), vol. 16, no. 2, p. 246, 2016.
[http://dx.doi.org/10.3390/s16020246] [PMID: 26901201]
[14]
K. Yang, and X. Jia, "An efficient and secure dynamic auditing protocol for data storage in cloud computing", IEEE Trans. Parallel Distrib, pp. 1717-1726, 2013.
[15]
L. Wei, H. Zhu, Z. Cao, X. Dong, W. Jia, Y. Chen, and A.V. Vasilakos, "Security and privacy for storage and computation in cloud computing", Inf. Sci., vol. 258, pp. 371-386, 2014.
[http://dx.doi.org/10.1016/j.ins.2013.04.028]
[16]
I. Petri, J. Diaz-Montes, M. Zou, T. Beach, O. Rana, and M. Parashar, "Market Models for Federated Clouds", IEEE Trans. Cloud Comput., vol. 3, no. 3, pp. 398-410, 2015.
[http://dx.doi.org/10.1109/TCC.2015.2415792]
[17]
X. Fei, L. Fangming, J. Hai, and A.V. Vasilakos, "Managing performance overhead of virtual machines in cloud computing: A survey, state of the art, and future directions", Proc. IEEE, vol. 102, pp. 11-31, 2014.
[http://dx.doi.org/10.1109/JPROC.2013.2287711]
[18]
Ä. Ashraf, and I. Porres, "Multi-objective dynamic virtual machine consolidation in the cloud using ant colony system", Int. J. Parallel Emer. Distrib. Sys., vol. 33, no. 1, pp. 103-120, 2018.
[19]
M. Ali, R. Dhamotharan, E. Khan, S.U. Khan, A.V. Vasilakos, K. Li, and A.Y. Zomaya, "SeDaSC:secure data sharing in clouds", IEEE Syst. J., pp. 1-10, 2015.
[20]
G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson, and D. Song, "Remote data checking using provable data possession", ACM Trans. Inf. Syst. Secur., vol. 14, pp. 1-34, 2011.
[http://dx.doi.org/10.1145/1952982.1952994]
[21]
B.K. Rani, Dr. B.P. Rani, and Dr. A.V. Babu, "Cloud computing and inter -clouds- types, topologies and research issues, big data, cloud and computing challenges-2nd international symposium on big data and cloud computing (ISBCC’15)", Proced. Comput. Sci., vol. 50, pp. 24-29, 2015.
[22]
J. Sunitha, and A.M. Sermakani, "Building an authentication and quality of query services in the cloud, big data, cloud and computing challenges-2nd international symposium on big data and cloud computing (ISBCC’15)", Proced. Comput. Sci., vol. 50, pp. 122-127, 2015.
[http://dx.doi.org/10.1016/j.procs.2015.04.073]
[23]
F.F. Moges, and S.L. Abebe, "Energy-aware VM placement algorithms for the OpenStack Neat consolidation framework", J. Cloud Comput., January 2019.
[http://dx.doi.org/10.1186/s13677-019-0126-y]
[24]
G. Anusha, and P. Supraja, "Energy aware dynamic virtual machine consolidation in cloud data centers", Int. J. Eng. Technol., vol. 7, no. 2.8, pp. 550-553, 2018.
[http://dx.doi.org/10.14419/ijet.v7i2.8.10519]
[25]
Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, "Enabling public auditability and data dynamics for storage security in cloud computing", IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 847-859, 2011.
[http://dx.doi.org/10.1109/TPDS.2010.183]
[26]
K. Yang, and X. Jia, "An efficient and secure dynamic auditing protocol for data storage in cloud computing", IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 9, pp. 1717-1726, 2013.
[http://dx.doi.org/10.1109/TPDS.2012.278]
[27]
C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W. Lou, "Privacy preserving public auditing for secure cloud storage", IEEE Trans. Comput., vol. 62, no. 2, pp. 362-375, 2013.
[http://dx.doi.org/10.1109/TC.2011.245]
[28]
Y. Zhu, H. Hu, G-J. Ahn, and M. Yu, "Cooperative provable data possession for integrity verification in multicloud storage", IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 12, pp. 2231-2244, 2012.
[http://dx.doi.org/10.1109/TPDS.2012.66]
[29]
P. Sayeedkhan, "Virtual Machine Placement Based on Disk I/O Load in Cloud", vol. 5, no. 4, pp. 5477-5479, 2014.
[30]
D. Jiang, P. Huang, P. Lin, and J. Jiang, "Energy efficient VM placement heuristic algorithms comparison for cloud with multidimensional resources", Inf. Comput. Appl., pp. 413-420, 2012.
[http://dx.doi.org/10.1007/978-3-642-34062-8_54]
[31]
U. Deshpande, X. Wang, and K. Gopalan, "Live gang migration of virtual machines", Proc. International Conference on High Performance Distributed Computing, pp. 135-146, . 2011. USA.
[32]
X. Zhang, Z. Huo, J. Ma, and D. Meng, "Exploiting data duplication to accelerate live virtual machine migration", Proceeding the IEEE International Conference on Cluster Computing, pp. 88-96, 2010.
[33]
C. Ghribi, M. Hadji, and D. Zeghlache, "Energy efficient vm scheduling for cloud data centers: Exact allocation and migration algorithms", In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on IEEE, pp. 671-678, 2013.
[http://dx.doi.org/10.1109/CCGrid.2013.89]
[34]
A. Alahmadi, A. Alnowiser, M.M. Zhu, D. Che, and P. Ghodous, "Enhanced First-Fit Decreasing Algorithm for Energy-Aware Job Scheduling in Cloud", In Computational Science and Computational Intelligence (CSCI), 2014 International Conference on IEEE, pp. 69-74, 2014.
[http://dx.doi.org/10.1109/CSCI.2014.97]
[35]
Y. Zhang, and N. Ansari, "Heterogeneity aware dominant resource assistant heuristics for virtual machine consolidation"Global Communications Conference (GLOBECOM), IEEE, 2013, pp. 1297-1302.
[http://dx.doi.org/10.1109/GLOCOM.2013.6831253]
[36]
J. Dong, H. Wang, and S. Cheng, "Energy-performance tradeoffs in IaaS cloud with virtual machine scheduling", Commun. China, vol. 12, no. 2, pp. 155-166, 2015.
[http://dx.doi.org/10.1109/CC.2015.7084410]
[37]
A. Al-Moalmi, J. Luo, A. Salah, and K. Li, "Optimal virtual machine placement based on grey wolf optimization", Electronics, vol. 8, p. 283, 2019.
[38]
R. Cao, Z. Tang, K. Li, and K. Li, "HMGOWM: A hybrid decision mechanism for automating migration of virtual machines", IEEE Trans. Serv. Comput., 2018.
[http://dx.doi.org/10.1109/TSC.2018.2873694]
[39]
M.H. Ferdaus, M. Murshed, R.N. Calheiros, and R. Buyya, "Virtual machine consolidation in cloud data centers using ACO metaheuristicEuro-Par 2014 Parallel Proc., Springer International Publishing, 2014, pp. 306-317.
[http://dx.doi.org/10.1007/978-3-319-09873-9_26]
[40]
A. Beloglazov, and R. Buyya, "Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of service constraints", IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 7, pp. 1366-1379, 2013.
[http://dx.doi.org/10.1109/TPDS.2012.240]
[41]
P. Arroba, J.M. Moya, J.L. Ayala, and R. Buyya, "Dynamic voltage and frequency scaling-aware dynamic consolidation of virtual machines for energy efficient cloud data centers", Concurr. Comput., 2016.
[42]
D. Bartók, and Z.A. Mann, "A branch-and-bound approach to virtual machine placement", in Proceedings of the 3rd HPI Cloud Symposium “Operating the Cloud", pp. 49-63, 2015.
[43]
A. Beloglazov, J. Abawajy, and R. Buyya, "Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing", Future Gener. Comput. Syst., vol. 28, pp. 755-768, 2012.
[http://dx.doi.org/10.1016/j.future.2011.04.017]
[44]
J. Betz, D. Westhoff, and G. Müller, "Survey on covert channels in virtual machines and cloud computing", Trans. Emerg. Telecommun. Technol., 2017.
[http://dx.doi.org/10.1002/ett.3134]
[45]
A. Zhou, S. Wang, Z. Zheng, C-H. Hsu, M.R. Lyu, and F. Yang, "On cloud service reliability enhancement with optimal resource usage", IEEE Trans. Cloud Comput., vol. 4, no. 4, pp. 452-466, 2016.
[http://dx.doi.org/10.1109/TCC.2014.2369421]
[46]
Z.A. Mann, "Interplay of virtual machine selection and virtual machine placement", Proceedings of the 5th European Conference on Service-Oriented and Cloud Computing, 2016 pp. 137-151
[http://dx.doi.org/10.1007/978-3-319-44482-6_9]
[47]
X. Li, A. Ventresque, J.O. Iglesias, and J. Murphy, "Scalable correlation-aware virtual machine consolidation using two-phase clustering", International Conference on High Performance Computing & Simulation, 2015 pp. 237-245
[http://dx.doi.org/10.1109/HPCSim.2015.7237045]
[48]
Z. Wang, M.M. Hayat, N. Ghani, and K.B. Shaban, "Optimizing cloud-service performance: Efficient resource provisioning via optimal workload allocation", IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 6, pp. 1689-1702, 2017.
[http://dx.doi.org/10.1109/TPDS.2016.2628370]
[49]
Y. Xia, M. Tsugawa, J.A.B. Fortes, and S. Chen, "Large-scale VM placement with disk anti-colocation constraints using hierarchical decomposition and mixed integer programming", IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 5, pp. 1361-1374, 2017.
[http://dx.doi.org/10.1109/TPDS.2016.2615933]
[50]
J. Hu, J. Luo, and K. Li, "Opportunistic energy cooperation mechanism for large internet of things", Mob. Netw. Appl., vol. 23, pp. 489-502, 2018.
[http://dx.doi.org/10.1007/s11036-018-1034-y]
[51]
L. Yin, J. Luo, and H. Luo, "Tasks scheduling and resource allocation in fog computing based on containers for smart manufacturing", IEEE Trans. Industr. Inform., vol. 14, pp. 4712-4721, 2018.
[http://dx.doi.org/10.1109/TII.2018.2851241]
[52]
A. Fatima, N. Javaid, T. Sultana, W. Hussain, M. Bilal, S. Shabbir, Y. Asim, M. Akbar, and M. Ilahi, "Virtual machine placement via bin packing in cloud data centers", Electronics (Basel), vol. 7, p. 389, 2018.
[http://dx.doi.org/10.3390/electronics7120389]
[53]
Y.W. Foo, C. Goh, H.C. Lim, Z.H. Zhan, and Y. Li, "Evolutionary neural network based energy consumption forecast for cloud computing", Proceedings of the 2015 International Conference on Cloud Computing Research and Innovation (ICCCRI), 2015 pp. 53-64 Singapore
[http://dx.doi.org/10.1109/ICCCRI.2015.17]
[54]
S. Mirjalili, S.M. Mirjalili, and A. Lewis, "Grey wolf optimizer", Adv. Eng. Softw., vol. 69, pp. 46-61, 2014.
[http://dx.doi.org/10.1016/j.advengsoft.2013.12.007]
[55]
E. Emary, H.M. Zawbaa, and A.E. Hassanien, "Binary grey wolf optimization approaches for feature selection", Neurocomputing, vol. 172, pp. 371-381, 2016.
[http://dx.doi.org/10.1016/j.neucom.2015.06.083]
[56]
M. Vaezi, and Y. Zhang, "Virtualization and cloud computing"Cloud Mobile Networks., Springer International Publishing: Basel, Switzerland, 2017, pp. 11-31.
[http://dx.doi.org/10.1007/978-3-319-54496-0_2]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy