Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Adenosine Receptors in Modulation of Central Nervous System Disorders

Author(s): Hira Choudhury, Dinesh K. Chellappan, Pallav Sengupta, Manisha Pandey and Bapi Gorain*

Volume 25, Issue 26, 2019

Page: [2808 - 2827] Pages: 20

DOI: 10.2174/1381612825666190712181955

Price: $65

Abstract

The ubiquitous signaling nucleoside molecule, adenosine is found in different cells of the human body to provide its numerous pharmacological role. The associated actions of endogenous adenosine are largely dependent on conformational change of the widely expressed heterodimeric G-protein-coupled A1, A2A, A2B, and A3 adenosine receptors (ARs). These receptors are well conserved on the surface of specific cells, where potent neuromodulatory properties of this bioactive molecule reflected by its easy passage through the rigid blood-brainbarrier, to simultaneously act on the central nervous system (CNS). The minimal concentration of adenosine in body fluids (30–300 nM) is adequate to exert its neuromodulatory action in the CNS, whereas the modulatory effect of adenosine on ARs is the consequence of several neurodegenerative diseases. Modulatory action concerning the activation of such receptors in the CNS could be facilitated towards neuroprotective action against such CNS disorders. Our aim herein is to discuss briefly pathophysiological roles of adenosine on ARs in the modulation of different CNS disorders, which could be focused towards the identification of potential drug targets in recovering accompanying CNS disorders. Researches with active components with AR modulatory action have been extended and already reached to the bedside of the patients through clinical research in the improvement of CNS disorders. Therefore, this review consist of recent findings in literatures concerning the impact of ARs on diverse CNS disease pathways with the possible relevance to neurodegeneration.

Keywords: Adenosine, adenosine receptors, signaling pathways, CNS disorders, neuroprotective, neurodegenerative diseases.

[1]
Borea PA, Gessi S, Merighi S, Varani K. Adenosine as a multi-signalling guardian angel in human diseases: When, where and how does it exert its protective effects? Trends Pharmacol Sci 2016; 37: 419-34.
[http://dx.doi.org/10.1016/j.tips.2016.02.006]
[2]
Cacciari B, Pastorin G, Bolcato C, Spalluto G, Bacilieri M, Moro S. A2B adenosine receptor antagonists: Recent developments. Mini Rev Med Chem 2005; 5: 1053-60.
[http://dx.doi.org/10.2174/138955705774933374]
[3]
Sachdeva S, Gupta M. Adenosine and its receptors as therapeutic targets: An overview. Saudi Pharm J 2013; 21: 245-53.
[http://dx.doi.org/10.1016/j.jsps.2012.05.011]
[4]
Drury AN, Szent-Györgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 1929; 68: 213-37.
[http://dx.doi.org/10.1113/jphysiol.1929.sp002608]
[5]
Sattin A, Rall TW. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3′, 5′-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol 1970; 6: 13-23.
[6]
Matsumoto T, Tostes RC, Webb RC. Alterations in vasoconstrictor responses to the endothelium-derived contracting factor uridine adenosine tetraphosphate are region specific in DOCA-salt hypertensive rats. Pharmacol Res 2012; 65: 81-90.
[http://dx.doi.org/10.1016/j.phrs.2011.09.005]
[7]
Baraldi PG, Tabrizi MA, Gessi S, Borea PA. Adenosine receptor antagonists: Translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 2008; 108: 238-63.
[http://dx.doi.org/10.1021/cr0682195]
[8]
Polosa R, Holgate ST. Adenosine receptors as promising therapeutic targets for drug development in chronic airway inflammation. Curr Drug Targets 2006; 7: 699-706.
[http://dx.doi.org/10.2174/138945006777435236]
[9]
Poulsen SA, Quinn RJ. Adenosine receptors: New opportunities for future drugs. Bioorg Med Chem 1998; 6: 619-41.
[http://dx.doi.org/10.1016/S0968-0896(98)00038-8]
[10]
Zhou Y, Schneider DJ, Blackburn MR. Adenosine signaling and the regulation of chronic lung disease. Pharmacol Ther 2009; 123: 105-16.
[http://dx.doi.org/10.1016/j.pharmthera.2009.04.003]
[11]
Antonioli L, Blandizzi C, Pacher P, Haskó G. Immunity, inflammation and cancer: A leading role for adenosine. Nat Rev Cancer 2013; 13: 842-57.
[http://dx.doi.org/10.1038/nrc3613]
[12]
Shukla MK, Mishra PC. Structure-activity relationship for some xanthines as adenosine A1 receptor antagonists, bronchodilators and phosphodiesterase inhibitors: An electric field mapping approach. J Mol Struct THEOCHEM 1995; 340: 159-67.
[http://dx.doi.org/10.1016/0166-1280(95)04186-A]
[13]
Matyash M, Zabiegalov O, Wendt S, Matyash V, Kettenmann H. The adenosine generating enzymes CD39/CD73 control microglial processes ramification in the mouse brain. PLoS One 2017; 12e0175012
[14]
Tautenhahn M, Leichsenring A, Servettini I, et al. Purinergic modulation of the excitatory synaptic input onto rat striatal neurons. Neuropharmacology 2012; 62: 1756-66.
[http://dx.doi.org/10.1016/j.neuropharm.2011.12.001]
[15]
Boison D, Singer P, Shen H-Y, Feldon J, Yee BK. Adenosine hypothesis of schizophrenia – Opportunities for pharmacotherapy. Neuropharmacology 2012; 62: 1527-43.
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.048]
[16]
Peleli M, Carlström M. Pharmacological targeting of adenosine receptor signaling. Mol Aspects Med Pergamon 2017; 55: 4-8.
[17]
Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W. Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol 2000; 362: 364-74.
[18]
Chiu GS, Freund GG. Modulation of neuroimmunity by adenosine and its receptors: Metabolism to mental illness. Metabolism 2014; 63: 1491-1498.3.
[19]
Merighi S, Gessi S, Borea PA. Adenosine receptors: Structure, distribution, and signal transduction. In book: The Adenosine Receptors 2018; pp. 33-57.
[http://dx.doi.org/10.1007/978-3-319-90808-3_3]
[20]
Schiedel AC, Hinz S, Thimm D, Sherbiny F, Borrmann T, Maaß A, et al. The four cysteine residues in the second extracellular loop of the human adenosine A2B receptor: Role in ligand binding and receptor function. Biochem Pharmacol 2011; 82: 389-99.
[http://dx.doi.org/10.1016/j.bcp.2011.05.008]
[21]
Avlani VA, Gregory KJ, Morton CJ, Parker MW, Sexton PM, Christopoulos A. Critical role for the second extracellular loop in the binding of both orthosteric and allosteric G protein-coupled receptor ligands. J Biol Chem 2007; 282: 25677-86.
[http://dx.doi.org/10.1074/jbc.M702311200]
[22]
Piirainen H, Ashok Y, Nanekar RT, Jaakola V-P. Structural features of adenosine receptors: From crystal to function. Biochim Biophys Acta Biomembr 2011; 1808: 1233-44.
[http://dx.doi.org/10.1016/j.bbamem.2010.05.021]
[23]
Deb PK, Mailavaram R, Chandrasekaran B, et al. Synthesis, adenosine receptor binding and molecular modelling studies of novel thieno[2,3- d ]pyrimidine derivatives. Chem Biol Drug Des 2018; 91: 962-9.
[http://dx.doi.org/10.1111/cbdd.13155]
[24]
Mosenden R, Taskén K. Cyclic AMP-mediated immune regulation - Overview of mechanisms of action in T cells. Cell Signal 2011; 23: 1009-16.
[http://dx.doi.org/10.1016/j.cellsig.2010.11.018]
[25]
Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001; 53: 527-52.
[26]
Ballesteros-Yáñez I, Castillo CA, Merighi S, Gessi S. The role of adenosine receptors in psychostimulant addiction. Front Pharmacol 2018; 8: 985.
[http://dx.doi.org/10.3389/fphar.2017.00985]
[27]
Mei H-F, Poonit N, Zhang Y-C, et al. Activating adenosine A1 receptor accelerates PC12 cell injury via ADORA1/PKC/KATP pathway after intermittent hypoxia exposure. Mol Cell Biochem 2018; 446: 161-70.
[http://dx.doi.org/10.1007/s11010-018-3283-2]
[28]
Zhai W, Chen D, Shen H, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain 2016; 9: 66.
[http://dx.doi.org/10.1186/s13041-016-0247-x]
[29]
Katoh-Semba R, Kaneko R, Kitajima S, et al. Activation of p38 mitogen-activated protein kinase is required for in vivo brain-derived neurotrophic factor production in the rat hippocampus. Neuroscience 2009; 163: 352-61.
[http://dx.doi.org/10.1016/j.neuroscience.2009.06.011]
[30]
Chen Z, Xiong C, Pancyr C, Stockwell J, Walz W, Cayabyab FS. Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: Differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK. J Neurosci 2014; 34: 9621-43.
[http://dx.doi.org/10.1523/JNEUROSCI.3991-13.2014]
[31]
Balakumar C, Kishore DP, Rao KV, et al. Design, microwave-assisted synthesis and in silico docking studies of new 4H-pyrimido[2,1-b]benzothiazole-2-arylamino-3-cyano-4-ones as possible adenosine A2B receptor antagonists. Indian J Chem 2012; 51B: 1105-13.
[32]
Chandrasekaran B, Deb PK, Kachler S, Akkinepalli RR, Mailavaram R, Klotz K-N. Synthesis and adenosine receptors binding studies of new fluorinated analogues of pyrido[2,3-d]pyrimidines and quinazolines. Med Chem Res 2018; 27: 756-67.
[http://dx.doi.org/10.1007/s00044-017-2099-z]
[33]
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pathological overproduction: The bad side of adenosine. Br J Pharmacol 2017; 174: 1945-60.
[http://dx.doi.org/10.1111/bph.13763]
[34]
Gessi S, Varani K, Merighi S, Ongini E, Borea PAA. 2A adenosine receptors in human peripheral blood cells. Br J Pharmacol 2000; 129: 2-11.
[http://dx.doi.org/10.1038/sj.bjp.0703045]
[35]
Merighi S, Borea PA, Stefanelli A, et al. A2a and a2b adenosine receptors affect HIF-1α signaling in activated primary microglial cells. Glia 2015; 63: 1933-52.
[http://dx.doi.org/10.1002/glia.22861]
[36]
Pedata F, Dettori I, Coppi E, et al. Purinergic signalling in brain ischemia. Neuropharmacology 2016; 104: 105-30.
[37]
Wei CJ, Li W, Chen J-F. Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim Biophys Acta Biomembr 2011; 1808: 1358-79.
[38]
Sun Y, Huang P. Adenosine A2B receptor: From cell biology to human diseases. Front Chem 2016; 4: 37.
[http://dx.doi.org/10.3389/fchem.2016.00037]
[39]
Allard D, Turcotte M, Stagg J. Targeting A2 adenosine receptors in cancer. Immunol Cell Biol 2017; 95: 333-9.
[http://dx.doi.org/10.1038/icb.2017.8]
[40]
Giambelluca MS, Pouliot M. Early tyrosine phosphorylation events following adenosine A 2A receptor in human neutrophils: Identification of regulated pathways. J Leukoc Biol 2017; 102: 829-36.
[http://dx.doi.org/10.1189/jlb.2VMA1216-517R]
[41]
Ma Y, Gao Z, Xu F, Liu L, Luo Q, Shen Y, et al. A novel combination of astilbin and low-dose methotrexate respectively targeting A 2A AR and its ligand adenosine for the treatment of collagen-induced arthritis. Biochem Pharmacol 2018; 153: 269-81.
[http://dx.doi.org/10.1016/j.bcp.2018.01.033]
[42]
Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: Critical elements in the control of small G proteins. Cell 2007; 129: 865-77.
[http://dx.doi.org/10.1016/j.cell.2007.05.018]
[43]
Cheng X, Ji Z, Tsalkova T, Mei F. Epac and PKA: A tale of two intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai) 2008; 40: 651-62.
[http://dx.doi.org/10.1111/j.1745-7270.2008.00438.x]
[44]
Chrzanowska-Wodnicka M, Kraus AE, Gale D, White GC, VanSluys J. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice. Blood 2008; 111: 2647-56.
[http://dx.doi.org/10.1182/blood-2007-08-109710]
[45]
Jimenez JL, Punzón C, Navarro J, Muñoz-Fernández MA, Fresno M. Phosphodiesterase 4 inhibitors prevent cytokine secretion by T lymphocytes by inhibiting nuclear factor-kappaB and nuclear factor of activated T cells activation. J Pharmacol Exp Ther 2001; 299: 753-9.
[46]
Stagg J, Divisekera U, Duret H, et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res 2011; 71: 2892-900.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4246]
[47]
Chen J-F, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets - what are the challenges? Nat Rev Drug Discov 2013; 12: 265-86.
[http://dx.doi.org/10.1038/nrd3955]
[48]
Fresco P, Diniz C, Gonçalves J. Facilitation of noradrenaline release by activation of adenosine A2A receptors triggers both phospholipase C and adenylate cyclase pathways in rat tail artery. Cardiovasc Res 2004; 63: 739-46.
[http://dx.doi.org/10.1016/j.cardiores.2004.05.015]
[49]
Mohamed RA, Agha AM, Abdel-Rahman AA, Nassar NN. Role of adenosine A2A receptor in cerebral ischemia reperfusion injury: Signaling to phosphorylated extracellular signal-regulated protein kinase (pERK1/2). Neuroscience 2016; 314: 145-59.
[http://dx.doi.org/10.1016/j.neuroscience.2015.11.059]
[50]
Rosenberger P, Schwab JM, Mirakaj V, et al. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol 2009; 10: 195-202.
[http://dx.doi.org/10.1038/ni.1683]
[51]
Sun Y, Duan Y, Eisenstein AS, et al. A novel mechanism of control of NF B activation and inflammation involving A2B adenosine receptors. J Cell Sci 2012; 125: 4507-17.
[http://dx.doi.org/10.1242/jcs.105023]
[52]
Koscso B, Csoka B, Selmeczy Z, et al. Adenosine augments IL-10 production by microglial cells through an A2B adenosine receptor-mediated process. J Immunol 2012; 188: 445-53.
[http://dx.doi.org/10.4049/jimmunol.1101224]
[53]
Merighi S, Bencivenni S, Vincenzi F, Varani K, Borea PA, Gessi SA. 2B adenosine receptors stimulate IL-6 production in primary murine microglia through p38 MAPK kinase pathway. Pharmacol Res 2017; 117: 9-19.
[http://dx.doi.org/10.1016/j.phrs.2016.11.024]
[54]
Borea PA, Varani K, Vincenzi F, et al. The A3 adenosine receptor: History and perspectives. Pharmacol Rev 2014; 67: 74-102.
[http://dx.doi.org/10.1124/pr.113.008540]
[55]
Hussain A, Gharanei AM, Nagra AS, Maddock HL. Caspase inhibition via A3 adenosine receptors: A new cardioprotective mechanism against myocardial infarction. Cardiovasc Drugs Ther 2014; 28: 19-32.
[http://dx.doi.org/10.1007/s10557-013-6500-y]
[56]
Pran Kishore D, Balakumar C, Raghuram Rao A, Roy PP, Roy K. QSAR of adenosine receptor antagonists: Exploring physicochemical requirements for binding of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives with human adenosine A3 receptor subtype. Bioorg Med Chem Lett 2011; 21: 818-23.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.094]
[57]
Dennis SH, Jaafari N, Cimarosti H, Hanley JG, Henley JM, Mellor JR. Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors. J Neurosci 2011; 31(33): 11941-52.
[http://dx.doi.org/10.1523/JNEUROSCI.1183-11.2011]
[58]
Jacobson KA, Merighi S, Varani K, et al. A3 adenosine receptors as modulators of inflammation: From medicinal chemistry to therapy. Med Res Rev 2018; 38: 1031-72.
[http://dx.doi.org/10.1002/med.21456]
[59]
Varani K, Maniero S, Vincenzi F, et al. A3 Receptors are overexpressed in pleura from patients with mesothelioma and reduce cell growth via akt/nuclear factor-κB pathway. Am J Respir Crit Care Med 2011; 183: 522-30.
[http://dx.doi.org/10.1164/rccm.201006-0980OC]
[60]
Merighi S, Benini A, Mirandola P, et al. Adenosine modulates vascular endothelial growth factor expression via hypoxia-inducible factor-1 in human glioblastoma cells. Biochem Pharmacol 2006; 72: 19-31.
[http://dx.doi.org/10.1016/j.bcp.2006.03.020]
[61]
Khasim S, Pran Kishore D, Raghuprasad M, et al. 7-Amino-2-aryl/heteroaryl-5-oxo-5,8-dihydro[1,2,4]triazolo[1,5-a]pyridine-6-carbonitriles: Synthesis and adenosine receptor binding studies. Chem Biol Drug Des 2019.
[http://dx.doi.org/10.1111/cbdd.13528]
[62]
Gessi S, Sacchetto V, Fogli E, et al. Modulation of metalloproteinase-9 in U87MG glioblastoma cells by A3 adenosine receptors. Biochem Pharmacol 2010; 79: 1483-95.
[http://dx.doi.org/10.1016/j.bcp.2010.01.009]
[63]
Ohsawa K, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S. Adenosine A3 receptor is involved in ADP-induced microglial process extension and migration. J Neurochem 2012; 121: 217-27.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07693.x]
[64]
Torres A, Vargas Y, Uribe D, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget 2016; 7: 67373-86.
[http://dx.doi.org/10.18632/oncotarget.12033]
[65]
Bar-Yehuda S, Stemmer SM, Madi L, et al. The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol 2008; 33: 287-95.
[66]
Wu W, He Y, Feng X, et al. MicroRNA-206 is involved in the pathogenesis of ulcerative colitis via regulation of adenosine A3 receptor. Oncotarget 2017; 8: 705.
[http://dx.doi.org/10.18632/oncotarget.13525]
[67]
McColgan P, Tabrizi SJ. Huntington’s disease: A clinical review. Eur J Neurol 2018; 25: 24-34.
[http://dx.doi.org/10.1111/ene.13413]
[68]
Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol 1998; 57: 369-84.
[http://dx.doi.org/10.1097/00005072-199805000-00001]
[69]
Blum D, Chern EC, Domenici MR, et al. What is the role of adenosine tone and adenosine receptors in Huntington’s disease? The Adenosine Receptors 2018; 34: 281-308.
[70]
Blum D, Chern Y, Domenici MR, et al. The role of adenosine tone and adenosine receptors in Huntington’s disease. J Caffeine Adenosine Res 2018; 8: 43-58.
[71]
Rice ME, Patel JC, Cragg SJ. Dopamine release in the basal ganglia. Neuroscience 2011; 198: 112-37.
[http://dx.doi.org/10.1016/j.neuroscience.2011.08.066]
[72]
Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci 1999; 22: 208-15.
[http://dx.doi.org/10.1016/S0166-2236(98)01349-6]
[73]
Ciruela F, Casadó V, Rodrigues RJ, et al. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 2006; 26: 2080-7.
[http://dx.doi.org/10.1523/JNEUROSCI.3574-05.2006]
[74]
Wei CJ, Li W, Chen J-F. Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim Biophys Acta Biomembr 2011; 1808: 1358-79.
[http://dx.doi.org/10.1016/j.bbamem.2010.12.018]
[75]
von Lubitz DK, Dambrosia JM, Kempski O, Redmond DJ. Cyclohexyl adenosine protects against neuronal death following ischemia in the CA1 region of gerbil hippocampus. Stroke 1988; 19: 1133-9.
[http://dx.doi.org/10.1161/01.STR.19.9.1133]
[76]
Paul S, Elsinga PH, Ishiwata K, Dierckx RAJO, van Waarde A. Adenosine A(1) receptors in the central nervous system: Their functions in health and disease, and possible elucidation by PET imaging. Curr Med Chem 2011; 18: 4820-35.
[http://dx.doi.org/10.2174/092986711797535335]
[77]
Blum D, Gall D, Galas M-C, d’Alcantara P, Bantubungi K, Schiffmann SN. The adenosine A1 receptor agonist adenosine amine congener exerts a neuroprotective effect against the development of striatal lesions and motor impairments in the 3-nitropropionic acid model of neurotoxicity. J Neurosci 2002; 22: 9122-33.
[http://dx.doi.org/10.1523/JNEUROSCI.22-20-09122.2002]
[78]
Zuchora B, Turski WA, Wielosz M, Urbańska EM. Protective effect of adenosine receptor agonists in a new model of epilepsy--seizures evoked by mitochondrial toxin, 3-nitropropionic acid, in mice. Neurosci Lett 2001; 305: 91-4.
[http://dx.doi.org/10.1016/S0304-3940(01)01816-X]
[79]
Alfinito PD, Wang S-P, Manzino L, Rijhsinghani S, Zeevalk GD, Sonsalla PK. Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively. J Neurosci 2003; 23: 10982-7.
[http://dx.doi.org/10.1523/JNEUROSCI.23-34-10982.2003]
[80]
Chou S-Y, Lee Y-C, Chen H-M, et al. CGS21680 attenuates symptoms of Huntington’s disease in a transgenic mouse model. J Neurochem 2005; 93: 310-20.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03029.x]
[81]
Blum D, Galas M-C, Pintor A, et al. A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: Implications for the neuroprotective potential of A2A antagonists. J Neurosci 2003; 23: 5361-9.
[http://dx.doi.org/10.1523/JNEUROSCI.23-12-05361.2003]
[82]
Martire A, Pepponi R, Domenici MR, Ferrante A, Chiodi V, Popoli P. BDNF prevents NMDA-induced toxicity in models of Huntington’s disease: The effects are genotype specific and adenosine A 2A receptor is involved. J Neurochem 2013; 125: 225-35.
[http://dx.doi.org/10.1111/jnc.12177]
[83]
Lin J-T, Chang W-C, Chen H-M, et al. Regulation of feedback between protein kinase A and the proteasome system worsens Huntington’s disease. Mol Cell Biol 2013; 33: 1073-84.
[http://dx.doi.org/10.1128/MCB.01434-12]
[84]
Cepeda C, Cummings DM, Hickey MA, et al. Rescuing the corticostriatal synaptic disconnection in the R6/2 mouse model of huntington’s disease: Exercise, adenosine receptors and ampakines. PLoS Curr 2010; 2.
[http://dx.doi.org/10.1371/currents.RRN1182]
[85]
Huang C-L, Yang J-M, Wang K-C, et al. Gastrodia elata prevents huntingtin aggregations through activation of the adenosine A2A receptor and ubiquitin proteasome system. J Ethnopharmacol 2011; 138: 162-8.
[http://dx.doi.org/10.1016/j.jep.2011.08.075]
[86]
Chiang M-C, Lee Y-C, Huang C-L, Chern Y. cAMP-response element-binding protein contributes to suppression of the A2A adenosine receptor promoter by mutant Huntingtin with expanded polyglutamine residues. J Biol Chem 2005; 280: 14331-40.
[http://dx.doi.org/10.1074/jbc.M413279200]
[87]
Huang Q-Y, Wei C, Yu L, et al. Adenosine A2A receptors in bone marrow-derived cells but not in forebrain neurons are important contributors to 3-nitropropionic acid-induced striatal damage as revealed by cell-type-selective inactivation. J Neurosci 2006; 26: 11371-8.
[http://dx.doi.org/10.1523/JNEUROSCI.1907-06.2006]
[88]
Huang N-K, Lin J-H, Lin J-T, et al. A new drug design targeting the adenosinergic system for Huntington’s disease. PLoS One 2011; 6e20934
[http://dx.doi.org/10.1371/journal.pone.0020934]
[89]
Domenici MR, Scattoni ML, Martire A, et al. Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist SCH 58261 in R6/2 Huntington’s disease mice. Neurobiol Dis 2007; 28: 197-205.
[http://dx.doi.org/10.1016/j.nbd.2007.07.009]
[90]
Gianfriddo M, Melani A, Turchi D, Giovannini MG, Pedata F. Adenosine and glutamate extracellular concentrations and mitogen-activated protein kinases in the striatum of Huntington transgenic mice. Selective antagonism of adenosine A2A receptors reduces transmitter outflow. Neurobiol Dis 2004; 17: 77-88.
[http://dx.doi.org/10.1016/j.nbd.2004.05.008]
[91]
Lee C, Chern Y. Adenosine Receptors and Huntington’s Disease. Int Rev Neurobiol 2014; 19: 195-232.
[http://dx.doi.org/10.1016/B978-0-12-801022-8.00010-6]
[92]
Andreassen OA, Ferrante RJ, Hughes DB, et al. Malonate and 3-nitropropionic acid neurotoxicity are reduced in transgenic mice expressing a caspase-1 dominant-negative mutant. J Neurochem 2000; 75: 847-52.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0750847.x]
[93]
Tyebji S, Saavedra A, Canas PM, et al. Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington’s disease. Neurobiol Dis 2015; 74: 41-57.
[http://dx.doi.org/10.1016/j.nbd.2014.11.004]
[94]
Centers for Disease Control and Prevention (CDC). Report to Congress on Mild Traumatic Brain Injury in the United States: Steps to Prevent a Serious Public Health Problem [Internet]. 2003. Available fromhttps://www.cdc.gov/traumaticbraininjury/pdf/mtbireport-a.pdf
[95]
Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveill Summ 2017; 66: 1-16.
[http://dx.doi.org/10.15585/mmwr.ss6609a1]
[96]
Nampiaparampil DE. Prevalence of Chronic Pain After Traumatic Brain Injury. JAMA 2008; 300: 711.
[http://dx.doi.org/10.1001/jama.300.6.711]
[97]
Verma A, Anand V, Verma NP. Sleep disorders in chronic traumatic brain injury. J Clin Sleep Med 2007; 3: 357-62.
[98]
Kwok FY, Lee TMC, Leung CHS, Poon WS. Changes of cognitive functioning following mild traumatic brain injury over a 3-month period. Brain Inj 2008; 22: 740-51.
[http://dx.doi.org/10.1080/02699050802336989]
[99]
Moore EL, Terryberry-Spohr L, Hope DA. Mild traumatic brain injury and anxiety sequelae: A review of the literature. Brain Inj 2006; 20: 117-32.
[http://dx.doi.org/10.1080/02699050500443558]
[100]
Ronne-Engstrom E, Winkler T. Continuous EEG monitoring in patients with traumatic brain injury reveals a high incidence of epileptiform activity. Acta Neurol Scand 2006; 114: 47-53.
[http://dx.doi.org/10.1111/j.1600-0404.2006.00652.x]
[101]
Nestvold K, Stavem K. Determinants of health-related quality of life 22 years after hospitalization for traumatic brain injury. Brain Inj 2009; 23: 15-21.
[http://dx.doi.org/10.1080/02699050802530540]
[102]
Burnstock G. Purinergic signalling in neuroregeneration. Neural Regen Res. Wolters Kluwer -- Medknow Publications 2015; 10: p. 1919.
[http://dx.doi.org/10.4103/1673-5374.165300]
[103]
Hu X, Liou AKF, Leak RK, et al. Neurobiology of microglial action in CNS injuries: Receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol 2014; 119-120: 60-84.
[http://dx.doi.org/10.1016/j.pneurobio.2014.06.002]
[104]
Tindall SC. Level of consciousness. Clinical methods: The history, physical, and laboratory examinations. Butterworths; 1990. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21250221
[105]
Fleischer AS, Rudman DR, Fresh CB, Tindall GT. Concentration of 3′,5′ cyclic adenosine monophosphate in ventricular CSF of patients following severe head trauma. J Neurosurg 1977; 47: 517-24.
[http://dx.doi.org/10.3171/jns.1977.47.4.0517]
[106]
Abel T, Nguyen PV. Regulation of hippocampus-dependent memory by cyclic AMP-dependent protein kinase. Prog Brain Res 2008; 169: 97-115.
[http://dx.doi.org/10.1016/S0079-6123(07)00006-4]
[107]
Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: A combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 2005; 25: 763-74.
[http://dx.doi.org/10.1038/sj.jcbfm.9600073]
[108]
Cunha RA. Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 2005; 1: 111-34.
[http://dx.doi.org/10.1007/s11302-005-0649-1]
[109]
Chen J-F, Sonsalla PK, Pedata F, et al. Adenosine A2A receptors and brain injury: Broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol 2007; 83: 310-31.
[http://dx.doi.org/10.1016/j.pneurobio.2007.09.002]
[110]
Valadas JS, Batalha VL, Ferreira DG, et al. Neuroprotection afforded by adenosine A 2A receptor blockade is modulated by corticotrophin-releasing factor (CRF) in glutamate injured cortical neurons. J Neurochem 2012; 123: 1030-40.
[http://dx.doi.org/10.1111/jnc.12050]
[111]
Franco R, Navarro G. Adenosine A2A receptor antagonists in neurodegenerative diseases: Huge potential and huge challenges. Front Psychiatry 2018; 9: 68.
[http://dx.doi.org/10.3389/fpsyt.2018.00068]
[112]
Canas PM, Porciuncula LO, Cunha GMA, et al. Adenosine A2A Receptor Blockade Prevents Synaptotoxicity and Memory Dysfunction Caused by -Amyloid Peptides via p38 Mitogen-Activated Protein Kinase Pathway. J Neurosci 2009; 29: 14741-51.
[http://dx.doi.org/10.1523/JNEUROSCI.3728-09.2009]
[113]
Giménez-Llort L, Fernández-Teruel A, Escorihuela RM, et al. Mice lacking the adenosine A1 receptor are anxious and aggressive, but are normal learners with reduced muscle strength and survival rate. Eur J Neurosci 2002; 16: 547-50.
[http://dx.doi.org/10.1046/j.1460-9568.2002.02122.x]
[114]
Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 2001; 24: 31-55.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.31]
[115]
Luo C, Yi B, Tao G, et al. Adenosine A3 receptor agonist reduces early brain injury in subarachnoid haemorrhage. Neuroreport 2010; 21: 892-6.
[http://dx.doi.org/10.1097/WNR.0b013e32833dbd13]
[116]
Maria Pugliese A, Coppi E, Volpini R, et al. Role of adenosine A3 receptors on CA1 hippocampal neurotransmission during oxygen-glucose deprivation episodes of different duration. Biochem Pharmacol 2007; 74: 768-79.
[http://dx.doi.org/10.1016/j.bcp.2007.06.003]
[117]
Harmar AJ, Hills RA, Rosser EM, et al. IUPHAR-DB: The IUPHAR database of G protein-coupled receptors and ion channels. Nucleic Acids Res 2009; 37: D680-5.
[http://dx.doi.org/10.1093/nar/gkn728]
[118]
Kochanek PM, Hendrich KS, Robertson CL, et al. Assessment of the effect of 2-chloroadenosine in normal rat brain using spin-labeled MRI measurement of perfusion. Magn Reson Med 2001; 45: 924-9.
[http://dx.doi.org/10.1002/mrm.1123]
[119]
Kochanek PM, Hendrich KS, Jackson EK, et al. Characterization of the effects of adenosine receptor agonists on cerebral blood flow in uninjured and traumatically injured rat brain using continuous arterial spin-labeled magnetic resonance imaging. J Cereb Blood Flow Metab 2005; 25: 1596-612.
[http://dx.doi.org/10.1038/sj.jcbfm.9600154]
[120]
Headrick JP, Bendall MR, Faden AI, Vink R. Dissociation of adenosine levels from bioenergetic state in experimental brain trauma: Potential role in secondary injury. J Cereb Blood Flow Metab 1994; 14: 853-61.
[http://dx.doi.org/10.1038/jcbfm.1994.107]
[121]
Ross CA, Margolis RL, Reading SAJ, Pletnikov M, Coyle JT. Neurobiology of schizophrenia. Neuron 2006; 52: 139-53.
[122]
Labrie V, Roder JC. The involvement of the NMDA receptor d-serine/glycine site in the pathophysiology and treatment of schizophrenia. Neurosci Biobehav Rev 2010; 34: 351-72.
[http://dx.doi.org/10.1016/j.neubiorev.2009.08.002]
[123]
Smith WW, Pei Z, Jiang H, et al. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci USA 2005; 102: 18676-81.
[http://dx.doi.org/10.1073/pnas.0508052102]
[124]
Tanaka S. Dopaminergic control of working memory and its relevance to schizophrenia: A circuit dynamics perspective. Neuroscience 2006; 139: 153-71.
[http://dx.doi.org/10.1016/j.neuroscience.2005.08.070]
[125]
Fredholm BB, Chen J-F, Cunha RA, Svenningsson P, Vaugeois J-M. Adenosine and brain function. Int Rev Neurobiol 2005; •••: 191-270.
[http://dx.doi.org/10.1016/S0074-7742(05)63007-3]
[126]
Fink JS, Weaver DR, Rivkees SA, et al. Molecular cloning of the rat A2 adenosine receptor: Selective co-expression with D2 dopamine receptors in rat striatum. Brain Res Mol Brain Res 1992; 14: 186-95.
[http://dx.doi.org/10.1016/0169-328X(92)90173-9]
[127]
Rebola N, Lujan R, Cunha RA, Mulle C. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 2008; 57: 121-34.
[http://dx.doi.org/10.1016/j.neuron.2007.11.023]
[128]
Davis S, Butcher SP, Morris RG. The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. J Neurosci 1992; 12: 21-34.
[http://dx.doi.org/10.1523/JNEUROSCI.12-01-00021.1992]
[129]
Lara DR, Dall’Igna OP, Ghisolfi ES, Brunstein MG. Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 617-29.
[http://dx.doi.org/10.1016/j.pnpbp.2006.02.002]
[130]
Takahashi RN, Pamplona FA, Prediger RDS. Adenosine receptor antagonists for cognitive dysfunction: A review of animal studies. Front Biosci 2008; 13: 2614-32.
[http://dx.doi.org/10.2741/2870]
[131]
Villar-Menéndez I, Díaz-Sánchez S, Blanch M, et al. Reduced striatal adenosine A2A receptor levels define a molecular subgroup in schizophrenia. J Psychiatr Res 2014; 51: 49-59.
[http://dx.doi.org/10.1016/j.jpsychires.2013.12.013]
[132]
Moscoso-Castro M, Gracia-Rubio I, Ciruela F, Valverde O. Genetic blockade of adenosine A2A receptors induces cognitive impairments and anatomical changes related to psychotic symptoms in mice. Eur Neuropsychopharmacol 2016; 26: 1227-40.
[http://dx.doi.org/10.1016/j.euroneuro.2016.04.003]
[133]
Shen H-Y, Singer P, Lytle N, et al. Adenosine augmentation ameliorates psychotic and cognitive endophenotypes of schizophrenia. J Clin Invest 2012; 122: 2567-77.
[http://dx.doi.org/10.1172/JCI62378]
[134]
Kafka SH, Corbett R. Selective adenosine A2A receptor/dopamine D2 receptor interactions in animal models of schizophrenia. Eur J Pharmacol 1996; 295: 147-54.
[http://dx.doi.org/10.1016/0014-2999(95)00668-0]
[135]
Akhondzadeh S, Shasavand E, Jamilian H, Shabestari O, Kamalipour A. Dipyridamole in the treatment of schizophrenia: Adenosine-dopamine receptor interactions. J Clin Pharm Ther 2000; 25: 131-7.
[http://dx.doi.org/10.1046/j.1365-2710.2000.00273.x]
[136]
Pintsuk J, Borroto-Escuela DO, Lai TKY, Liu F, Fuxe K. Alterations in ventral and dorsal striatal allosteric A2AR-D2R receptor-receptor interactions after amphetamine challenge: Relevance for schizophrenia. Life Sci 2016; 167: 92-7.
[http://dx.doi.org/10.1016/j.lfs.2016.10.027]
[137]
Dixon DA, Fenix LA, Kim DM, Raffa RB. Indirect modulation of dopamine D2 receptors as potential pharmacotherapy for schizophrenia: I. adenosine agonists. Ann Pharmacother 1999; 33: 480-8.
[http://dx.doi.org/10.1345/aph.18215]
[138]
Wonodi I, Gopinath HV, Liu J, et al. Dipyridamole monotherapy in schizophrenia. Psychopharmacology 2011; 218: 341-5.
[http://dx.doi.org/10.1007/s00213-011-2315-3]
[139]
McGirr A, Lipina TV, Mun H-S, et al. Specific inhibition of phosphodiesterase-4B results in anxiolysis and facilitates memory acquisition. Neuropsychopharmacology 2016; 41: 1080-92.
[http://dx.doi.org/10.1038/npp.2015.240]
[140]
Schillings E, Wahnsiedler M. Enhancing the response to the burden and impact of dementia through policy and social innovation in the eastern mediterranean region 2016. Available from: http://www.wish.org.qa/wp-content/uploads/2018/01/Dementia-Report-web-version-2.pdf
[141]
Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M. World Alzheimer Report. Improving healthcare for people living with dementia coverage, QualIty and costs now and In the future. 2016. Available from: www.daviddesigns.co.uk
[142]
Selkoe D, Mandelkow E, Holtzman D. Deciphering Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2a011460
[http://dx.doi.org/10.1101/cshperspect.a011460]
[143]
Gorain B, Choudhury H, Pandey M, et al. Mechanistic description of natural herbs in the treatment of dementia: A systematic review. Curr Psychopharmacol 2018; 07: 149-64.
[http://dx.doi.org/10.2174/2211556007666180420124544]
[144]
Canas PM, Cunha RA, Agostinho P. Adenosine receptors in Alzheimer’s disease. The Adenosine Receptors 2018; 34: 259-80.
[http://dx.doi.org/10.1007/978-3-319-90808-3_11]
[145]
Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell 2012; 148: 1204-22.
[http://dx.doi.org/10.1016/j.cell.2012.02.040]
[146]
Canas PM, Duarte JMN, Rodrigues RJ, Köfalvi A, Cunha RA. Modification upon aging of the density of presynaptic modulation systems in the hippocampus. Neurobiol Aging 2009; 30: 1877-84.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.01.003]
[147]
Angulo E, Casadó V, Mallol J, et al. A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol 2003; 13: 440-51.
[http://dx.doi.org/10.1111/j.1750-3639.2003.tb00475.x]
[148]
Mitchell RM, Neafsey EJ, Collins MA. Essential involvement of the NMDA receptor in ethanol preconditioning-dependent neuroprotection from amyloid-β in vitro. J Neurochem 2009; 111: 580-8.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06351.x]
[149]
Vollert C, Forkuo GS, Bond RA, Eriksen JL. Chronic treatment with DCPCX, an adenosine A1 antagonist, worsens long-term memory. Neurosci Lett 2013; 548: 296-300.
[http://dx.doi.org/10.1016/j.neulet.2013.05.052]
[150]
Dennissen FJA, Anglada-Huguet M, Sydow A, Mandelkow E, Mandelkow E-M. Adenosine A1 receptor antagonist rolofylline alleviates axonopathy caused by human Tau ΔK280. Proc Natl Acad Sci USA 2016; 113: 11597-602.
[http://dx.doi.org/10.1073/pnas.1603119113]
[151]
Chen G-J, Harvey BK, Shen H, Chou J, Victor A, Wang Y. Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J Neurosci Res 2006; 84: 1848-55.
[http://dx.doi.org/10.1002/jnr.21071]
[152]
Li S, Geiger NH, Soliman ML, Hui L, Geiger JD, Chen X. Caffeine, through adenosine A3 receptor-mediated actions, suppresses amyloid-β protein precursor internalization and amyloid-β generation. J Alzheimers Dis 2015; 47: 73-83.
[http://dx.doi.org/10.3233/JAD-142223]
[153]
Costenla AR, Diógenes MJ, Canas PM, et al. Enhanced role of adenosine A2A receptors in the modulation of LTP in the rat hippocampus upon ageing. Eur J Neurosci 2011; 34: 12-21.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07719.x]
[154]
Lopes LV, Cunha RA, Ribeiro JA. Increase in the number, G protein coupling, and efficiency of facilitatory adenosine A2A receptors in the limbic cortex, but not striatum, of aged rats. J Neurochem 1999; 73: 1733-8.
[http://dx.doi.org/10.1046/j.1471-4159.1999.731733.x]
[155]
Cunha GMA, Canas PM, Melo CS, et al. Adenosine A2A receptor blockade prevents memory dysfunction caused by β-amyloid peptides but not by scopolamine or MK-801. Exp Neurol 2008; 210: 776-81.
[http://dx.doi.org/10.1016/j.expneurol.2007.11.013]
[156]
Nagpure BV, Bian J-S. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-Amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway. PLoS One 2014; 9e88508
[157]
Lu J, Cui J, Li X, et al. An anti-Parkinson’s disease drug via targeting adenosine A2A receptor enhances amyloid-β generation and γ-secretase activity. PLoS One 2016; 11e0166415
[http://dx.doi.org/10.1371/journal.pone.0166415]
[158]
Laurent C, Burnouf S, Ferry B, et al. A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Mol Psychiatry 2016; 21: 97-107.
[http://dx.doi.org/10.1038/mp.2014.151]
[159]
Viana da Silva S, Haberl MG, Zhang P, et al. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer’s disease involve neuronal adenosine A2A receptors. Nat Commun 2016; 7: 11915.
[http://dx.doi.org/10.1038/ncomms11915]
[160]
Matos M, Augusto E, Machado NJ, dos Santos-Rodrigues A, Cunha RA, Agostinho P. Astrocytic adenosine A2A receptors control the amyloid-β peptide-induced decrease of glutamate uptake. J Alzheimers Dis 2012; 31: 555-67.
[161]
Orr AG, Hsiao EC, Wang MM, et al. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat Neurosci 2015; 18: 423-34.
[http://dx.doi.org/10.1038/nn.3930]
[162]
Orr AG, Lo I, Schumacher H, et al. Istradefylline reduces memory deficits in aging mice with amyloid pathology. Neurobiol Dis 2018; 110: 29-36.
[http://dx.doi.org/10.1016/j.nbd.2017.10.014]
[163]
Lemos C, Pinheiro BS, Beleza RO, et al. Adenosine A2B receptor activation stimulates glucose uptake in the mouse forebrain. Purinergic Signal 2015; 11: 561-9.
[http://dx.doi.org/10.1007/s11302-015-9474-3]
[164]
Chen Z, Zhong C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. Prog Neurobiol 2013; 108: 21-43.
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.004]
[165]
Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007; 68: 384-6.
[http://dx.doi.org/10.1212/01.wnl.0000247740.47667.03]
[166]
de Rijk MC, Tzourio C, Breteler MM, et al. Prevalence of parkinsonism and Parkinson’s disease in Europe: The EUROPARKINSON Collaborative Study. European Community Concerted Action on the epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry 1997; 62: 10-5.
[http://dx.doi.org/10.1136/jnnp.62.1.10]
[167]
de Lau LML, Giesbergen PCLM, de Rijk MC, Hofman A, Koudstaal PJ, Breteler MMB. Incidence of Parkinsonism and Parkinson disease in a general population: The Rotterdam Study. Neurology 2004; 63: 1240-4.
[http://dx.doi.org/10.1212/01.WNL.0000140706.52798.BE]
[168]
Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24(2): 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9]
[169]
Nishi A, Snyder GL, Greengard P. Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci 1997; 17: 8147-55.
[http://dx.doi.org/10.1523/JNEUROSCI.17-21-08147.1997]
[170]
Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev 1998; 50: 413-92.
[171]
Lee FJS, Xue S, Pei L, et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 2002; 111: 219-30.
[http://dx.doi.org/10.1016/S0092-8674(02)00962-5]
[172]
Fuxe K, Ferré S, Zoli M, Agnati LF. Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. Brain Res Brain Res Rev 1998; 26: 258-73.
[http://dx.doi.org/10.1016/S0165-0173(97)00049-0]
[173]
Chen J-F. Adenosine receptor control of cognition in normal and disease. Int Rev Neurobiol 2014; 257-307.
[http://dx.doi.org/10.1016/B978-0-12-801022-8.00012-X]
[174]
Navarro G, Borroto-Escuela DO, Fuxe K, Franco R. Purinergic signaling in Parkinson’s disease. Relevance for treatment. Neuropharmacology 2016; 104: 161-8.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.024]
[175]
Jenner P. An overview of adenosine A2A receptor antagonists in Parkinson’s disease. Int Rev Neurobiol 2014; 71-86.
[http://dx.doi.org/10.1016/B978-0-12-801022-8.00003-9]
[176]
Pinna A. Adenosine A2A receptor antagonists in Parkinson’s Disease: Progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs 2014; 28: 455-74.
[http://dx.doi.org/10.1007/s40263-014-0161-7]
[177]
Sebastião AM, Ribeiro JA. Adenosine receptors and the central nervous system. Handb Exp Pharmacol 2009; 193: 471-534.
[http://dx.doi.org/10.1007/978-3-540-89615-9_16]
[178]
Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: Neuroprotection and neurodegeneration. Biochim Biophys Acta Biomembr 2011; 1808: 1380-99.
[http://dx.doi.org/10.1016/j.bbamem.2010.12.001]
[179]
Jorg M, Scammells PJ, Capuano B. The dopamine D2 and adenosine A2A receptors: Past, present and future trends for the treatment of Parkinson’s disease. Curr Med Chem 2014; 21: 3188-210.
[http://dx.doi.org/10.2174/1389200215666140217110716]
[180]
Casetta I, Vincenzi F, Bencivelli D, et al. A2A adenosine receptors and Parkinson’s disease severity. Acta Neurol Scand 2014; 129: 276-81.
[http://dx.doi.org/10.1111/ane.12181]
[181]
Beggiato S, Antonelli T, Tomasini MC, et al. Adenosine A2A-D2 receptor-receptor interactions in putative heteromers in the regulation of the striato-pallidal gaba pathway: Possible relevance for Parkinson’s disease and its treatment. Curr Protein Pept Sci 2014; 15: 673-80.
[http://dx.doi.org/10.2174/1389203715666140901103205]
[182]
Ferré S, Bonaventura J, Tomasi D, et al. Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer. Neuropharmacology 2016; 104: 154-60.
[http://dx.doi.org/10.1016/j.neuropharm.2015.05.028]
[183]
Gandía J, Morató X, Stagljar I, Fernández-Dueñas V, Ciruela F. Adenosine A2A receptor-mediated control of pilocarpine-induced tremulous jaw movements is Parkinson’s disease-associated GPR37 receptor-dependent. Behav Brain Res 2015; 288: 103-6.
[http://dx.doi.org/10.1016/j.bbr.2015.04.001]
[184]
Yadav S, Gupta SP, Srivastava G, Srivastava PK, Singh MP. Role of secondary mediators in caffeine-mediated neuroprotection in maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. Neurochem Res 2012; 37: 875-84.
[http://dx.doi.org/10.1007/s11064-011-0682-0]
[185]
Sonsalla PK, Wong L-Y, Harris SL, et al. Delayed caffeine treatment prevents nigral dopamine neuron loss in a progressive rat model of Parkinson’s disease. Exp Neurol 2012; 234: 482-7.
[http://dx.doi.org/10.1016/j.expneurol.2012.01.022]
[186]
Tsutsui S, Schnermann J, Noorbakhsh F, et al. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 2004; 24: 1521-9.
[http://dx.doi.org/10.1523/JNEUROSCI.4271-03.2004]
[187]
Dugan L, Choi DW. Hypoxia-ischemia and brain infarction Basic neurochemistry: Molecular, cellular and medical aspects. 6th ed. Philadelphia: Lippincott-Raven 1999; pp. 309-48.
[188]
Pedata F, Corsi C, Melani A, Bordoni F, Latini S. Adenosine extracellular brain concentrations and role of A2A receptors in ischemia. Ann N Y Acad Sci 2001; 939: 74-84.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03614.x]
[189]
Phillis JW. The effects of selective A1 and A2a adenosine receptor antagonists on cerebral ischemic injury in the gerbil. Brain Res 1995; 705: 79-84.
[http://dx.doi.org/10.1016/0006-8993(95)01153-6]
[190]
Chen JF, Huang Z, Ma J, et al. A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 1999; 19: 9192-200.
[http://dx.doi.org/10.1523/JNEUROSCI.19-21-09192.1999]
[191]
Ådén U, Halldner L, Lagercrantz H, Dalmau I, Ledent C, Fredholm BB. Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice. Stroke 2003; 34: 739-44.
[http://dx.doi.org/10.1161/01.STR.0000060204.67672.8B]
[192]
Bona E, Adén U, Gilland E, Fredholm BB, Hagberg H. Neonatal cerebral hypoxia-ischemia: The effect of adenosine receptor antagonists. Neuropharmacology 1997; 36: 1327-38.
[http://dx.doi.org/10.1016/S0028-3908(97)00139-1]
[193]
Svenningsson P, Le Moine C, Fisone G, Fredholm BB. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 1999; 59: 355-96.
[http://dx.doi.org/10.1016/S0301-0082(99)00011-8]
[194]
Gerfen CR, Engber TM, Mahan LC, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990; 250: 1429-32.
[http://dx.doi.org/10.1126/science.2147780]
[195]
Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S. Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 2007; 83: 277-92.
[http://dx.doi.org/10.1016/j.pneurobio.2007.05.001]
[196]
Winerdal M, Winerdal ME, Wang Y-Q, Fredholm BB, Winqvist O, Ådén U. Adenosine A1 receptors contribute to immune regulation after neonatal hypoxic ischemic brain injury. Purinergic Signal 2016; 12: 89-101.
[http://dx.doi.org/10.1007/s11302-015-9482-3]
[197]
Pimentel VC, Moretto MB, Oliveira MC, Zanini D, Sebastião AM, Schetinger MRC. Neuroinflammation after neonatal hypoxia-ischemia is associated with alterations in the purinergic system: Adenosine deaminase 1 isoenzyme is the most predominant after insult. Mol Cell Biochem 2015; 403: 169-77.
[http://dx.doi.org/10.1007/s11010-015-2347-9]
[198]
Lopes LV, Sebastião AM, Ribeiro JA. Adenosine and related drugs in brain diseases: Present and future in clinical trials. Curr Top Med Chem 2011; 11: 1087-101.
[http://dx.doi.org/10.2174/156802611795347591]
[199]
Shan HQ, Cheng JS. Effect of adenosine on adenosine triphosphate-sensitive potassium channel during hypoxia in rat hippocampal neurons. Neurosci Lett 2000; 286: 45-8.
[http://dx.doi.org/10.1016/S0304-3940(00)01083-1]
[200]
Li Q, Han X, Lan X, et al. Inhibition of tPA-induced hemorrhagic transformation involves adenosine A2b receptor activation after cerebral ischemia. Neurobiol Dis 2017; 108: 173-82.
[http://dx.doi.org/10.1016/j.nbd.2017.08.011]
[201]
Melani A, Pugliese AM, Pedata F. Adenosine receptors in cerebral ischemia. Int Rev Neurobiol 2014; 119: 309-48.
[http://dx.doi.org/10.1016/B978-0-12-801022-8.00013-1]
[202]
Mohamed RA, Agha AM, Abdel-Rahman AA, Nassar NN. Role of adenosine A2A receptor in cerebral ischemia reperfusion injury: Signaling to phosphorylated extracellular signal-regulated protein kinase (pERK1/2). Neuroscience 2016; 314: 145-59.
[http://dx.doi.org/10.1016/j.neuroscience.2015.11.059]
[203]
Tellez-Zenteno JF, Matijevic S, Wiebe S. Somatic comorbidity of epilepsy in the general population in Canada. Epilepsia 2005; 46: 1955-62.
[http://dx.doi.org/10.1111/j.1528-1167.2005.00344.x]
[204]
Gaitatzis A, Sisodiya SM, Sander JW. The somatic comorbidity of epilepsy: A weighty but often unrecognized burden. Epilepsia 2012; 53: 1282-93.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03528.x]
[205]
Gleichmann M, Chow VW, Mattson MP. Homeostatic disinhibition in the aging brain and Alzheimer’s disease. J Alzheimers Dis 2011; 24: 15-24.
[http://dx.doi.org/10.3233/JAD-2010-101674]
[206]
Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 2010; 51: 676-85.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02522.x]
[207]
St. Louis E, Louis EK. Minimizing AED adverse effects: Improving quality of life in the interictal state in epilepsy care. Curr Neuropharmacol 2009; 7: 106-14.
[http://dx.doi.org/10.2174/157015909788848857]
[208]
Vajda FJE. Pharmacotherapy of epilepsy: New armamentarium, new issues. J Clin Neurosci 2007; 14: 813-23.
[http://dx.doi.org/10.1016/j.jocn.2007.02.008]
[209]
Lovatt D, Xu Q, Liu W, et al. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc Natl Acad Sci USA 2012; 109: 6265-70.
[http://dx.doi.org/10.1073/pnas.1120997109]
[210]
Van Gompel JJ, Bower MR, Worrell GA, et al. Increased cortical extracellular adenosine correlates with seizure termination. Epilepsia 2014; 55: 233-44.
[http://dx.doi.org/10.1111/epi.12511]
[211]
Moezi L, Akbarian R, Niknahad H, Shafaroodi H. The interaction of adenosine and morphine on pentylenetetrazole-induced seizure threshold in mice. Neuropharmacology 2013; 72: 1-8.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.017]
[212]
Muzzi M, Coppi E, Pugliese AM, Chiarugi A. Anticonvulsant effect of AMP by direct activation of adenosine A1 receptor. Exp Neurol 2013; 250: 189-93.
[http://dx.doi.org/10.1016/j.expneurol.2013.09.010]
[213]
Pometlová M, Kubová H, Mares P. Effects of 2-chloroadenosine on cortical epileptic afterdischarges in immature rats. Pharmacol Rep 2010; 62: 62-7.
[http://dx.doi.org/10.1016/S1734-1140(10)70243-7]
[214]
Tosh DK, Paoletta S, Deflorian F, et al. Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: Receptor docking and potent anticonvulsant activity. J Med Chem 2012; 55: 8075-90.
[http://dx.doi.org/10.1021/jm300965a]
[215]
Fedele DE, Li T, Lan JQ, Fredholm BB, Boison D. Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp Neurol 2006; 200: 184-90.
[http://dx.doi.org/10.1016/j.expneurol.2006.02.133]
[216]
Mori A. Adenosine receptors in neurology and psychiatry. Academic Press 2014; Vol. 119.
[http://dx.doi.org/10.1016/B978-0-12-801022-8.00004-0]
[217]
Mishina M, Ishiwata K. Adenosine receptor PET imaging in human brain. Int Rev Neurobiol 2014; 119: 51-69.
[http://dx.doi.org/10.1016/B978-0-12-801022-8.00002-7]
[218]
D’Alimonte I, D’Auro M, Citraro R, et al. Altered distribution and function of A2A adenosine receptors in the brain of WAG/Rij rats with genetic absence epilepsy, before and after appearance of the disease. Eur J Neurosci 2009; 30: 1023-35.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06897.x]
[219]
Mareš P. Anticonvulsant action of 2-chloroadenosine against pentetrazol-induced seizures in immature rats is due to activation of A1 adenosine receptors. J Neural Transm (Vienna) 2010; 117: 1269-77.
[http://dx.doi.org/10.1007/s00702-010-0465-9]
[220]
El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois J-M. Adenosine A2A receptor deficient mice are partially resistant to limbic seizures. Naunyn Schmiedebergs Arch Pharmacol 2009; 380: 223-32.
[http://dx.doi.org/10.1007/s00210-009-0426-8]
[221]
El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois J-M. Evidence for the involvement of the adenosine A(2A) receptor in the lowered susceptibility to pentylenetetrazol-induced seizures produced in mice by long-term treatment with caffeine. Neuropharmacology 2008; 55: 35-40.
[http://dx.doi.org/10.1016/j.neuropharm.2008.04.007]
[222]
Laudadio MA, Psarropoulou C. The A3 adenosine receptor agonist 2-Cl-IB-MECA facilitates epileptiform discharges in the CA3 area of immature rat hippocampal slices. Epilepsy Res 2004; 59: 83-94.
[http://dx.doi.org/10.1016/j.eplepsyres.2004.03.005]
[223]
Vianna EPM, Ferreira AT, Doná F, Cavalheiro EA, da Silva Fernandes MJ. Modulation of seizures and synaptic plasticity by adenosinergic receptors in an experimental model of temporal lobe epilepsy induced by pilocarpine in rats. Epilepsia 2005; 46(Suppl. 5): 166-73.
[http://dx.doi.org/10.1111/j.1528-1167.2005.01027.x]
[224]
Luongo L, Petrelli R, Gatta L, et al. 5′-Chloro-5′-deoxy-(±)-ENBA, a potent and selective adenosine A(1) receptor agonist, alleviates neuropathic pain in mice through functional glial and microglial changes without affecting motor or cardiovascular functions. Molecules 2012; 17: 13712-26.
[http://dx.doi.org/10.3390/molecules171213712]
[225]
Neal EG, Chaffe H, Schwartz RH, et al. The ketogenic diet for the treatment of childhood epilepsy: A randomised controlled trial. Lancet Neurol 2008; 7: 500-6.
[http://dx.doi.org/10.1016/S1474-4422(08)70092-9]
[226]
Wiznitzer M. From observations to trials: The ketogenic diet and epilepsy. Lancet Neurol 2008; 7: 471-2.
[http://dx.doi.org/10.1016/S1474-4422(08)70093-0]
[227]
Freeman JM, Kossoff EH, Hartman AL. The ketogenic diet: One decade later. Pediatrics 2007; 119: 535-43.
[http://dx.doi.org/10.1542/peds.2006-2447]
[228]
Mantis JG, Centeno NA, Todorova MT, McGowan R, Seyfried TN. Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: Role of glucose and ketone bodies. Nutr Metab (Lond) 2004; 1: 11.
[http://dx.doi.org/10.1186/1743-7075-1-11]
[229]
Muzykewicz DA, Lyczkowski DA, Memon N, Conant KD, Pfeifer HH, Thiele EA. Efficacy, safety, and tolerability of the low glycemic index treatment in pediatric epilepsy. Epilepsia 2009; 50: 1118-26.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01959.x]
[230]
Kawamura M, Ruskin DN, Masino SA. Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels. J Neurosci 2010; 30: 3886-95.
[http://dx.doi.org/10.1523/JNEUROSCI.0055-10.2010]
[231]
Schenone S, Brullo C, Musumeci F, Bruno O, Botta M. A1 receptors ligands: Past, present and future trends. Curr Top Med Chem 2010; 10: 878-901.
[http://dx.doi.org/10.2174/156802610791268729]
[232]
Gessi S, Merighi S, Fazzi D, Stefanelli A, Varani K, Borea PA. Adenosine receptor targeting in health and disease. Expert Opin Investig Drugs 2011; 20: 1591-609.
[http://dx.doi.org/10.1517/13543784.2011.627853]
[233]
Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: Release and regulation of pain. Prog Neurobiol 2003; 69: 313-40.
[http://dx.doi.org/10.1016/S0301-0082(03)00050-9]
[234]
Schulte G, Robertson B, Fredholm BB, DeLander GE, Shortland P, Molander C. Distribution of antinociceptive adenosine A1 receptors in the spinal cord dorsal horn, and relationship to primary afferents and neuronal subpopulations. Neuroscience 2003; 121: 907-16.
[http://dx.doi.org/10.1016/S0306-4522(03)00480-9]
[235]
Maione S, de Novellis V, Cappellacci L, et al. The antinociceptive effect of 2-chloro-2′-C-methyl-N6-cyclopentyladenosine (2′-Me-CCPA), a highly selective adenosine A1 receptor agonist, in the rat. Pain 2007; 131: 281-92.
[http://dx.doi.org/10.1016/j.pain.2007.01.013]
[236]
Magni G, Ceruti S. The purinergic system and glial cells: Emerging costars in nociception. BioMed Res Int 2014; 2014: 1-13.
[http://dx.doi.org/10.1155/2014/495789]
[237]
Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv 2013; 4: 1443-67.
[http://dx.doi.org/10.4155/tde.13.104]
[238]
McGaraughty S, Cowart M, Jarvis MF, Berman RF. Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr Top Med Chem 2005; 5: 43-58.
[http://dx.doi.org/10.2174/1568026053386845]
[239]
McGaraughty S, Chu KL, Wismer CT, et al. Effects of A-134974, a novel adenosine kinase inhibitor, on carrageenan-induced inflammatory hyperalgesia and locomotor activity in rats: Evaluation of the sites of action. J Pharmacol Exp Ther 2001; 296: 501-9.
[240]
Burnstock G, Fredholm BB, Verkhratsky A. Adenosine and ATP receptors in the brain. Curr Top Med Chem 2011; 11: 973-1011.
[http://dx.doi.org/10.2174/156802611795347627]
[241]
Hugel S, Schlichter R. Convergent control of synaptic GABA release from rat dorsal horn neurones by adenosine and GABA autoreceptors. J Physiol 2003; 551: 479-89.
[http://dx.doi.org/10.1113/jphysiol.2003.047894]
[242]
Sowa NA, Street SE, Vihko P, Zylka MJ. Prostatic acid phosphatase reduces thermal sensitivity and chronic pain sensitization by depleting phosphatidylinositol 4,5-bisphosphate. J Neurosci 2010; 30: 10282-93.
[http://dx.doi.org/10.1523/JNEUROSCI.2162-10.2010]
[243]
Zylka MJ. Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med 2011; 17: 188-96.
[http://dx.doi.org/10.1016/j.molmed.2010.12.006]
[244]
Lin MM, Kang YJ, Sohn Y, Kim DK. Dual targeting strategy of magnetic nanoparticle-loaded and RGD peptide-activated stimuli-sensitive polymeric micelles for delivery of paclitaxel. J Nanopart Res 2015; 17: 248.
[http://dx.doi.org/10.1007/s11051-015-3033-2]
[245]
Yoon MH, Bae HB, Choi J. Il. Antinociception of intrathecal adenosine receptor subtype agonists in rat formalin test. Anesth Analg 2005; 101: 1417-21.
[http://dx.doi.org/10.1213/01.ANE.0000180994.10087.6F]
[246]
Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev 2011; 63: 1-34.
[http://dx.doi.org/10.1124/pr.110.003285]
[247]
Minett MS, Eijkelkamp N, Wood JN. Significant determinants of mouse pain behaviour. PLoS One 2014; 9e104458
[248]
Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol 2015; 36: 569-77.
[http://dx.doi.org/10.1016/j.it.2015.08.006]
[249]
Bentivoglio M, Kristensson K. Tryps and trips: Cell trafficking across the 100-year-old blood-brain barrier. Trends Neurosci 2014; 37: 325-33.
[http://dx.doi.org/10.1016/j.tins.2014.03.007]
[250]
Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012; 12: 623-35.
[http://dx.doi.org/10.1038/nri3265]
[251]
Haskó G, Pacher P, Vizi ES, Illes P. Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci 2005; 26: 511-6.
[http://dx.doi.org/10.1016/j.tips.2005.08.004]
[252]
Lopes Pinheiro MA, Kooij G, Mizee MR, et al. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta Mol Basis Dis 2016; 1862: 461-71.
[http://dx.doi.org/10.1016/j.bbadis.2015.10.018]
[253]
Xie L, Sun F, Wang J, et al. mTOR signaling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. J Immunol 2014; 192: 6009-19.
[http://dx.doi.org/10.4049/jimmunol.1303492]
[254]
Kim KS. Pathogenesis of bacterial meningitis: From bacteraemia to neuronal injury. Nat Rev Neurosci 2003; 4: 376-85.
[http://dx.doi.org/10.1038/nrn1103]
[255]
Sun L, Wang X, Zhou Y, Zhou R-H, Ho W-Z, Li J-L. Exosomes contribute to the transmission of anti-HIV activity from TLR3-activated brain microvascular endothelial cells to macrophages. Antiviral Res 2016; 134: 167-71.
[http://dx.doi.org/10.1016/j.antiviral.2016.07.013]
[256]
Yu L, Huang Z, Mariani J, Wang Y, Moskowitz M, Chen J-F. Selective inactivation or reconstitution of adenosine A2A receptors in bone marrow cells reveals their significant contribution to the development of ischemic brain injury. Nat Med 2004; 10: 1081-7.
[http://dx.doi.org/10.1038/nm1103]
[257]
Ingwersen J, Wingerath B, Graf J, et al. Dual roles of the adenosine A2a receptor in autoimmune neuroinflammation. J Neuroinflammation 2016; 13: 48.
[http://dx.doi.org/10.1186/s12974-016-0512-z]
[258]
Fotheringham J, Mayne M, Holden C, Nath A, Geiger JD. Adenosine receptors control HIV-1 Tat-induced inflammatory responses through protein phosphatase. Virology 2004; 327: 186-95.
[http://dx.doi.org/10.1016/j.virol.2004.07.007]
[259]
Rivera-Oliver M, Díaz-Ríos M. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: A review. Life Sci 2014; 101: 1-9.
[http://dx.doi.org/10.1016/j.lfs.2014.01.083]
[260]
Liu G, Zhang W, Guo J, et al. Adenosine binds predominantly to adenosine receptor A1 subtype in astrocytes and mediates an immunosuppressive effect. Brain Res 2018; 1700: 47-55.
[http://dx.doi.org/10.1016/j.brainres.2018.06.021]
[261]
Samanta P, Kar S, Leszczynski J. Recent advances of in-silico modeling of potent antagonists for the adenosine receptors. Curr Pharm Des 2019; 25(7): 750-73.
[http://dx.doi.org/10.2174/1381612825666190304123545]
[262]
Al-Shar’i N, Al-Balas Q. Molecular dynamics simulations of adenosine receptors: Advances, applications and trends. Curr Pharm Des 2019; 25(7): 783-816.
[http://dx.doi.org/10.2174/1381612825666190304123414]
[263]
Al-Qattan M, Mordi M. Molecular basis of modulating adenosine receptors activities. Curr Pharm Des 2019; 25(7): 817-31.
[http://dx.doi.org/10.2174/1381612825666190304122624]
[264]
Agrawal N, Chandrasekaran B, Al-Aboudi A. Recent advances in the in-silico structure-based and ligand-based approaches for the design and discovery of agonists and antagonists of A2A adenosine receptor. Curr Pharm Des 2019; 25(7): 774-82.
[http://dx.doi.org/10.2174/1381612825666190306162006]
[265]
Deb P. Recent updates in the computer aided drug design strategies for the discovery of agonists and antagonists of adenosine receptors. In: ed 2019; 25: pp. 747-9.
[http://dx.doi.org/10.2174/1381612825999190515120510]
[266]
Deb PK, Chandrasekaran B, Mailavaram R, Tekade RK, Jaber AMY. Molecular modeling approaches for the discovery of adenosine A2B receptor antagonists: Current status and future perspectives. Drug Discov Today 2019.
[http://dx.doi.org/10.1016/j.drudis.2019.05.011]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy