Mini-Review Article

识别纤溶酶原激活物抑制剂1作为纤溶的主要调节剂

卷 20, 期 16, 2019

页: [1695 - 1701] 页: 7

弟呕挨: 10.2174/1389450120666190715102510

摘要

纤溶系统由纤溶酶原激活率和纤维蛋白降解率之间的平衡组成,两者均受时空机制的调控。纤溶系统的三种不同的抑制剂分别调节这两个步骤,分别是纤溶酶原激活物抑制剂1型(PAI-1),α2-抗纤溶酶和凝血酶可激活的纤溶酶抑制剂(TAFI)。在这篇综述中,我们重点研究PAI-1控制总纤溶活性的机制,以提供其在许多止血性疾病(包括创伤后纤溶性关闭)中的重要作用。 PAI-1是丝氨酸蛋白酶抑制剂(SERPIN)超家族的成员,并通过与PAs形成复合物来抑制纤溶酶原激活剂(PAs)的蛋白酶活性,从而调节纤维蛋白溶解。脉管系统中的主要PA是组织型PA(tPA),它是从血管内皮细胞(VEC)分泌的一种活性酶,并保留在VEC的表面上。存在于血浆中tPA摩尔过量的PAI-1通过形成tPA-PAI-1复合物来调节血浆和VEC表面的游离活性tPA量。因此,PAI-1的高血浆水平直接与纤溶作用减弱和血栓形成的风险增加直接相关。由于血浆PAI-1水平在包括感染和炎症在内的各种病理条件下高度升高,因此血浆和VEC上的纤溶潜力很容易被抑制,从而导致纤溶关闭。人类的先天性PAI-1缺乏反过来导致威胁生命的出血。这些考虑因素支持以下论点:PAI-1是纤维蛋白溶解初始步骤的主要调节剂,并控制总的纤维蛋白溶解活性。

关键词: 纤溶酶原激活物抑制剂1型(PAI-1),组织型纤溶酶原激活物(tPA),纤溶,纤溶潜力,创伤,纤溶关闭。

图形摘要

[1]
Collen D. The plasminogen (fibrinolytic) system. Thromb Haemost 1999; 82(2): 259-70.
[PMID: 10605712]
[2]
Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost 2005; 93(4): 647-54.
[http://dx.doi.org/10.1160/TH04-12-0842] [PMID: 15841308]
[3]
Urano T, Castellino FJ, Suzuki Y. Regulation of plasminogen activation on cell surfaces and fibrin. J Thromb Haemost 2018.
[http://dx.doi.org/10.1111/jth.14157] [PMID: 29779246]
[4]
Iwaki T, Urano T, Umemura K. PAI-1, progress in understanding the clinical problem and its aetiology. Br J Haematol 2012; 157(3): 291-8.
[http://dx.doi.org/10.1111/j.1365-2141.2012.09074.x] [PMID: 22360729]
[5]
Rijken DC, Uitte de Willige S. Inhibition of Fibrinolysis by Coagulation Factor XIII. BioMed Res Int 2017.20171209676
[http://dx.doi.org/10.1155/2017/1209676] [PMID: 28761875]
[6]
Colucci M, Semeraro N. Thrombin activatable fibrinolysis inhibitor: At the nexus of fibrinolysis and inflammation. Thromb Res 2012; 129(3): 314-9.
[http://dx.doi.org/10.1016/j.thromres.2011.10.031] [PMID: 22113149]
[7]
Plug T, Meijers JC. Structure-function relationships in thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost 2016; 14(4): 633-44.
[http://dx.doi.org/10.1111/jth.13261] [PMID: 26786060]
[8]
Morser J, Gabazza EC, Myles T, Leung LL. What has been learnt from the thrombin-activatable fibrinolysis inhibitor-deficient mouse? J Thromb Haemost 2010; 8(5): 868-76.
[http://dx.doi.org/10.1111/j.1538-7836.2010.03787.x] [PMID: 20128866]
[9]
Law RH, Caradoc-Davies T, Cowieson N, et al. The X-ray crystal structure of full-length human plasminogen. Cell Rep 2012; 1(3): 185-90.
[http://dx.doi.org/10.1016/j.celrep.2012.02.012] [PMID: 22832192]
[10]
Castellino FJ. PlsminogenMolecular Basis on Thrombosis and Haemostasis. Marcel Dekker 1995; pp. 495-515.
[11]
Tomczyk M, Suzuki Y, Sano H, Brzoska T, Tanaka H, Urano T. Bidirectional functions of thrombin on fibrinolysis: Evidence of thrombin-dependent enhancement of fibrinolysis provided by spontaneous plasma clot lysis. Thromb Res 2016; 143: 28-33.
[http://dx.doi.org/10.1016/j.thromres.2016.04.018] [PMID: 27179129]
[12]
Urano T, Nishikawa T, Nagai N, Takada Y, Takada A. Amounts of tPA and PAI-1 in the euglobulin fraction obtained at different pH: Their relation to the euglobulin clot lysis time. Thromb Res 1997; 88(1): 75-80.
[http://dx.doi.org/10.1016/S0049-3848(97)00193-X] [PMID: 9336876]
[13]
Urano T, Sumiyoshi K, Nakamura M, Mori T, Takada Y, Takada A. Fluctuation of tPA and PAI-1 antigen levels in plasma: Difference of their fluctuation patterns between male and female. Thromb Res 1990; 60(2): 133-9.
[http://dx.doi.org/10.1016/0049-3848(90)90292-K] [PMID: 2126399]
[14]
Urano T, Sakakibara K, Rydzewski A, Urano S, Takada Y, Takada A. Relationships between euglobulin clot lysis time and the plasma levels of tissue plasminogen activator and plasminogen activator inhibitor 1. Thromb Haemost 1990; 63(1): 82-6.
[http://dx.doi.org/10.1055/s-0038-1645691] [PMID: 2111051]
[15]
Urano T, Sumiyoshi K, Pietraszek MH, Takada Y, Takada A. PAI-1 plays an important role in the expression of t-PA activity in the euglobulin clot lysis by controlling the concentration of free t-PA. Thromb Haemost 1991; 66(4): 474-8.
[http://dx.doi.org/10.1055/s-0038-1646441] [PMID: 1796399]
[16]
Urano T, Suzuki Y, Arakida M, Kanamori M, Takada A. The expression of exercise-induced tPA activity in blood is regulated by the basal level of PAI-1. Thromb Haemost 2001; 85(4): 751-2.
[http://dx.doi.org/10.1055/s-0037-1615669] [PMID: 11341521]
[17]
Madison EL, Kobe A, Gething MJ, Sambrook JF, Goldsmith EJ. Converting tissue plasminogen activator to a zymogen: A regulatory triad of Asp-His-Ser. Science 1993; 262(5132): 419-21.
[http://dx.doi.org/10.1126/science.8211162] [PMID: 8211162]
[18]
Urano T, deSerrano VS, Urano S, Castellino FJ. Stimulation by fibrinogen of the amidolytic activity of single-chain tissue plasminogen activator. Arch Biochem Biophys 1989; 270(1): 356-62.
[http://dx.doi.org/10.1016/0003-9861(89)90038-6] [PMID: 2494944]
[19]
Emeis JJ, van den Eijnden-Schrauwen Y, van den Hoogen CM, de Priester W, Westmuckett A, Lupu F. An endothelial storage granule for tissue-type plasminogen activator. J Cell Biol 1997; 139(1): 245-56.
[http://dx.doi.org/10.1083/jcb.139.1.245] [PMID: 9314543]
[20]
Suzuki Y, Mogami H, Ihara H, Urano T. Unique secretory dynamics of tissue plasminogen activator and its modulation by plasminogen activator inhibitor-1 in vascular endothelial cells. Blood 2009; 113(2): 470-8.
[http://dx.doi.org/10.1182/blood-2008-03-144279] [PMID: 18922856]
[21]
Suzuki Y, Yasui H, Brzoska T, Mogami H, Urano T. Surface-retained tPA is essential for effective fibrinolysis on vascular endothelial cells. Blood 2011; 118(11): 3182-5.
[http://dx.doi.org/10.1182/blood-2011-05-353912] [PMID: 21791417]
[22]
Suzuki Y, Sano H, Tomczyk M, Brzoska T, Urano T. Activities of wild-type and variant tissue-type plasminogen activators retained on vascular endothelial cells. FEBS Open Bio 2016; 6(5): 469-76.
[http://dx.doi.org/10.1002/2211-5463.12057] [PMID: 27419052]
[23]
Lamba D, Bauer M, Huber R, et al. The 2.3 A crystal structure of the catalytic domain of recombinant two-chain human tissue-type plasminogen activator. J Mol Biol 1996; 258(1): 117-35.
[http://dx.doi.org/10.1006/jmbi.1996.0238] [PMID: 8613982]
[24]
Juhan-Vague I, Alessi MC, Mavri A, Morange PE. Plasminogen activator inhibitor-1, inflammation, obesity, insulin resistance and vascular risk. J Thromb Haemost 2003; 1(7): 1575-9.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00279.x] [PMID: 12871293]
[25]
Jansson JH, Olofsson BO, Nilsson TK. Predictive value of tissue plasminogen activator mass concentration on long-term mortality in patients with coronary artery disease. A 7-year follow-up. Circulation 1993; 88(5 Pt 1): 2030-4.
[http://dx.doi.org/10.1161/01.CIR.88.5.2030] [PMID: 8222095]
[26]
Thompson SG, Kienast J, Pyke SD, Haverkate F, van de Loo JC. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. N Engl J Med 1995; 332(10): 635-41.
[http://dx.doi.org/10.1056/NEJM199503093321003] [PMID: 7845427]
[27]
Fay WP, Eitzman DT, Shapiro AD, Madison EL, Ginsburg D. Platelets inhibit fibrinolysis in vitro by both plasminogen activator inhibitor-1-dependent and -independent mechanisms. Blood 1994; 83(2): 351-6.
[PMID: 8286735]
[28]
Brogren H, Karlsson L, Andersson M, Wang L, Erlinge D, Jern S. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood 2004; 104(13): 3943-8.
[http://dx.doi.org/10.1182/blood-2004-04-1439] [PMID: 15315974]
[29]
Stringer HAR, Vanswieten P, Heijnen HFG, Sixma JJ, Pannekoek H. On the function of pai-1 in platelet-rich thrombi produced in the chandler loop. Thromb Haemost 1993; 69(6): 582.
[30]
Stringer HA, van Swieten P, Heijnen HF, Sixma JJ, Pannekoek H. Plasminogen activator inhibitor-1 released from activated platelets plays a key role in thrombolysis resistance. Studies with thrombi generated in the Chandler loop. Arterioscler Thromb 1994; 14(9): 1452-8.
[http://dx.doi.org/10.1161/01.ATV.14.9.1452] [PMID: 8068607]
[31]
Hosokawa K, Ohnishi-Wada T, Sameshima-Kaneko H, et al. Plasminogen activator inhibitor type 1 in platelets induces thrombogenicity by increasing thrombolysis resistance under shear stress in an in-vitro flow chamber model. Thromb Res 2016; 146: 69-75.
[http://dx.doi.org/10.1016/j.thromres.2016.09.002] [PMID: 27611498]
[32]
Urano T, Kojima Y, Takahashi M, et al. Impaired fibrinolysis in hypertension and obesity due to high plasminogen activator inhibitor-1 level in plasma. Jpn J Physiol 1993; 43(2): 221-8.
[http://dx.doi.org/10.2170/jjphysiol.43.221] [PMID: 8355419]
[33]
Schmitt FCF, Manolov V, Morgenstern J, et al. Acute fibrinolysis shutdown occurs early in septic shock and is associated with increased morbidity and mortality: Results of an observational pilot study. Ann Intensive Care 2019; 9(1): 19.
[http://dx.doi.org/10.1186/s13613-019-0499-6] [PMID: 30701381]
[34]
Kornblith LZ, Moore HB, Cohen MJ. Trauma-induced coagulopathy: The past, present, and future. J Thromb Haemost 2019; 17(6): 852-62.
[http://dx.doi.org/10.1111/jth.14450] [PMID: 30985957]
[35]
collaborators C-, Roberts I, Shakur H, Afolabi A, Brohi K, Coats T. The importance of early treatment with tranexamic acid in bleeding trauma patients: An exploratory analysis of the CRASH-2 randomised controlled trial. Lancet 377(9771): 1096-10101 2011.
[36]
Yasui H, Donahue DL, Walsh M, Castellino FJ, Ploplis VA. Early coagulation events induce acute lung injury in a rat model of blunt traumatic brain injury. Am J Physiol Lung Cell Mol Physiol 2016; 311(1): L74-86.
[http://dx.doi.org/10.1152/ajplung.00429.2015] [PMID: 27190065]
[37]
Castellino FJ, Liang Z, Davis PK, et al. Abnormal whole blood thrombi in humans with inherited platelet receptor defects. PLoS One 2012; 7(12)e52878
[http://dx.doi.org/10.1371/journal.pone.0052878] [PMID: 23300803]
[38]
Gando S, Levi M, Toh CH. Disseminated intravascular coagulation. Nat Rev Dis Primers 2016; 2: 16037.
[http://dx.doi.org/10.1038/nrdp.2016.37] [PMID: 27250996]
[39]
Jeleńska MM. Coagulation parameters as predictors of DIC in patients with intact aortic aneurysm. Hamostaseologie 2004; 24(3): 162-6.
[http://dx.doi.org/10.1055/s-0037-1619626] [PMID: 15314700]
[40]
Madoiwa S, Someya T, Hironaka M, et al. Annexin 2 and hemorrhagic disorder in vascular intimal carcinomatosis. Thromb Res 2007; 119(2): 229-40.
[http://dx.doi.org/10.1016/j.thromres.2006.01.017] [PMID: 16524621]
[41]
Madoiwa S. Recent advances in disseminated intravascular coagulation: endothelial cells and fibrinolysis in sepsis-induced DIC. J Intensive Care 2015; 3: 8.
[http://dx.doi.org/10.1186/s40560-015-0075-6] [PMID: 27408725]
[42]
Moore HB, Moore EE, Huebner BR, et al. Fibrinolysis shutdown is associated with a fivefold increase in mortality in trauma patients lacking hypersensitivity to tissue plasminogen activator. J Trauma Acute Care Surg 2017; 83(6): 1014-22.
[http://dx.doi.org/10.1097/TA.0000000000001718] [PMID: 29190254]
[43]
Gando S, Nakanishi Y, Tedo I. Cytokines and plasminogen activator inhibitor-1 in posttrauma disseminated intravascular coagulation: relationship to multiple organ dysfunction syndrome. Crit Care Med 1995; 23(11): 1835-42.
[http://dx.doi.org/10.1097/00003246-199511000-00009] [PMID: 7587259]
[44]
Sentilhes L, Winer N, Azria E, et al. Tranexamic Acid for the Prevention of Blood Loss after Vaginal Delivery. N Engl J Med 2018; 379(8): 731-42.
[http://dx.doi.org/10.1056/NEJMoa1800942] [PMID: 30134136]
[45]
Meizoso JP, Dudaryk R, Mulder MB, et al. Increased risk of fibrinolysis shutdown among severely injured trauma patients receiving tranexamic acid. J Trauma Acute Care Surg 2018; 84(3): 426-32.
[http://dx.doi.org/10.1097/TA.0000000000001792] [PMID: 29298240]
[46]
Fay WP, Shapiro AD, Shih JL, Schleef RR, Ginsburg D. Brief report: Complete deficiency of plasminogen-activator inhibitor type 1 due to a frame-shift mutation. N Engl J Med 1992; 327(24): 1729-33.
[http://dx.doi.org/10.1056/NEJM199212103272406] [PMID: 1435917]
[47]
Iwaki T, Nagahashi K, Takano K, et al. Mutation in a highly conserved glycine residue in strand 5B of plasminogen activator inhibitor 1 causes polymerisation. Thromb Haemost 2017; 117(5): 860-9.
[http://dx.doi.org/10.1160/TH16-07-0572] [PMID: 28229167]
[48]
Iwaki T, Tanaka A, Miyawaki Y, et al. Life-threatening hemorrhage and prolonged wound healing are remarkable phenotypes manifested by complete plasminogen activator inhibitor-1 deficiency in humans. J Thromb Haemost 2011; 9(6): 1200-6.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04288.x] [PMID: 21486382]
[49]
Saes JL, Schols SEM, van Heerde WL, Nijziel MR. Hemorrhagic disorders of fibrinolysis: A clinical review. J Thromb Haemost 2018.
[http://dx.doi.org/10.1111/jth.14160] [PMID: 29847021]
[50]
Lijnen HR. Pleiotropic functions of plasminogen activator inhibitor-1. J Thromb Haemost 2005; 3(1): 35-45.
[http://dx.doi.org/10.1111/j.1538-7836.2004.00827.x] [PMID: 15634264]
[51]
Andreasen PA, Kjøller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: A review. Int J Cancer 1997; 72(1): 1-22.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19970703)72:1<1: AID-IJC1>3.0.CO;2-Z] [PMID: 9212216]
[52]
Gramling MW, Church FC. Plasminogen activator inhibitor-1 is an aggregate response factor with pleiotropic effects on cell signaling in vascular disease and the tumor microenvironment. Thromb Res 2010; 125(5): 377-81.
[http://dx.doi.org/10.1016/j.thromres.2009.11.034] [PMID: 20079523]
[53]
Khan SS, Shah SJ, Klyachko E, Baldridge AS, Eren M, Place AT, et al. A null mutation in SERPINE1 protects against biological aging in humans. Sci Adv 3(11) 2017
[http://dx.doi.org/10.1126/sciadv.aao1617]
[54]
Eren M, Boe AE, Murphy SB, et al. PAI-1-regulated extracellular proteolysis governs senescence and survival in Klotho mice. Proc Natl Acad Sci USA 2014; 111(19): 7090-5.
[http://dx.doi.org/10.1073/pnas.1321942111] [PMID: 24778222]
[55]
Wyseure T, Declerck PJ. Novel or expanding current targets in fibrinolysis. Drug Discov Today 2014; 19(9): 1476-82.
[http://dx.doi.org/10.1016/j.drudis.2014.05.025] [PMID: 24886765]
[56]
Simone TM, Higgins SP, Higgins CE, Lennartz MR, Higgins PJ. Chemical antagonists of plasminogen activator inhibitor-1: Mechanisms of action and therapeutic potential in vascular disease. J Mol Genet Med 2014; 8(3): 125.
[http://dx.doi.org/10.4172/1747-0862.1000125] [PMID: 26110015]
[57]
Ibrahim AA, Yahata T, Onizuka M, et al. Inhibition of plasminogen activator inhibitor type-1 activity enhances rapid and sustainable hematopoietic regeneration. Stem Cells 2014; 32(4): 946-58.
[http://dx.doi.org/10.1002/stem.1577] [PMID: 24155177]

© 2024 Bentham Science Publishers | Privacy Policy