General Review Article

宿主的遗传标记,以预测大肠癌靶向治疗的功效

卷 27, 期 25, 2020

页: [4249 - 4273] 页: 25

弟呕挨: 10.2174/0929867326666190712151417

价格: $65

摘要

在转移性_直肠直肠癌(CRC)治疗中引入抗EGFR(西妥昔单抗和帕尼单抗)和抗血管生成药(贝伐单抗,雷戈非宁,雷莫昔单抗和阿柏西普)药物可显着改善治疗效果和患者生存率。然而,尽管在患者预期寿命方面取得了很大的进步,但是针对靶向药物的个体间高度异质性仍然代表着晚期CRC患者的治疗问题。即使已经明确确立了肿瘤基因突变作为药物功效的预测标志物的作用,但宿主遗传标志物的作用仍然存在争议。有希望的结果涉及种系的免疫特性,炎症和肿瘤微环境。研究了KRAS 3’UTR区以及EGF / EGFR基因的固有变异作为西妥昔单抗有效性的标志。最近还针对涉及炎症(例如COX-2,LIFR,IGF1信号传导),免疫系统(例如FCGR,IL-1RA)和炎症的基因的种系变异生成了抗EGFR剂领域的有趣数据。 RAS信号的其他参与者,包括与Hippo通路相关的基因(例如Rassf,YAP,TAZ)。宿主的遗传变异,依赖于VEGF依赖性(即EGF,IGF-1,HIF1α,eNOS,iNOS)和非依赖性(即EMT级联,EGFL7)途径,尤其是炎症和免疫系统相关因子(例如IL) -8,CXCR-1 / 2,CXCR4-CXCL12轴,TLR,GADD34,PPP1R15A,ANXA11,MKNK1)作为贝伐单抗预后的预测标志物进行了研究,产生了可喜的结果。在这篇综述中,我们旨在总结有关常见和罕见遗传变异在预测哪些CRC患者将从特定靶向药物治疗中受益的潜在作用的最新文献数据。

关键词: 靶向药物,抗血管生成分子,贝伐单抗,抗EGFR药物,西妥昔单抗,药物遗传学,多态性,炎症,转移性结直肠癌。

[1]
Marley, A.R.; Nan, H. Epidemiology of colorectal cancer. Int. J. Mol. Epidemiol. Genet., 2016, 7(3), 105-114.
[PMID: 27766137]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[3]
Price, T.J.; Segelov, E.; Burge, M.; Haller, D.G.; Ackland, S.P.; Tebbutt, N.C.; Karapetis, C.S.; Pavlakis, N.; Sobrero, A.F.; Cunningham, D.; Shapiro, J.D. Current opinion on optimal treatment for colorectal cancer. Expert Rev. Anticancer Ther., 2013, 13(5), 597-611.
[http://dx.doi.org/10.1586/era.13.37] [PMID: 23617351]
[4]
Van Loon, K.; Venook, A.P. Adjuvant treatment of colon cancer: what is next? Curr. Opin. Oncol., 2011, 23(4), 403-409.
[http://dx.doi.org/10.1097/CCO.0b013e3283479c83] [PMID: 21537178]
[5]
Bignucolo, A.; De Mattia, E.; Cecchin, E.; Roncato, R.; Toffoli, G. Pharmacogenomics of Targeted Agents for Personalization of Colorectal Cancer Treatment. Int. J. Mol. Sci., 2017, 18(7) E1522
[http://dx.doi.org/10.3390/ijms18071522] [PMID: 28708103]
[6]
Brock, A.; Huang, S. Precision Oncology: Between Vaguely Right and Precisely Wrong. Cancer Res., 2017, 77(23), 6473-6479.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0448] [PMID: 29162615]
[7]
De Mattia, E.; Cecchin, E.; Toffoli, G. Pharmacogenomics of intrinsic and acquired pharmacoresistance in colorectal cancer: Toward targeted personalized therapy. Drug Resist. Updat., 2015, 20, 39-70.
[http://dx.doi.org/10.1016/j.drup.2015.05.003] [PMID: 26027741]
[8]
Ohhara, Y.; Fukuda, N.; Takeuchi, S.; Honma, R.; Shimizu, Y.; Kinoshita, I.; Dosaka-Akita, H. Role of targeted therapy in metastatic colorectal cancer. World J. Gastrointest. Oncol., 2016, 8(9), 642-655.
[http://dx.doi.org/10.4251/wjgo.v8.i9.642] [PMID: 27672422]
[9]
Sanz-Garcia, E.; Grasselli, J.; Argiles, G.; Elez, M.E.; Tabernero, J. Current and advancing treatments for metastatic colorectal cancer. Expert Opin. Biol. Ther., 2016, 16(1), 93-110.
[http://dx.doi.org/10.1517/14712598.2016.1108405] [PMID: 26549053]
[10]
Van Cutsem, E.; Cervantes, A.; Nordlinger, B.; Arnold, D. ESMO Guidelines Working Group. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2014, 25(Suppl. 3), iii1-iii9.
[http://dx.doi.org/10.1093/annonc/mdu260] [PMID: 25190710]
[11]
Saridaki, Z.; Weidhaas, J.B.; Lenz, H.J.; Laurent-Puig, P.; Jacobs, B.; De Schutter, J.; De Roock, W.; Salzman, D.W.; Zhang, W.; Yang, D.; Pilati, C.; Bouché, O.; Piessevaux, H.; Tejpar, S. A let-7 microRNA-binding site polymorphism in KRAS predicts improved outcome in patients with metastatic colorectal cancer treated with salvage cetuximab/panitumumab monotherapy. Clin. Cancer Res., 2014, 20(17), 4499-4510.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0348] [PMID: 25183481]
[12]
Kjersem, J.B.; Ikdahl, T.; Guren, T.; Skovlund, E.; Sorbye, H.; Hamfjord, J.; Pfeiffer, P.; Glimelius, B.; Kersten, C.; Solvang, H.; Tveit, K.M.; Kure, E.H. Let-7 miRNA-binding site polymorphism in the KRAS 3'UTR; colorectal cancer screening population prevalence and influence on clinical outcome in patients with metastatic colorectal cancer treated with 5-fluorouracil and oxaliplatin +/- cetuximab. BMC Cancer, 2012, 12, 534.
[http://dx.doi.org/10.1186/1471-2407-12-534] [PMID: 23167843]
[13]
Langevin, S.M.; Christensen, B.C. Let-7 microRNA-binding-site polymorphism in the 3'UTR of KRAS and colorectal cancer outcome: a systematic review and meta-analysis. Cancer Med., 2014, 3(5), 1385-1395.
[http://dx.doi.org/10.1002/cam4.279] [PMID: 24890702]
[14]
Ying, H.Q.; Wang, F.; He, B.S.; Pan, Y.Q.; Gao, T.Y.; Xu, Y.Q.; Li, R.; Deng, Q.W.; Sun, H.L.; Wang, S.K. The involvement of Kras gene 3′-UTR polymorphisms in risk of cancer and influence on patient response to anti-EGFR therapy in metastatic colorectal cancer: a meta analysis. OncoTargets Ther., 2014, 7, 1487-1496.
[PMID: 25210463]
[15]
Bonin, S.; Donada, M.; Bussolati, G.; Nardon, E.; Annaratone, L.; Pichler, M.; Chiaravalli, A.M.; Capella, C.; Hoefler, G.; Stanta, G. A synonymous EGFR polymorphism predicting responsiveness to anti-EGFR therapy in metastatic colorectal cancer patients. Tumour Biol., 2016, 37(6), 7295-7303.
[http://dx.doi.org/10.1007/s13277-015-4543-3] [PMID: 26666825]
[16]
Graziano, F.; Ruzzo, A.; Loupakis, F.; Canestrari, E.; Santini, D.; Catalano, V.; Bisonni, R.; Torresi, U.; Floriani, I.; Schiavon, G.; Andreoni, F.; Maltese, P.; Rulli, E.; Humar, B.; Falcone, A.; Giustini, L.; Tonini, G.; Fontana, A.; Masi, G.; Magnani, M. Pharmacogenetic profiling for cetuximab plus irinotecan therapy in patients with refractory advanced colorectal cancer. J. Clin. Oncol., 2008, 26(9), 1427-1434.
[http://dx.doi.org/10.1200/JCO.2007.12.4602] [PMID: 18349392]
[17]
Lurje, G.; Nagashima, F.; Zhang, W.; Yang, D.; Chang, H.M.; Gordon, M.A.; El-Khoueiry, A.; Husain, H.; Wilson, P.M.; Ladner, R.D.; Mauro, D.J.; Langer, C.; Rowinsky, E.K.; Lenz, H.J. Polymorphisms in cyclooxygenase-2 and epidermal growth factor receptor are associated with progression-free survival independent of K-ras in metastatic colorectal cancer patients treated with single-agent cetuximab. Clin. Cancer Res., 2008, 14(23), 7884-7895.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5165] [PMID: 19047118]
[18]
Dannenberg, A.J.; Lippman, S.M.; Mann, J.R.; Subbaramaiah, K.; DuBois, R.N. Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J. Clin. Oncol., 2005, 23(2), 254-266.
[http://dx.doi.org/10.1200/JCO.2005.09.112] [PMID: 15637389]
[19]
Pai, R.; Soreghan, B.; Szabo, I.L.; Pavelka, M.; Baatar, D.; Tarnawski, A.S. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat. Med., 2002, 8(3), 289-293.
[http://dx.doi.org/10.1038/nm0302-289] [PMID: 11875501]
[20]
Kim, J.C.; Kim, S.Y.; Cho, D.H.; Ha, Y.J.; Choi, E.Y.; Kim, C.W.; Roh, S.A.; Kim, T.W.; Ju, H.; Kim, Y.S. Novel chemosensitive single-nucleotide polymorphism markers to targeted regimens in metastatic colorectal cancer. Clin. Cancer Res., 2011, 17(5), 1200-1209.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1907] [PMID: 21239504]
[21]
Winder, T.; Zhang, W.; Yang, D.; Ning, Y.; Bohanes, P.; Gerger, A.; Wilson, P.M.; Pohl, A.; Mauro, D.J.; Langer, C.; Rowinsky, E.K.; Lenz, H.J. Germline polymorphisms in genes involved in the IGF1 pathway predict efficacy of cetuximab in wild-type KRAS mCRC patients. Clin. Cancer Res., 2010, 16(22), 5591-5602.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2092] [PMID: 20935157]
[22]
Schirripa, M.; Zhang, W.; Heinemann, V.; Cao, S.; Okazaki, S.; Yang, D.; Loupakis, F.; Berger, M.D.; Ning, Y.; Miyamoto, Y.; Suenaga, M.; Gopez, R.F.; West, J.D.; Hanna, D.; Barzi, A.; Falcone, A.; Stintzing, S.; Lenz, H.J. Single nucleotide polymorphisms in the IGF-IRS pathway are associated with outcome in mCRC patients enrolled in the FIRE-3 trial. Int. J. Cancer, 2017, 141(2), 383-392.
[http://dx.doi.org/10.1002/ijc.30715] [PMID: 28369940]
[23]
Madi, A.; Fisher, D.; Maughan, T.S.; Colley, J.P.; Meade, A.M.; Tejpar, S.; Van den Bosch, B.; Maynard, J.; Humphreys, V.; Wasan, H.; Adams, R.A.; Idziaszczyk, S.; Harris, R.; Kaplan, R.S.; Cheadle, J.P. Comprehensive pharmacogenetic profiling of the epidermal growth factor receptor pathway for biomarkers of response to, and toxicity from, cetuximab. J. Med. Genet., 2017, 54(8), 567-571.
[http://dx.doi.org/10.1136/jmedgenet-2016-104317] [PMID: 28283541]
[24]
Zheng, P.; Liang, C.; Ren, L.; Zhu, D.; Feng, Q.; Chang, W.; He, G.; Ye, L.; Chen, J.; Lin, Q.; Yi, T.; Ji, M.; Niu, Z.; Jian, M.; Wei, Y.; Xu, J. Additional Biomarkers beyond RAS That Impact the Efficacy of Cetuximab plus Chemotherapy in mCRC: A Retrospective Biomarker Analysis. J. Oncol., 2018. 20185072987
[http://dx.doi.org/10.1155/2018/5072987] [PMID: 30305811]
[25]
Park, S.J.; Hong, Y.S.; Lee, J.L.; Ryu, M.H.; Chang, H.M.; Kim, K.P.; Ahn, Y.C.; Na, Y.S.; Jin, D.H.; Yu, C.S.; Kim, J.C.; Kang, Y.K.; Kim, T.W. Genetic polymorphisms of FcγRIIa and FcγRIIIa are not predictive of clinical outcomes after cetuximab plus irinotecan chemotherapy in patients with metastatic colorectal cancer. Oncology, 2012, 82(2), 83-89.
[http://dx.doi.org/10.1159/000335959] [PMID: 22327884]
[26]
Geva, R.; Vecchione, L.; Kalogeras, K.T.; Jensen, B.V.; Lenz, H.J.; Yoshino, T.; Paez, D.; Montagut, C.; Souglakos, J.; Cappuzzo, F.; Cervantes, A.; Frattini, M.; Fountzilas, G.; Johansen, J.S.; Høgdall, E.V.; Zhang, W.; Yang, D.; Yamazaki, K.; Nishina, T.; Papamichael, D.; Vincenzi, B.; Macarulla, T.; Loupakis, F.; De Schutter, J.; Spindler, K.L.; Pfeiffer, P.; Ciardiello, F.; Piessevaux, H.; Tejpar, S. FCGR polymorphisms and cetuximab efficacy in chemorefractory metastatic colorectal cancer: an international consortium study. Gut, 2015, 64(6), 921-928.
[http://dx.doi.org/10.1136/gutjnl-2014-307234] [PMID: 25011934]
[27]
Kjersem, J.B.; Skovlund, E.; Ikdahl, T.; Guren, T.; Kersten, C.; Dalsgaard, A.M.; Yilmaz, M.K.; Fokstuen, T.; Tveit, K.M.; Kure, E.H. FCGR2A and FCGR3A polymorphisms and clinical outcome in metastatic colorectal cancer patients treated with first-line 5-fluorouracil/folinic acid and oxaliplatin +/- cetuximab. BMC Cancer, 2014, 14, 340.
[http://dx.doi.org/10.1186/1471-2407-14-340] [PMID: 24884501]
[28]
Ying, H.Q.; Wang, F.; Chen, X.L.; He, B.S.; Pan, Y.Q.; Jie, C.; Liu, X.; Cao, W.J.; Peng, H.X.; Lin, K.; Wang, S.K. FCGR2A, FCGR3A polymorphisms and therapeutic efficacy of anti-EGFR monoclonal antibody in metastatic colorectal cancer. Oncotarget, 2015, 6(29), 28071-28083.
[http://dx.doi.org/10.18632/oncotarget.4872] [PMID: 26363448]
[29]
Liu, G.; Tu, D.; Lewis, M.; Cheng, D.; Sullivan, L.A.; Chen, Z.; Morgen, E.; Simes, J.; Price, T.J.; Tebbutt, N.C.; Shapiro, J.D.; Jeffery, G.M.; Mellor, J.D.; Mikeska, T.; Virk, S.; Shepherd, L.E.; Jonker, D.J.; O’Callaghan, C.J.; Zalcberg, J.R.; Karapetis, C.S.; Dobrovic, A. Fc-γ Receptor Polymorphisms, Cetuximab Therapy, and Survival in the NCIC CTG CO.17 Trial of Colorectal Cancer. Clin. Cancer Res., 2016, 22(10), 2435-2444.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0414] [PMID: 27179112]
[30]
Shepshelovich, D.; Townsend, A.R.; Espin-Garcia, O.; Latifovic, L.; O’Callaghan, C.J.; Jonker, D.J.; Tu, D.; Chen, E.; Morgen, E.; Price, T.J.; Shapiro, J.; Siu, L.L.; Kubo, M.; Dobrovic, A.; Ratain, M.J.; Xu, W.; Mushiroda, T.; Liu, G. Fc-gamma receptor polymorphisms, cetuximab therapy, and overall survival in the CCTG CO.20 trial of metastatic colorectal cancer. Cancer Med., 2018, 7(11), 5478-5487.
[http://dx.doi.org/10.1002/cam4.1819] [PMID: 30318772]
[31]
Graziano, F.; Ruzzo, A.; Canestrari, E.; Loupakis, F.; Santini, D.; Rulli, E.; Humar, B.; Galluccio, N.; Bisonni, R.; Floriani, I.; Maltese, P.; Falcone, A.; Tonini, G.; Catalano, V.; Fontana, A.; Giustini, L.; Masi, G.; Vincenzi, B.; Alessandroni, P.; Magnani, M. Variations in the interleukin-1 receptor antagonist gene impact on survival of patients with advanced colorectal cancer. Pharmacogenomics J., 2009, 9(1), 78-84.
[http://dx.doi.org/10.1038/tpj.2008.16] [PMID: 19104506]
[32]
Okazaki, S.; Stintzing, S.; Sunakawa, Y.; Cao, S.; Zhang, W.; Yang, D.; Ning, Y.; Matsusaka, S.; Berger, M.D.; Miyamoto, Y.; Suenaga, M.; Schirripa, M.; West, J.D.; Gopez, R.; Akihito, T.; Ichikawa, W.; Heinemann, V.; DePaolo, R.W.; Lenz, H.J. Predictive value of TLR7 polymorphism for cetuximab-based chemotherapy in patients with metastatic colorectal cancer. Int. J. Cancer, 2017, 141(6), 1222-1230.
[http://dx.doi.org/10.1002/ijc.30810] [PMID: 28569041]
[33]
Low, B.C.; Pan, C.Q.; Shivashankar, G.V.; Bershadsky, A.; Sudol, M.; Sheetz, M. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett., 2014, 588(16), 2663-2670.
[http://dx.doi.org/10.1016/j.febslet.2014.04.012] [PMID: 24747426]
[34]
Sebio, A.; Stintzing, S.; Heinemann, V.; Sunakawa, Y.; Zhang, W.; Ichikawa, W.; Tsuji, A.; Takahashi, T.; Parek, A.; Yang, D.; Cao, S.; Ning, Y.; Stremitzer, S.; Matsusaka, S.; Okazaki, S.; Barzi, A.; Berger, M.D.; Lenz, H.J. A genetic variant in Rassf1a predicts outcome in mCRC patients treated with cetuximab plus chemotherapy: results from FIRE-3 and JACCRO 05 and 06 trials. Pharmacogenomics J., 2016.
[PMID: 27698403]
[35]
Sohn, B.S.; Park, S.J.; Kim, J.E.; Kim, K.P.; Hong, Y.S.; Suh, C.; Kim, Y.S.; Kim, S.Y.; Im, S.A.; Kim, S.Y.; Kim, J.H.; Ahn, J.B.; Park, Y.S.; Kim, T.W. Single-nucleotide polymorphisms in the vascular endothelial growth factor pathway and outcomes of patients treated with first-line cytotoxic chemotherapy combined with bevacizumab for advanced colorectal cancer. Oncology, 2014, 87(5), 280-292.
[http://dx.doi.org/10.1159/000365593] [PMID: 25139485]
[36]
Cui, W.; Li, F.; Yuan, Q.; Chen, G.; Chen, C.; Yu, B. Role of VEGFA gene polymorphisms in colorectal cancer patients who treated with bevacizumab. Oncotarget, 2017, 8(62), 105472-105478.
[http://dx.doi.org/10.18632/oncotarget.22295] [PMID: 29285265]
[37]
Di Salvatore, M.; Pietrantonio, F.; Orlandi, A.; Del Re, M.; Berenato, R.; Rossi, E.; Caporale, M.; Guarino, D.; Martinetti, A.; Basso, M.; Mennitto, R.; Santonocito, C.; Mennitto, A.; Schinzari, G.; Bossi, I.; Capoluongo, E.; Danesi, R.; de Braud, F.; Barone, C. IL-8 and eNOS polymorphisms predict bevacizumab-based first line treatment outcomes in RAS mutant metastatic colorectal cancer patients. Oncotarget, 2017, 8(10), 16887-16898.
[http://dx.doi.org/10.18632/oncotarget.14810] [PMID: 28129643]
[38]
Gerger, A.; El-Khoueiry, A.; Zhang, W.; Yang, D.; Singh, H.; Bohanes, P.; Ning, Y.; Winder, T.; Labonte, M.J.; Wilson, P.M.; Benhaim, L.; Paez, D.; El-Khoueiry, R.; Absenger, G.; Lenz, H.J. Pharmacogenetic angiogenesis profiling for first-line Bevacizumab plus oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Clin. Cancer Res., 2011, 17(17), 5783-5792.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1115] [PMID: 21791631]
[39]
Hansen, T.F.; Christensen, Rd.; Andersen, R.F.; Garm Spindler, K.L.; Johnsson, A.; Jakobsen, A. The predictive value of single nucleotide polymorphisms in the VEGF system to the efficacy of first-line treatment with bevacizumab plus chemotherapy in patients with metastatic colorectal cancer: results from the Nordic ACT trial. Int. J. Colorectal Dis., 2012, 27(6), 715-720.
[http://dx.doi.org/10.1007/s00384-011-1382-6] [PMID: 22139032]
[40]
Loupakis, F.; Cremolini, C.; Yang, D.; Salvatore, L.; Zhang, W.; Wakatsuki, T.; Bohanes, P.; Schirripa, M.; Benhaim, L.; Lonardi, S.; Antoniotti, C.; Aprile, G.; Graziano, F.; Ruzzo, A.; Lucchesi, S.; Ronzoni, M.; De Vita, F.; Tonini, G.; Falcone, A.; Lenz, H.J. Prospective validation of candidate SNPs of VEGF/VEGFR pathway in metastatic colorectal cancer patients treated with first-line FOLFIRI plus bevacizumab. PLoS One, 2013, 8(7) e66774
[http://dx.doi.org/10.1371/journal.pone.0066774] [PMID: 23861747]
[41]
Ulivi, P.; Scarpi, E.; Passardi, A.; Marisi, G.; Calistri, D.; Zoli, W.; Del Re, M.; Frassineti, G.L.; Tassinari, D.; Tamberi, S.; Vertogen, B.; Amadori, D. eNOS polymorphisms as predictors of efficacy of bevacizumab-based chemotherapy in metastatic colorectal cancer: data from a randomized clinical trial. J. Transl. Med., 2015, 13, 258.
[http://dx.doi.org/10.1186/s12967-015-0619-5] [PMID: 26259598]
[42]
Koutras, A.K.; Antonacopoulou, A.G.; Eleftheraki, A.G.; Dimitrakopoulos, F.I.; Koumarianou, A.; Varthalitis, I.; Fostira, F.; Sgouros, J.; Briasoulis, E.; Bournakis, E.; Bafaloukos, D.; Bompolaki, I.; Galani, E.; Kalogeras, K.T.; Pectasides, D.; Fountzilas, G.; Kalofonos, H.P. Vascular endothelial growth factor polymorphisms and clinical outcome in colorectal cancer patients treated with irinotecan-based chemotherapy and bevacizumab. Pharmacogenomics J., 2012, 12(6), 468-475.
[http://dx.doi.org/10.1038/tpj.2011.37] [PMID: 21844885]
[43]
Schirripa, M.; Zhang, W.; Yang, D.; Cao, S.; Okazaki, S.; Loupakis, F.; Berger, M.D.; Ning, Y.; Miyamoto, Y.; Suenaga, M.; Alberti, G.; West, J.D.; Lonardi, S.; Khoukaz, T.; Bergamo, F.; Battaglin, F.; Antoniotti, C.; Falcone, A.; Stintzing, S.; Heinemann, V.; Lenz, H.J. NOS2 polymorphisms in prediction of benefit from first-line chemotherapy in metastatic colorectal cancer patients. PLoS One, 2018, 13(3) e0193640
[http://dx.doi.org/10.1371/journal.pone.0193640] [PMID: 29522543]
[44]
Waugh, D.J.; Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res., 2008, 14(21), 6735-6741.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4843] [PMID: 18980965]
[45]
Matsusaka, S.; Cao, S.; Hanna, D.L.; Sunakawa, Y.; Ueno, M.; Mizunuma, N.; Zhang, W.; Yang, D.; Ning, Y.; Stintzing, S.; Sebio, A.; Stremitzer, S.; Yamauchi, S.; Parekh, A.; Okazaki, S.; Berger, M.D.; El-Khoueiry, R.; Mendez, A.; Ichikawa, W.; Loupakis, F.; Lenz, H.J. CXCR4 polymorphism predicts progression-free survival in metastatic colorectal cancer patients treated with first-line bevacizumab-based chemotherapy. Pharmacogenomics J., 2016.
[PMID: 27503580]
[46]
Okazaki, S.; Loupakis, F.; Stintzing, S.; Cao, S.; Zhang, W.; Yang, D.; Ning, Y.; Sunakawa, Y.; Stremitzer, S.; Matsusaka, S.; Berger, M.D.; Parekh, A.; West, J.D.; Miyamoto, Y.; Suenaga, M.; Schirripa, M.; Cremolini, C.; Falcone, A.; Heinemann, V.; DePaolo, R.W.; Lenz, H.J. Clinical Significance of TLR1 I602S Polymorphism for Patients with Metastatic Colorectal Cancer Treated with FOLFIRI plus Bevacizumab. Mol. Cancer Ther., 2016, 15(7), 1740-1745.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0931] [PMID: 27196764]
[47]
Kim, J.C.; Ha, Y.J.; Roh, S.A.; Choi, E.Y.; Yoon, Y.S.; Kim, K.P.; Hong, Y.S.; Kim, T.W.; Cho, D.H.; Kim, S.Y.; Kim, Y.S. Feasibility of proposed single-nucleotide polymorphisms as predictive markers for targeted regimens in metastatic colorectal cancer. Br. J. Cancer, 2013, 108(9), 1862-1869.
[http://dx.doi.org/10.1038/bjc.2013.163] [PMID: 23579219]
[48]
Roh, S.A.; Park, I.J.; Yoon, Y.S.; Kwon, Y.H.; Chung, J.H.; Kim, T.W.; Cho, D.H.; Lim, B.H.; Kim, S.K.; Kim, S.Y.; Kim, Y.S.; Kim, J.C. Feasibility of novel PPP1R15A and proposed ANXA11 single nucleotide polymorphisms as predictive markers for bevacizumab regimen in metastatic colorectal cancer. J. Cancer Res. Clin. Oncol., 2016, 142(8), 1705-1714.
[http://dx.doi.org/10.1007/s00432-016-2177-5] [PMID: 27177629]
[49]
Tanaka, Y.; Ito, S.; Oshino, R.; Chen, N.; Nishio, N.; Isobe, K. Effects of growth arrest and DNA damage-inducible protein 34 (GADD34) on inflammation-induced colon cancer in mice. Br. J. Cancer, 2015, 113(4), 669-679.
[http://dx.doi.org/10.1038/bjc.2015.263] [PMID: 26196182]
[50]
Berger, M.D.; Stintzing, S.; Heinemann, V.; Yang, D.; Cao, S.; Sunakawa, Y.; Ning, Y.; Matsusaka, S.; Okazaki, S.; Miyamoto, Y.; Suenaga, M.; Schirripa, M.; Soni, S.; Zhang, W.; Falcone, A.; Loupakis, F.; Lenz, H.J. Impact of genetic variations in the MAPK signaling pathway on outcome in metastatic colorectal cancer patients treated with first-line FOLFIRI and bevacizumab: data from FIRE-3 and TRIBE trials. Ann. Oncol., 2017, 28(11), 2780-2785.
[http://dx.doi.org/10.1093/annonc/mdx412] [PMID: 29045529]
[51]
Matsusaka, S.; Zhang, W.; Cao, S.; Hanna, D.L.; Sunakawa, Y.; Sebio, A.; Ueno, M.; Yang, D.; Ning, Y.; Parekh, A.; Okazaki, S.; Berger, M.D.; Ichikawa, W.; Mizunuma, N.; Lenz, H.J. TWIST1 Polymorphisms Predict Survival in Patients with Metastatic Colorectal Cancer Receiving First-Line Bevacizumab plus Oxaliplatin-Based Chemotherapy. Mol. Cancer Ther., 2016, 15(6), 1405-1411.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0751] [PMID: 26983880]
[52]
Hansen, T.F.; Andersen, R.F.; Olsen, D.A.; Sørensen, F.B.; Jakobsen, A. Prognostic importance of circulating epidermal growth factor-like domain 7 in patients with metastatic colorectal cancer treated with chemotherapy and bevacizumab. Sci. Rep., 2017, 7(1), 2388.
[http://dx.doi.org/10.1038/s41598-017-02538-x] [PMID: 28539619]
[53]
Lee, Y.C.; Michael, M.; Zalcberg, J.R. An overview of experimental and investigational multikinase inhibitors for the treatment of metastatic colorectal cancer. Expert Opin. Investig. Drugs, 2015, 24(10), 1307-1320.
[http://dx.doi.org/10.1517/13543784.2015.1070483] [PMID: 26212373]
[54]
Giampieri, R.; Salvatore, L.; Del Prete, M.; Prochilo, T.; D’Anzeo, M.; Loretelli, C.; Loupakis, F.; Aprile, G.; Maccaroni, E.; Andrikou, K.; Bianconi, M.; Bittoni, A.; Faloppi, L.; Demurtas, L.; Montironi, R.; Scarpelli, M.; Falcone, A.; Zaniboni, A.; Scartozzi, M.; Cascinu, S. Angiogenesis genotyping and clinical outcome during regorafenib treatment in metastatic colorectal cancer patients. Sci. Rep., 2016, 6, 25195.
[http://dx.doi.org/10.1038/srep25195] [PMID: 27117754]
[55]
Rechsteiner, M.; Wild, P.; Kiessling, M.K.; Bohnert, A.; Zhong, Q.; Stahel, R.A.; Moch, H.; Curioni-Fontecedro, A. A novel germline mutation of PDGFR-β might be associated with clinical response of colorectal cancer to regorafenib. Ann. Oncol., 2015, 26(1), 246-248.
[http://dx.doi.org/10.1093/annonc/mdu471] [PMID: 25336117]
[56]
Van Cutsem, E.; Tabernero, J.; Lakomy, R.; Prenen, H.; Prausová, J.; Macarulla, T.; Ruff, P.; van Hazel, G.A.; Moiseyenko, V.; Ferry, D.; McKendrick, J.; Polikoff, J.; Tellier, A.; Castan, R.; Allegra, C. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J. Clin. Oncol., 2012, 30(28), 3499-3506.
[http://dx.doi.org/10.1200/JCO.2012.42.8201] [PMID: 22949147]
[57]
Lambrechts, D.; Thienpont, B.; Thuillier, V.; Sagaert, X.; Moisse, M.; Peuteman, G.; Pericay, C.; Folprecht, G.; Zalcberg, J.; Zilocchi, C.; Margherini, E.; Chiron, M.; Van Cutsem, E. Evaluation of efficacy and safety markers in a phase II study of metastatic colorectal cancer treated with aflibercept in the first-line setting. Br. J. Cancer, 2015, 113(7), 1027-1034.
[http://dx.doi.org/10.1038/bjc.2015.329] [PMID: 26355232]
[58]
Tabernero, J.; Yoshino, T.; Cohn, A.L.; Obermannova, R.; Bodoky, G.; Garcia-Carbonero, R.; Ciuleanu, T.E.; Portnoy, D.C.; Van Cutsem, E.; Grothey, A.; Prausová, J.; Garcia-Alfonso, P.; Yamazaki, K.; Clingan, P.R.; Lonardi, S.; Kim, T.W.; Simms, L.; Chang, S.C.; Nasroulah, F. RAISE Study Investigators. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol., 2015, 16(5), 499-508.
[http://dx.doi.org/10.1016/S1470-2045(15)70127-0] [PMID: 25877855]
[59]
Obermannová, R.; Van Cutsem, E.; Yoshino, T.; Bodoky, G.; Prausová, J.; Garcia-Carbonero, R.; Ciuleanu, T.; Garcia Alfonso, P.; Portnoy, D.; Cohn, A.; Yamazaki, K.; Clingan, P.; Lonardi, S.; Kim, T.W.; Yang, L.; Nasroulah, F.; Tabernero, J. Subgroup analysis in RAISE: a randomized, double-blind phase III study of irinotecan, folinic acid, and 5-fluorouracil (FOLFIRI) plus ramucirumab or placebo in patients with metastatic colorectal carcinoma progression. Ann. Oncol., 2016, 27(11), 2082-2090.
[http://dx.doi.org/10.1093/annonc/mdw402] [PMID: 27573561]
[60]
Sadanandam, A.; Lyssiotis, C.A.; Homicsko, K.; Collisson, E.A.; Gibb, W.J.; Wullschleger, S.; Ostos, L.C.; Lannon, W.A.; Grotzinger, C.; Del Rio, M.; Lhermitte, B.; Olshen, A.B.; Wiedenmann, B.; Cantley, L.C.; Gray, J.W.; Hanahan, D. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat. Med., 2013, 19(5), 619-625.
[http://dx.doi.org/10.1038/nm.3175] [PMID: 23584089]
[61]
Mlecnik, B.; Bindea, G.; Angell, H.K.; Maby, P.; Angelova, M.; Tougeron, D.; Church, S.E.; Lafontaine, L.; Fischer, M.; Fredriksen, T.; Sasso, M.; Bilocq, A.M.; Kirilovsky, A.; Obenauf, A.C.; Hamieh, M.; Berger, A.; Bruneval, P.; Tuech, J.J.; Sabourin, J.C.; Le Pessot, F.; Mauillon, J.; Rafii, A.; Laurent-Puig, P.; Speicher, M.R.; Trajanoski, Z.; Michel, P.; Sesboüe, R.; Frebourg, T.; Pagès, F.; Valge-Archer, V.; Latouche, J.B.; Galon, J. Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability. Immunity, 2016, 44(3), 698-711.
[http://dx.doi.org/10.1016/j.immuni.2016.02.025] [PMID: 26982367]
[62]
Berger, M.D.; Stintzing, S.; Heinemann, V.; Cao, S.; Yang, D.; Sunakawa, Y.; Matsusaka, S.; Ning, Y.; Okazaki, S.; Miyamoto, Y.; Suenaga, M.; Schirripa, M.; Hanna, D.L.; Soni, S.; Puccini, A.; Zhang, W.; Cremolini, C.; Falcone, A.; Loupakis, F.; Lenz, H.J. A Polymorphism within the Vitamin D Transporter Gene Predicts Outcome in Metastatic Colorectal Cancer Patients Treated with FOLFIRI/Bevacizumab or FOLFIRI/Cetuximab. Clin. Cancer Res., 2018, 24(4), 784-793.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1663] [PMID: 29208668]
[63]
De Mattia, E.; Cecchin, E.; Montico, M.; Labriet, A.; Guillemette, C.; Dreussi, E.; Roncato, R.; Bignucolo, A.; Buonadonna, A.; D’Andrea, M.; Coppola, L.; Lonardi, S.; Lévesque, E.; Jonker, D.; Couture, F.; Toffoli, G. Association of STAT-3 rs1053004 and VDR rs11574077 With FOLFIRI-Related Gastrointestinal Toxicity in Metastatic Colorectal Cancer Patients Front. Pharmacol, 2018, 9, 367.
[64]
De Mattia, E.; Dreussi, E.; Cecchin, E.; Toffoli, G. Pharmacogenetics of the nuclear hormone receptors: the missing link between environment and drug effects? Pharmacogenomics, 2013, 14(16), 2035-2054.
[http://dx.doi.org/10.2217/pgs.13.214] [PMID: 24279858]
[65]
Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; Tukiainen, T.; Birnbaum, D.P.; Kosmicki, J.A.; Duncan, L.E.; Estrada, K.; Zhao, F.; Zou, J.; Pierce-Hoffman, E.; Berghout, J.; Cooper, D.N.; Deflaux, N.; DePristo, M.; Do, R.; Flannick, J.; Fromer, M.; Gauthier, L.; Goldstein, J.; Gupta, N.; Howrigan, D.; Kiezun, A.; Kurki, M.I.; Moonshine, A.L.; Natarajan, P.; Orozco, L.; Peloso, G.M.; Poplin, R.; Rivas, M.A.; Ruano-Rubio, V.; Rose, S.A.; Ruderfer, D.M.; Shakir, K.; Stenson, P.D.; Stevens, C.; Thomas, B.P.; Tiao, G.; Tusie-Luna, M.T.; Weisburd, B.; Won, H.H.; Yu, D.; Altshuler, D.M.; Ardissino, D.; Boehnke, M.; Danesh, J.; Donnelly, S.; Elosua, R.; Florez, J.C.; Gabriel, S.B.; Getz, G.; Glatt, S.J.; Hultman, C.M.; Kathiresan, S.; Laakso, M.; McCarroll, S.; McCarthy, M.I.; McGovern, D.; McPherson, R.; Neale, B.M.; Palotie, A.; Purcell, S.M.; Saleheen, D.; Scharf, J.M.; Sklar, P.; Sullivan, P.F.; Tuomilehto, J.; Tsuang, M.T.; Watkins, H.C.; Wilson, J.G.; Daly, M.J.; MacArthur, D.G. Exome Aggregation Consortium. Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016, 536(7616), 285-291.
[http://dx.doi.org/10.1038/nature19057] [PMID: 27535533]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy