Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Design, Synthesis and Antimicrobial Activity of Some Triazine Chalcone Derivatives

Author(s): Ravindra Sandipan Shinde*, Satish Ashruba Dake and Rajendra Pundalikrao Pawar

Volume 18, Issue 4, 2020

Page: [332 - 338] Pages: 7

DOI: 10.2174/2211352517666190710115111

Abstract

Background: A series of Triazine Chalcone derivatives were synthesized by the condensation of 1-(4-((4,6-dimethoxy-1,3,5-triazin-2-yl)amino)phenyl)ethanone with substituted benzaldehyde in methanol solvent.

Methods: All the synthesized derivatives (3a-l) were screened for their anti-bacterial evaluation against Gram negative bacteria Escherichia coli (NCIM 2137) and Pseudomonas aeruginosa (NCIM 2036); Gram positive bacteria Staphylococcus aureus, Bacillus subtilis (NCIM 2250) and four fungal stains. Candida albicans (MTCC 227), Aspergillus niger (NCIM 545), Candida tropicalis (NCIM 3110) and Candida glabrata (NCIM 3236).

Results and Conclusion: Several target molecules throughout the series showed good antibacterial and antifungal activity against tested stains.

Keywords: Antibacterial, antifungal, antimicrobial activity, Benzaldehyde, Chalcone, 4, 6-dimethoxy-N-phenyl-1, 3, 5-triazin-2- amine, triazine.

Graphical Abstract

[1]
Bremner, P.D.; Meyer, J.J. Pinocembrin chalcone: an antibacterial compound from Helichrysum trilineatum. Planta Med., 1998, 64(8), 777-781.
[http://dx.doi.org/10.1055/s-2006-957585] [PMID: 9933997]
[2]
Certin, A.; Cansiz, A. Digrak M3-Aryl-5-furylpyrazolines and their biological activities. Heteroatom Chem., 2003, 194, 345-347.
[http://dx.doi.org/10.1002/hc.10159]
[3]
Daukshas, V.K.; Ramamauskas, Y.U.; Udrenaite, A.B.; Brukshtus, V.V.; Lapinskas, R.S.; Maskalyunas, M.K. Synthesis and local-anesthetic activity of 6-[ω-amino-ω)-arylalkyl] benzo-1,4-dioanes. Pharm. Chem. J., 1984, 18, 471-475.
[http://dx.doi.org/10.1007/BF00769801]
[4]
Forkmann, G.; Heller, W. Comprehensive Natural Products chemistry (Eds) (Elservier Science, Amsterdam). , 1999.
[5]
Go, M.L.; Liu, M.; Wilairat, P.; Rosenthal, P.J.; Saliba, K.J.; Kirk, K. Antiplasmodial chalcones inhibit sorbitol-induced hemolysis of Plasmodium falciparum-infected erythrocytes. Antimicrob. Agents Chemother., 2004, 48(9), 3241-3245.
[http://dx.doi.org/10.1128/AAC.48.9.3241-3245.2004] [PMID: 15328079]
[6]
Hsieh, H.K.; Tsao, L.T.; Wang, J.P.; Lin, C.N. Synthesis and anti-inflammatory effect of chalcones. J. Pharm. Pharmacol., 2000, 52(2), 163-171.
[http://dx.doi.org/10.1211/0022357001773814] [PMID: 10714946]
[7]
Huang, D.J.; Lin, C.D.; Chen, H.J.; Lin, Y. HAntioxidant and antiproliferative activities of sweet potato (Ipomoea Batatas). Constituents. Bot. Bull. Acad. Sin., 2004, 45, 179-186.
[8]
Kato, K.; Terao, S.; Shimamoto, N.; Hirata, M. Studies on scavengers of active oxygen species. 1. Synthesis and biological activity of 2-O-alkylascorbic acids. J. Med. Chem., 1988, 31(4), 793-798.
[http://dx.doi.org/10.1021/jm00399a019] [PMID: 3351858]
[9]
Li, R.; Kenyon, G.L.; Cohen, F.E.; Chen, X.; Gong, B.; Dominguez, J.N.; Davidson, E.; Kurzban, G.; Miller, R.E.; Nuzum, E.O. In vitro antimalarial activity of chalcones and their derivatives. J. Med. Chem., 1995, 38(26), 5031-5037.
[http://dx.doi.org/10.1021/jm00026a010] [PMID: 8544179]
[10]
Khersonsky, S.M.; Chang, Y.T. Safety-catch approach to orthogonal synthesis of a triazine library. J. Comb. Chem., 2004, 6(4), 474-477.
[http://dx.doi.org/10.1021/cc049965v] [PMID: 15244407]
[11]
Lee, S.; Zhai, D.; Chang, Y.T. Development of a chalcone-triazine fusion library: combination of a fluorophore and biophore. Tetrahedron Lett., 2013, 54, 2976-2979.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.129]
[12]
Liu, M.; Wilairat, P.; Go, M.L. Antimalarial alkoxylated and hydroxylated chalcones [corrected]: structure-activity relationship analysis. J. Med. Chem., 2001, 44(25), 4443-4452.
[http://dx.doi.org/10.1021/jm0101747] [PMID: 11728189]
[13]
Lunardi, F.; Guzela, M.; Rodrigues, A.T.; Corrêa, R.; Eger-Mangrich, I.; Steindel, M.; Grisard, E.C.; Assreuy, J.; Calixto, J.B.; Santos, A.R. Trypanocidal and leishmanicidal properties of substitution-containing chalcones. Antimicrob. Agents Chemother., 2003, 47(4), 1449-1451.
[http://dx.doi.org/10.1128/AAC.47.4.1449-1451.2003] [PMID: 12654691]
[14]
Padmaja, A.; Payani, T.; Reddy, G.D.; Padmavathi, V. Synthesis, antimicrobial and antioxidant activities of substituted pyrazoles, isoxazoles, pyrimidine and thioxopyrimidine derivatives. Eur. J. Med. Chem., 2009, 44(11), 4557-4566.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.024] [PMID: 19631423]
[15]
Lin, Y.M.; Zhou, Y.; Flavin, M.T.; Zhou, L.M.; Nie, W.; Chen, F.C. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg. Med. Chem., 2002, 10(8), 2795-2802.
[http://dx.doi.org/10.1016/S0968-0896(02)00094-9] [PMID: 12057669]
[16]
Modzelewska, A.; Pettit, C.; Achanta, G.; Davidson, N.E.; Huang, P.; Khan, S.R. Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorg. Med. Chem., 2006, 14(10), 3491-3495.
[http://dx.doi.org/10.1016/j.bmc.2006.01.003] [PMID: 16434201]
[17]
Murray, P.R.; Baron, E.; Jorgensen, J.; Landry, M.; Pfaller, M. Manual of Clinical Microbiology, 9th ed; American Society of Microbiology: Washington, DC, 2007.
[18]
Tupare, S.D.; Nalage, S.V.; Bobe, S.R.; Hallale, S.N.; Bhosale, S.V.; Vyawahare, S.K.; Dake, S.A.; Bhosale, S.V.; Pawar, R.P. Revisit: Eaton’s reagentcatalyzed synthesis of mono and bis-chalcone derivatives. Lett. Org. Chem., 2012, 9(7), 526-529.
[http://dx.doi.org/10.2174/157017812802139627]
[19]
Kasat, A.N.; Magar, R.L.; Dake, S.A.; Shinde, S.B.; Mourya, V.K.; Deokate, U.A.; Joshi, V.M.; Pawar, R.P. In Vitro biological screening and novel synthesis of chalcones using reusable polyamine catalyst. Eur. Chem. Bull., 2014, 3(6), 577-581.
[20]
Naderi, G.H.; Dinani, N.J.; Asgary, S.; Taher, M.; Nikkhoo, N.; Boshtam, M. Effect of some high consumption spices on hemoglobin glycation. Indian J. Pharm. Sci., 2014, 76(6), 553-557.
[PMID: 25593391]
[21]
Nielsen, S.F.; Boesen, T.; Larsen, M.; Schønning, K.; Kromann, H. Antibacterial chalcones-bioisosteric replacement of the 4′-hydroxy group. Bioorg. Med. Chem., 2004, 12(11), 3047-3054.
[http://dx.doi.org/10.1016/j.bmc.2004.03.071] [PMID: 15142563]
[22]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
[23]
Thurston, J.T.; Dudley, J.R.; Kaiser, D.W.; Hechenbleikner, I.; Schaefer, F.C.; Holm-Hansen, D. Cyanuric chloride derivatives-I Amino-s-triazines. J. Am. Chem. Soc., 1951, 73, 2981-2983.
[http://dx.doi.org/10.1021/ja01151a001]
[24]
Tupare, S.D.; Dake, S.A.; Nalage, S.V.; Bhosale, S.V.; Ingle, R.D.; Pawar, R.P. Synthesis and biological evaluation of novel 6-(3-(4,5-Dihydro-1,5-diphenyl-1H-pyrazol-3-yl)phenylamino)Pyridazin-3(2H)-one Derivatives. Inter. J. Organic. Chem, 2012, 2, 371-376.
[25]
Rao, Y.K.; Fang, S.H.; Tzeng, Y.M. Differential effects of synthesized 2′-oxygenated chalcone derivatives: modulation of human cell cycle phase distribution. Bioorg. Med. Chem., 2004, 12(10), 2679-2686.
[http://dx.doi.org/10.1016/j.bmc.2004.03.014] [PMID: 15110849]
[26]
Svetaz, L.; Tapia, A.; López, S.N.; Furlán, R.L.E.; Petenatti, E.; Pioli, R.; Schmeda-Hirschmann, G.; Zacchino, S.A. Antifungal chalcones and new caffeic acid esters from Zuccagnia punctata acting against soybean infecting fungi. J. Agric. Food Chem., 2004, 52(11), 3297-3300.
[http://dx.doi.org/10.1021/jf035213x] [PMID: 15161186]
[27]
Zhai, L.; Chen, M.; Blom, J.; Theander, T.G.; Christensen, S.B.; Kharazmi, A. The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J. Antimicrob. Chemother., 1999, 43(6), 793-803.
[http://dx.doi.org/10.1093/jac/43.6.793] [PMID: 10404318]
[28]
Zhao, L.M.; Jin, H.S.; Sun, L.P.; Piao, H.R.; Quan, Z.S. Synthesis and evaluation of antiplatelet activity of trihydroxychalcone derivatives. Bioorg. Med. Chem. Lett., 2005, 15(22), 5027-5029.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.039] [PMID: 16169724]
[29]
Wang, S.; Lee, W.S.; Ha, H.H.; Chang, Y.T. Combinatorial synthesis of galactosyl-1,3,5-triazines as novel nucleoside analogues. Org. Biomol. Chem., 2011, 9(20), 6924-6926.
[http://dx.doi.org/10.1039/c1ob05733b] [PMID: 21863155]
[30]
Dwarampudi, S.R.; Dannana, G.S.; Avupati, V.R.; & Bendi, V.S.M. Synthesis, characterization and in vitro biological evaluation of some new 1,3,5-triazine-chalcone hybrid molecules as Mycobacterium tuberculosis H37Rv inhibitors. Eur. J. Chem., 2014, 5(4), 570-576.
[http://dx.doi.org/10.5155/eurjchem.5.4.570-576.1098]
[31]
Rawat, A.; Kaur, A.; Kaur, S. Kaur. H.Synthesis and Characterization of Antitubercular Triazine-Chalcone Hybrid Molecules. Asian J. Chem., 2017, 29(9), 2084-2090.
[http://dx.doi.org/10.14233/ajchem.2017.20832]
[32]
Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Gawande, N.M.; Khobragade, C.N. Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents. Bioorg. Med. Chem., 2009, 17(24), 8168-8173.
[http://dx.doi.org/10.1016/j.bmc.2009.10.035] [PMID: 19896853]
[33]
Patel, R.V.; Kumari, P.; Rajani, D.P.; Pannecouque, C.; De Clercq, E.; Chikhalia, K.H. Antimicrobial, anti-TB, anticancer and anti-HIV evaluation of new s-triazine-based heterocycles. Future Med. Chem., 2012, 4(9), 1053-1065.
[http://dx.doi.org/10.4155/fmc.12.57] [PMID: 22709250]
[34]
Shinde, R.S.; Salunke, S.D. Synthesis of Novel Substituted 4,6-Dimethoxy-N-phenyl-1,3,5-triazin-2-amine Derivatives and Their Antibacterial and Antifungal Activities. Asian J. Chem., 2015, 27(11), 4130-4134.
[http://dx.doi.org/10.14233/ajchem.2015.19114]
[35]
Shinde, R.S.; Salunke, S.D. Facile synthesis of some triazine based chalcones as potential antioxidant and anti-diabetic agents. J. Chem. Pharm. Res., 2015, 7(9), 114-120.
[36]
(a)Hatnapure, G.D.; Keche, A.P.; Rodge, A.H.; Birajdar, S.S.; Tale, R.H.; Kamble, V.M. Synthesis and biological evaluation of novel piperazine derivatives of flavone as potent anti-inflammatory and antimicrobial agent. Bioorg. Med. Chem. Lett., 2012, 22(20), 6385-6390.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.071] [PMID: 22981334]
(b)Naganagowda, G.; Thamyongkit, P.; Petsom, A. Synthesis and antimicrobial activity of oxazolone, imidazolone and triazine derivatives containing benzothiophene. J. Korean Chem. Soc., 2011, 55(5), 794-804.
[PMID: 22981334] [http://dx.doi.org/10.5012/jkcs.2011. 55.5.794]
(c)Hatnapure, G.D.; Keche, A.P.; Rodge, A.H.; Tale, R.H.; Birajdar, S.S.; Pawar, M.J.; Kamble, V.M. Synthesis and biological evaluation of novel 2′,4′,5′-trimethoxyflavonol derivatives as anti-inflammatory and antimicrobial agents. Med. Chem. Res., 2013, 23(1), 461-470.
[http://dx.doi.org/10.1007/s00044-013-0651-z]
(d)Sharma, P.C.; Kumar, R.; Chaudhary, M.; Sharma, A.; Rajak, H. Synthesis and biological evaluation of novel benzothiazole clubbed fluoroquinolone derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(1), 1-10.
[http://dx.doi.org/10.3109/14756366.2011.611943] [PMID: 21981002]
(e)Kategaonkar, A.H.; Pokalwar, R.U.; Sonar, S.S.; Gawali, V.U.; Shingate, B.B.; Shingare, M.S. Synthesis, in vitro antibacterial and antifungal evaluations of new α-hydroxyphosphonate and new α-acetoxyphosphonate derivatives of tetrazolo [1, 5-a] quinoline. Eur. J. Med. Chem., 2010, 45(3), 1128-1132.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.013] [PMID: 20036039]
(f)Sridhar, R.; Perumal, P.T.; Etti, S.; Shanmugam, G.; Ponnuswamy, M.N.; Prabavathy, V.R.; Mathivanan, N. Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates. Bioorg. Med. Chem. Lett., 2004, 14(24), 6035-6040.
[PMID: 20036039] [http://dx.doi.org/10.1016/j.bmcl.2004.09.066] [PMID: 15546724]
(g)Hwang, C.; Gatanaga, M.; Granger, G.A.; Gatanaga, T. Mechanism of release of soluble forms of tumor necrosis factor/lymphotoxin receptors by phorbol myristate acetate-stimulated human THP-1 cells in vitro. J. Immunol., 1993, 151(10), 5631-5638.
[PMID: 8228252]

© 2024 Bentham Science Publishers | Privacy Policy