Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

X-Ray Characterization of Pharmaceutical and Cosmetic Lipidic Nanoparticles for Cutaneous Application

Author(s): Federica Carducci, Bruna Renata Casadei, Paolo Mariani* and Leandro Ramos Souza Barbosa

Volume 25, Issue 21, 2019

Page: [2364 - 2374] Pages: 11

DOI: 10.2174/1381612825666190709210211

Price: $65

Abstract

Starting from the second half of the 1900s, the advent of nanotechnology in medicine has provoked a profound revolution in this area; at present, nanomedicine delivered a remarkably large set of research and clinically useful tools as diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drugdelivery vehicles. Concerning nanoformulations for drug delivery, they are constituted by nanoparticles with dimensions lower than 1 μm, usually characterized by improved pharmacokinetics, taking advantage of specific targeting, and reduced side effects. The contributors to the present chapter are reviewing a range of papers related to the structural characterization of nanoformulations by X-ray diffraction techniques. The whole of the considered papers underlines the essential role that biophysical techniques have acquired as an essential prerequisite to understanding stability, bioavailability, and lipid, biopolymer, and drug organization in nanoformulations.

Keywords: Lipid nanoparticles, nanoformulations, topical administration, structural characterization, drug delivery systems, X-ray scattering, cubosomes, liquid crystalline phases.

[1]
Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Control Release 2008; 132(3): 153-63.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.012] [PMID: 18817820]
[2]
Park K. Controlled drug delivery systems: past forward and future back. J Control Release 2014; 190: 3-8.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.054] [PMID: 24794901]
[3]
Jiang Y, Chekuri S, Fang RH, Zhang L. Engineering biological interactions on the nanoscale. Curr Opin Biotechnol 2018; 58: 1-8.
[http://dx.doi.org/10.1016/j.copbio.2018.10.005] [PMID: 30390535]
[4]
Czech T, Lalani R, Oyewumi MO. Delivery Systems as Vital Tools in Drug Repurposing. AAPS PharmSciTech 2019; 20(3): 116.
[http://dx.doi.org/10.1208/s12249-019-1333-z] [PMID: 30771030]
[5]
Whitesides GM, Kriebel JK, Mayers BT. Self-Assembly and Nanostructured Materials. Nanoscale Assembly Nanostructured Science and Technology 2005.
[http://dx.doi.org/10.1007/0-387-25656-3_9]
[6]
Carducci F, Yoneda JS, Itri R, Mariani P. On the structural stability of guanosine-based supramolecular hydrogels. Soft Matter 2018; 14(15): 2938-48.
[http://dx.doi.org/10.1039/C8SM00299A] [PMID: 29611597]
[7]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[8]
Bor G, Mat Azmi ID, Yaghmur A. Nanomedicines for cancer therapy: current status, challenges and future prospects. Ther Deliv 2019; 10(2): 113-32.
[http://dx.doi.org/10.4155/tde-2018-0062] [PMID: 30678550]
[9]
Kreuter J. Drug targeting with nanoparticles. Eur J Drug Metab Pharmacokinet 1994; 19(3): 253-6.
[http://dx.doi.org/10.1007/BF03188928] [PMID: 7867668]
[10]
Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2018; 15: 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[11]
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282-9.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[12]
Pachioni-Vasconcelos Jde A, Lopes AM, Apolinário AC, et al. Nanostructures for protein drug delivery. Biomater Sci 2016; 4(2): 205-18.
[http://dx.doi.org/10.1039/C5BM00360A] [PMID: 26580477]
[13]
da Costa-Silva TA, Galisteo AJ Jr, Lindoso JA, Barbosa LR, Tempone AG. Nanoliposomal buparvaquone immunomodulates Leishmania infantum-infected macrophages and is highly effective in Murine model. Antimicrob Agents Chemother 2017; 61(4): e02297-16.
[http://dx.doi.org/10.1128/AAC.02297-16] [PMID: 28167544]
[14]
Attama AA, Momoh MA, Builders PF. Lipid Nanoparticulate Drug Delivery Systems: A revolution in Dosage Form Design and Development 2012.
[15]
Esposito E, Fantin M, Marti M, et al. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm Res 2008; 25(7): 1521-30.
[http://dx.doi.org/10.1007/s11095-007-9514-y] [PMID: 18172580]
[16]
Barbosa R, Casadei BR, Severino P, et al. EPR and SAXS characterization of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for dibucaine encapsulation. Langmuir 2018; 34: 13296-304.
[http://dx.doi.org/10.1021/acs.langmuir.8b02559] [PMID: 30299102]
[17]
Esposito E, Sguizzato M, Drechsler M, et al. Progesterone lipid nanoparticles: Scaling up and in vivo human study. Eur J Pharm Biopharm 2017; 119: 437-46.
[http://dx.doi.org/10.1016/j.ejpb.2017.07.015] [PMID: 28760448]
[18]
Cortesi R, Cappellozza E, Drechsler M, et al. Monoolein aqueous dispersions as a delivery system for quercetin. Biomed Microdevices 2017; 19(2): 41.
[http://dx.doi.org/10.1007/s10544-017-0185-0] [PMID: 28484916]
[19]
Esposito E, Carducci F, Mariani P, et al. Monoolein liquid crystalline phases for topical delivery of crocetin. Colloids Surf B Biointerfaces 2018; 171: 67-74.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.011] [PMID: 30015140]
[20]
Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K. Cubic lipid-water phase dispersed into submicron particles. Langmuir 1996; 12: 4611-3.
[http://dx.doi.org/10.1021/la960318y]
[21]
Siekmann B, Westesen K. Submicron-sized parenteral carrier systems based on solid lipids. Pharm Pharmacol Lett 1992; 1: 123-6.
[22]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[23]
Lippacher A, Müller RH, Mäder K. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int J Pharm 2001; 214(1-2): 9-12.
[http://dx.doi.org/10.1016/S0378-5173(00)00623-2] [PMID: 11282228]
[24]
Attama AA, Müller-Goymann CC. Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle Crystallinity. Colloids Surf A Physicochem Eng Asp 2008; 315: 189-95.
[http://dx.doi.org/10.1016/j.colsurfa.2007.07.035]
[25]
Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002; 54(Suppl. 1): S131-55.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[26]
Esposito E, Mariani P, Dechsler M, Cortesi R. Structural Studies of Lipid-Based Nanosystems for Drug Delivery: X-ray Diffraction (XRD) and Cryogenic Transmission Electron Microscopy (Cryo- TEM).Handbook of Nanoparticles. 2016.
[http://dx.doi.org/10.1007/978-3-319-15338-4_39]
[27]
Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 2013; 19: 29-43.
[http://dx.doi.org/10.1016/j.ifset.2013.03.002]
[28]
Tan A, Hong L, Du JD, Boyd BJ. Self-Assembled Nanostructured Lipid Systems: Is There a Link between Structure and Cytotoxicity? Adv Sci (Weinh) 2018; 6(3)1801223
[http://dx.doi.org/10.1002/advs.201801223] [PMID: 30775224]
[29]
Jose J, Netto G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J Cosmet Dermatol 2019; 18(1): 315-21.
[http://dx.doi.org/10.1111/jocd.12504] [PMID: 29441672]
[30]
Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 2009; 366(1-2): 170-84.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[31]
Hsu CY, Wang PW, Alalaiwe A, Lin ZC, Fang JY. Use of lipid nanocarriers to improve oral delivery of vitamins. Nutrients 2019; 11(1): 68.
[http://dx.doi.org/10.3390/nu11010068] [PMID: 30609658]
[32]
Mariani P, Luzzati V, Delacroix H. Cubic phases of lipid-containing systems. Structure analysis and biological implications. J Mol Biol 1988; 204(1): 165-89.
[http://dx.doi.org/10.1016/0022-2836(88)90607-9] [PMID: 3216391]
[33]
Wörle G, Drechsler M, Koch MH, Siekmann B, Westesen K, Bunjes H. Influence of composition and preparation parameters on the properties of aqueous monoolein dispersions. Int J Pharm 2007; 329(1-2): 150-7.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.023] [PMID: 16987623]
[34]
Larsson K. Aqueous dispersion of cubic lipid-water phases. Curr Opin Colloid Interface Sci 2000; 5: 64-9.
[http://dx.doi.org/10.1016/S1359-0294(00)00040-6]
[35]
Siekmann B, Bunjes H, Koch MH, Westesen K. Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride-water phases. Int J Pharm 2002; 244(1-2): 33-43.
[http://dx.doi.org/10.1016/S0378-5173(02)00298-3] [PMID: 12204563]
[36]
Azmi ID, Moghimi SM, Yaghmur A. Cubosomes and hexosomes as versatile platforms for drug delivery. Ther Deliv 2015; 6(12): 1347-64.
[http://dx.doi.org/10.4155/tde.15.81] [PMID: 26652281]
[37]
Esposito E, Drechsler M, Mariani P, et al. Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.). Mater Sci Eng C 2017; 71: 669-77.
[http://dx.doi.org/10.1016/j.msec.2016.10.045] [PMID: 27987758]
[38]
Srinivasan M, Singh H, Mueno PA. Sodium caseinate stabilized emulsions. Factors affecting coverage and composition of surface protein. J Agric Food Chem 1996; 44: 3807-11.
[http://dx.doi.org/10.1021/jf960135h]
[39]
Jeong JH, Kang SH, Kim JH, et al. Protective effects of poly(lactic-co-glycolic acid) nanoparticles loaded with erythropoietin stabilized by sodium cholate against glutamate-induced neurotoxicity. J Nanosci Nanotechnol 2014; 14(11): 8365-71.
[http://dx.doi.org/10.1166/jnn.2014.9927] [PMID: 25958529]
[40]
Esposito E, Mariani P, Ravani L, et al. Nanoparticulate lipid dispersions for bromocriptine delivery: characterization and in vivo study. Eur J Pharm Biopharm 2012; 80(2): 306-14.
[http://dx.doi.org/10.1016/j.ejpb.2011.10.015] [PMID: 22061262]
[41]
Mazzoni S, Barbosa LR, Funari SS, Itri R, Mariani P. Cytochrome-c affects the monoolein polymorphism: consequences for stability and loading efficiency of drug delivery systems. Langmuir 2016; 32(3): 873-81.
[http://dx.doi.org/10.1021/acs.langmuir.5b03507] [PMID: 26710233]
[42]
Puglia C, Cardile V, Panico AM, et al. Evaluation of monooleine aqueous dispersions as tools for topical administration of curcumin: characterization, in vitro and ex-vivo studies. J Pharm Sci 2013; 102(7): 2349-61.
[http://dx.doi.org/10.1002/jps.23605] [PMID: 23686742]
[43]
Esposito E, Ravani L, Mariani P, et al. Curcumin containing monoolein aqueous dispersions: a preformulative study. Mater Sci Eng C 2013; 33(8): 4923-34.
[http://dx.doi.org/10.1016/j.msec.2013.08.017] [PMID: 24094206]
[44]
Nagarajan R. Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 2002; 18: 31-8.
[http://dx.doi.org/10.1021/la010831y]
[45]
Rappolt M, Di Gregorio GM, Almgren M, et al. Non-equilibrium formation of the cubic Pn3m phase in a monoolein/water system. Europhys Lett 2006; 75: 267-73.
[http://dx.doi.org/10.1209/epl/i2006-10104-y]
[46]
Israelachvili JN. Intermolecular and Surface Forces. 3rd ed. 2011.
[47]
Seddon JM. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta 1990; 1031(1): 1-69.
[http://dx.doi.org/10.1016/0304-4157(90)90002-T] [PMID: 2407291]
[48]
Luzzati V, Vargas R, Mariani P, Gulik A, Delacroix H. Cubic phases of lipid-containing systems. Elements of a theory and biological connotations. J Mol Biol 1993; 229(2): 540-51.
[http://dx.doi.org/10.1006/jmbi.1993.1053] [PMID: 8429562]
[49]
Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018; 10(27): 12871-934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[50]
Andreozzi P, Funari SS, La Mesa C, et al. Multi- to unilamellar transitions in catanionic vesicles. J Phys Chem B 2010; 114(24): 8056-60.
[http://dx.doi.org/10.1021/jp100437v] [PMID: 20507136]
[51]
Helvig S, Azmi IDM, Moghimi SM, et al. Recent Advances in Cryo-TEM Imaging of Soft Lipid Nanoparticles. AIMS Biophys 2015; 2: 116-30.
[http://dx.doi.org/10.3934/biophy.2015.2.116]
[52]
nternational Tables for Crystallography, A. 1983; 43.
[53]
Kawamura K. The DSC thermal analysis of crystalline behavior in palm oil. J Am Oil Chem Soc 1979; 56: 753-8.
[http://dx.doi.org/10.1007/BF02663056]
[54]
Domingues MAF, Ribeiro APB, Kieckbusch TG, et al. Advances in Lipids Crystallization Technology. In: Advanced Topics in Crystallization. InTech 2015.
[http://dx.doi.org/10.5772/59767]
[55]
O’Brien RD. Fats and Oils Analysis. In: Fats and Oils- Formulating and Processing for Applications. Hasenhuettl G.L., Hartel R.W, Eds. Springer: New York 2008.
[http://dx.doi.org/10.1201/9781420061673.ch3]
[56]
Boistelle R. Fundamentals of nucleation and crystal growth. In: Garti N, Sato K, Eds. Crystallization and Polymorphism of Fats and Fatty Acids. 189-226. 1988
[57]
Esposito E, Boschi A, Ravani L, et al. Biodistribution of nanostructured lipid carriers: a tomographic study. Eur J Pharm Biopharm 2015; 89: 145-56.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.006] [PMID: 25497177]
[58]
Wu X, Guy RH. Applications of nanoparticles in topical drug delivery and in cosmetics. J Drug Deliv Sci Technol 2009; 19: 371-84.
[http://dx.doi.org/10.1016/S1773-2247(09)50080-9]
[59]
Lohani A, Verma A, Joshi H, Yadav N, Karki N. Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014; 2014843687
[http://dx.doi.org/10.1155/2014/843687] [PMID: 24963412]
[60]
Koynova R and, Tenchov B. Lipids, Phase Transitions of. Wiley Encyclopedia of Chemical Biology doi: 10.1002/9780470048672.wecb287, 2008.
[http://dx.doi.org/10.1002/9780470048672.wecb287]
[61]
Barel OA, Paye M, Maibach HI. Handbook of cosmetic science and technology. CRC Press 2014.
[http://dx.doi.org/10.1201/b16716]
[62]
Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 2004; 56(5): 675-711.
[http://dx.doi.org/10.1016/j.addr.2003.10.028] [PMID: 15019752]
[63]
Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv 2006; 13(3): 175-87.
[http://dx.doi.org/10.1080/10717540500455975] [PMID: 16556569]
[64]
Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev 2007; 59(11): 1152-61.
[http://dx.doi.org/10.1016/j.addr.2007.07.004] [PMID: 17889400]
[65]
Lademann J, Richter H, Teichmann A, et al. Nanoparticles--an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm 2007; 66(2): 159-64.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.019] [PMID: 17169540]
[66]
Thong HY, Zhai H, Maibach HI. Percutaneous penetration enhancers: an overview. Skin Pharmacol Physiol 2007; 20(6): 272-82.
[http://dx.doi.org/10.1159/000107575] [PMID: 17717423]
[67]
Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M. Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 2003; 42(1): 1-36.
[http://dx.doi.org/10.1016/S0163-7827(02)00028-0] [PMID: 12467638]
[68]
Kanikkannan N, Patel R, Jackson T, Shaik MS, Singh M. Percutaneous absorption and skin irritation of JP-8 (jet fuel). Toxicology 2001; 161(1-2): 1-11.
[http://dx.doi.org/10.1016/S0300-483X(00)00402-9] [PMID: 11295251]
[69]
Betz G, Aeppli A, Menshutina N, Leuenberger H. In vivo comparison of various liposome formulations for cosmetic application. Int J Pharm 2005; 296(1-2): 44-54.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.032] [PMID: 15885454]
[70]
Dante MCL, Borgheti-Cardoso LN, Fantini MCA, et al. Liquid crystalline systems based on glyceryl monooleate and penetration enhancers for skin delivery of celecoxib: characterization, in vitro drug release, and in vivo studies. J Pharm Sci 2018; 107(3): 870-8.
[http://dx.doi.org/10.1016/j.xphs.2017.10.039] [PMID: 29108729]
[71]
Cooper DL, Harirforoosh S. Effect of formulation variables on preparation of celecoxib loaded polylactide-co-glycolide nanoparticles. PLoS One 2014; 9(12)e113558
[http://dx.doi.org/10.1371/journal.pone.0113558] [PMID: 25502102]
[72]
Sguizzato M, Cortesi R, Gallerani E, et al. Solid lipid nanoparticles for the delivery of 1,3,5-triaza-7-phosphaadamantane (PTA) platinum (II) carboxylates. Mater Sci Eng C 2017; 74: 357-64.
[http://dx.doi.org/10.1016/j.msec.2016.12.020] [PMID: 28254304]
[73]
Sguizzato M, Esposito E, Drechsler M, et al. Nafion-containing Solid Lipid Nanoparticles as a tool for anticancer Pt delivery: preliminary studies 2017.
[74]
Boge L, Hallstensson K, Ringstad L, et al. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur J Pharm Biopharm 2019; 134: 60-7.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.009] [PMID: 30445164]
[75]
Yariv D, Efrat R, Libster D, Aserin A, Garti N. In vitro permeation of diclofenac salts from lyotropic liquid crystalline systems. Colloids Surf B Biointerfaces 2010; 78(2): 185-92.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.029] [PMID: 20363601]
[76]
Vicentini FT, Depieri LV, Polizello AC, et al. Liquid crystalline phase nanodispersions enable skin delivery of siRNA. Eur J Pharm Biopharm 2013; 83(1): 16-24.
[http://dx.doi.org/10.1016/j.ejpb.2012.08.011] [PMID: 23010565]
[77]
Lopes LB, Lopes JL, Oliveira DC, et al. Liquid crystalline phases of monoolein and water for topical delivery of cyclosporin A: characterization and study of in vitro and in vivo delivery. Eur J Pharm Biopharm 2006; 63(2): 146-55.
[http://dx.doi.org/10.1016/j.ejpb.2006.02.003] [PMID: 16621488]
[78]
Junqueira Garcia MT, Pedralino Gonçalves T, São Félix Martins É, et al. Improvement of cutaneous delivery of methylene blue by liquid crystals. Int J Pharm 2018; 548(1): 454-65.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.003] [PMID: 30018009]
[79]
Rossetti FC, Fantini MC, Carollo AR, Tedesco AC, Bentley MV. Analysis of liquid crystalline nanoparticles by small angle X-ray diffraction: evaluation of drug and pharmaceutical additives influence on the internal structure. J Pharm Sci 2011; 100(7): 2849-57.
[http://dx.doi.org/10.1002/jps.22522] [PMID: 21337546]
[80]
Guimarães KL, Ré MI. Lipid nanoparticles as carriers for cosmetic ingredients: The first (SLN) and the second generation (NLC). Nanocosmetics and nanomedicines 2011; 101-22.
[http://dx.doi.org/10.1007/978-3-642-19792-5_5]
[81]
Argimón M, Romero M, Miranda P, et al. Development and Characterization of Vitamin A-Loaded Solid Lipid Nanoparticles for Topical Application. J Braz Chem Soc 2017; 28: 1177-84.
[82]
Oehlke K, Behsnilian D, Mayer-Miebach E, Weidler PG, Greiner R. Edible solid lipid nanoparticles (SLN) as carrier system for antioxidants of different lipophilicity. PLoS One 2017; 12(2)e0171662
[http://dx.doi.org/10.1371/journal.pone.0171662] [PMID: 28192494]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy