Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Synthesis of NIR Emitting Rare Earth Doped Fluorapatite Nanoparticles for Bioimaging Applications

Author(s): E.K. Girija*, S. Karthi, D. Karthickraja, G.A. Kumar, D.K. Sardar and C. Santhosh

Volume 9, Issue 2, 2019

Page: [80 - 93] Pages: 14

DOI: 10.2174/1877946809666190708131511

Abstract

Aim: To synthesize biocompatible nanoparticles of FAp co-doped with Yb/Er and Nd/Yb for bioimaging applications.

Methods: Yb/Er FAp and Nd/Yb FAp was synthesized using microwave assisted wet precipitation and hydrothermal method respectively. Trisodium citrate was used as an organic modifier for the synthesis and then subjected to heat treatment for optical activation. For optical studies, Yb/Er FAp system was excited at 980 nm and Nd/Yb FAp at 800 nm.

Results: In the case of Nd/Yb FAp the host matrix absorption and emission was observed, hence Nd/Yb was synthesized without citrate. On heat treatment of this for optical activation studies, when the Yb3+ concentration was increased to 10 mol%, the YbPO4 secondary phase was found to appear. Although, the Yb/Er FAp system resulted in large grain growth, no such grain growth was observed in Nd/Yb FAp and the grains were within the nano size regime even after heat treatment.

Conclusion: Both the systems showed successful energy transfer from sensitizer to activator with a quantum yield of 74% for Yb/Er FAp and energy transfer efficiency of 71% for Nd/Yb FAp system. Both the samples were found to be cytocompatible and has the potential for using as probes for bioimaging applications.

Keywords: Biocompatibility, bioimaging, fluorapatite, hydrothermal method, microwave method, NIR emission, rare earth doped nanoparticles.

« Previous
Graphical Abstract

[1]
Mertz, J. Introduction to Optical Microscopy. Roberts and Company Publishers, Erscheinungsdatum, 2010.
[2]
Dong, H.; Du, S.R.; Zheng, X.Y.; Lyu, G.M.; Sun, L.D.; Li, L.D.; Zhang, P.Z.; Zhang, C.; Yan, C.H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev., 2015, 115(19), 10725-10815.
[http://dx.doi.org/10.1021/acs.chemrev.5b00091] [PMID: 26151155]
[3]
Van Der Meer, B.W.; Coker, G.; Chen, C.S.Y. Resonance energy transfer, theory and data, VCH Publishers (Now Wiley-VCH), Inc.: New York, , 1994.
[4]
Burns, A.; Ow, H.; Wiesner, U. Fluorescent core-shell silica nanoparticles: Towards “Lab on a Particle” architectures for nanobiotechnology. Chem. Soc. Rev., 2006, 35(11), 1028-1042.
[http://dx.doi.org/10.1039/B600562B] [PMID: 17057833]
[5]
Guilbault, G.G. Practical fluorescence, 2nd ed; Marcel Dekker, Inc: New York, 1990.
[6]
Liu, Q.; Feng, W.; Yang, T.; Yi, T.; Li, F. Up conversion luminescence imaging of cells and small animals. Nat. Protoc., 2013, 8(10), 2033-2044.
[http://dx.doi.org/10.1038/nprot.2013.114] [PMID: 24071909]
[7]
Lee, D.E.; Koo, H.; Sun, I.C.; Ryu, J.H.; Kim, K.; Kwon, I.C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev., 2012, 41(7), 2656-2672.
[http://dx.doi.org/10.1039/C2CS15261D] [PMID: 22189429]
[8]
Sharma, P.; Brown, S.; Walter, G.; Santra, S.; Moudgil, B. Nanoparticles for bioimaging. Adv. Colloid Interface Sci., 2006, 123-126, 471-485.
[http://dx.doi.org/10.1016/j.cis.2006.05.026] [PMID: 16890182]
[9]
Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 2005, 105(4), 1025-1102.
[http://dx.doi.org/10.1021/cr030063a] [PMID: 15826010]
[10]
Prasad, P.N. Introduction to nanomedicine and nanobioengineering; Wiley Interscience: Hoboken, 2004.
[11]
Chen, G.; Qiu, H.; Prasad, P.N.; Chen, X. Up conversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev., 2014, 114(10), 5161-5214.
[http://dx.doi.org/10.1021/cr400425h] [PMID: 24605868]
[12]
Johnson, D.A. Principles of lanthanide chemistry. J. Chem. Educ., 1980, 57, 475.
[http://dx.doi.org/10.1021/ed057p475]
[13]
Peijzel, P.S.; Meijerink, A.; Wegh, R.T.; Reid, M.F.; Burdick, G.W. A complete energy level diagram for all trivalent lanthanide ions. J. Solid State Chem., 2005, 178, 448-453.
[http://dx.doi.org/10.1016/j.jssc.2004.07.046]
[14]
Wang, R.; Zhang, F. NIR luminescent nanomaterials for biomedical imaging. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 2422.
[http://dx.doi.org/10.1039/c3tb21447h]
[15]
Liu, T.M.; Conde, J.; Lipiński, T.; Bednarkiewicz, A.; Huang, C.C.. Revisiting the classification of NIRabsorbing/emitting nanomaterials for in vivo bioapplications. NPG Asia Mater., 2016, 8, 295.
[http://dx.doi.org/10.1038/am.2016.106]
[16]
Vetrone, F.; Boyer, J.C.; Capobianco, J.A.; Speghini, A.; Bettinelli, M. NIR to visible up conversion in nanocrystalline and bulk Lu2O3:Er3+. J. Phys. Chem. B, 2002, 106, 5622-5628.
[http://dx.doi.org/10.1021/jp020256m]
[17]
Yang, J.; Zhang, C.; Peng, C.; Li, C.; Wang, L.; Chai, R.; Lin, J. Controllable red, green, blue (RGB) and bright white up conversion luminescence of Lu2O3: Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm. Chemistry, 2009, 15(18), 4649-4655.
[http://dx.doi.org/10.1002/chem.200802106] [PMID: 19296483]
[18]
Wang, X.; Zhang, Z.; Tang, Z.; Lin, Y. Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor. Mater. Chem. Phys., 2003, 80, 1-5.
[http://dx.doi.org/10.1016/S0254-0584(02)00097-4]
[19]
Li, X.; Zhu, J.; Man, Z.; Ao, Y.; Chen, H. Investigation on the structure and upconversion fluorescence of Yb3+/Ho3+ co-doped fluorapatite crystals for potential biomedical applications. Sci. Rep., 2014, 4, 4446.
[http://dx.doi.org/10.1038/srep04446] [PMID: 24658285]
[20]
Barick, K.C.; Sharma, A.; Shetake, N.G.; Ningthoujam, R.S.; Vatsa, R.K.; Babu, P.D.; Pandey, B.N.; Hassan, P.A. Covalent bridging of surface functionalized Fe3O4 and YPO4: Eu nanostructures for simultaneous imaging and therapy. Dalton Trans., 2015, 44(33), 14686-14696.
[http://dx.doi.org/10.1039/C5DT01522G] [PMID: 26215789]
[21]
Mahalingam, V.; Hazra, C.; Naccache, R.; Vetrone, F.; Capobianco, J.A. Enhancing the color purity of the green upconversion emission from Er3+/Yb3+-doped GdVO4 nanocrystals via tuning of the sensitizer concentration. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1, 6536.
[http://dx.doi.org/10.1039/c3tc31328j]
[22]
Del Rosal, B.; Pérez-Delgado, A.; Misiak, M.; Bednarkiewicz, A.; Vanetsev, A.S.; Orlovskii, Y.; Jovanović, D.J.; Dramićanin, M.D.; Rocha, U.; Upendra Kumar, K.; Jacinto, C.; Navarro, E.; Martín Rodríguez, E.; Pedroni, M.; Speghini, A.; Hirata, G.A.; Martín, I.R.; Jaque, D. Neodymium-doped nanoparticles for infrared fluorescence bioimaging: The role of the host. J. Appl. Phys., 2015, 118143104
[http://dx.doi.org/10.1063/1.4932669]
[23]
An, B.L.; Ma, L.H.; Fang, J.H.; Wang, Y.Q.; Xu, J.Q. Multi-photon upconversion luminescence from a CaxYF3+2x host by doping with Yb3+/Er3+ or Yb3+/Tm3+. RSC Advances, 2013, 3, 19909.
[http://dx.doi.org/10.1039/c3ra43702g]
[24]
Wang, G.; Peng, Q.; Li, Y. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc., 2009, 131(40), 14200-14201.
[http://dx.doi.org/10.1021/ja906732y] [PMID: 19775118]
[25]
Li, X.; Chen, H. Yb3+/Ho3+ co-doped apatite upconversion nanoparticles to distinguish implanted material from bone tissue. ACS Appl. Mater. Interfaces, 2016, 8(41), 27458-27464.
[http://dx.doi.org/10.1021/acsami.6b05514] [PMID: 27670218]
[26]
Kumar, G.S.; Girija, E.K. Flower-like hydroxyapatite nanostructure obtained from eggshell: A candidate for biomedical applications. Ceram. Int., 2013, 39, 8293-8299.
[http://dx.doi.org/10.1016/j.ceramint.2013.03.099]
[27]
Li, X.; Zhu, J.; Man, Z.; Ao, Y.; Chen, H. Investigation on the structure and upconversion fluorescence of Yb3+/Ho3+ co-doped fluorapatite crystals for potential biomedical applications. Sci. Rep., 2014, 4, 4446.
[http://dx.doi.org/10.1038/srep04446] [PMID: 24658285]
[28]
Boanini, E.; Gazzano, M.; Bigi, A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater., 2010, 6(6), 1882-1894.
[http://dx.doi.org/10.1016/j.actbio.2009.12.041] [PMID: 20040384]
[29]
Goryaeva, A.M.; Urusov, V.S.; Eremin, N.N. Atomistic simulations of mixing properties and the local structure of the (Ca, Sr)10[PO4]6F2 solid solution. Eur. J. Mineral., 2013, 25, 947-955.
[http://dx.doi.org/10.1127/0935-1221/2013/0025-2338]
[30]
Karthi, S.; Suresh Kumar, G.; Kumar, G.A.; Sardar, D.K.; Santhosh, C.; Girija, E.K. Microwave assisted synthesis and characterizations of near infrared emitting Yb/Er doped fluorapatite nanoparticles. J. Alloys Compd., 2016, 689, 525-532.
[http://dx.doi.org/10.1016/j.jallcom.2016.08.005]
[31]
Karthi, S.; Kumar, G.A.; Sardar, D.K.; Santhosh, C.; Girija, E.K. Synthesis and characterization of Nd3+:Yb3+ co-doped near infrared sensitive fluorapatite nanoparticles as a bioimaging probe. Opt. Mater., 2018, 77, 39-47.
[http://dx.doi.org/10.1016/j.optmat.2018.01.013]
[32]
Singh, V.; Rai, V.K.; Ledoux-Rak, I.; Kwak, H.Y. Visible up-conversion and NIR luminescence studies of LiAl5O8:Er phosphor co-doped with Yb3+ and Zn2+. Appl. Phys. B, 2009, 97, 103-107.
[http://dx.doi.org/10.1007/s00340-009-3472-5]
[33]
Pathak, A.A.; Talewar, R.A.; Joshi, C.P.; Moharil, S.V. Sensitization of Yb3+ emission in CaYAl3O7 host. Opt. Mater., 2017, 64, 217-223.
[http://dx.doi.org/10.1016/j.optmat.2016.12.018]
[34]
Sontakke, A.D.; Biswas, K.; Sen, R.; Annapurna, K. Efficient non-resonant energy transfer in Nd3+-Yb3+ codoped Ba-Al-metaphosphate glasses. J. Opt. Soc. Am. B, 2010, 27, 2750.
[http://dx.doi.org/10.1364/JOSAB.27.002750]
[35]
Lupei, A.; Lupei, V.; Ikesue, A.; Gheorghe, C. Spectroscopic and energy transfer investigation of Nd/Yb in Y2O3 transparent ceramics. J. Opt. Soc. Am. B, 2010, 27, 5.
[36]
Rocha, U.; Jacinto da Silva, C.; Ferreira Silva, W.; Guedes, I.; Benayas, A.; Martínez Maestro, L.; Acosta Elias, M.; Bovero, E.; Van Veggel, F.C.J.M.; García Solé, J.A.; Jaque, D. Sub-tissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano, 2013, 7(2), 1188-1199.
[http://dx.doi.org/10.1021/nn304373q] [PMID: 23311347]
[37]
Yuan, D.; Tan, M.C.; Riman, R.E.; Chow, G.M. Comprehensive study on the size effects of the optical properties of NaYF4:Yb, Er nanocrystals. J. Phys. Chem. C, 2013, 117, 13297-13304.
[http://dx.doi.org/10.1021/jp403061h]
[38]
S, Martín. I. R, Rivera-López. F, Lahoz. F, Temperature dependence of Nd3+ - Yb3+ energy transfer processes in co-doped oxyfluoride glass ceramics. J. Non-Cryst. Solids, 2007, 353, 1951-1955.
[http://dx.doi.org/10.1016/j.jnoncrysol.2007.01.059]
[39]
Rakov, N.; Maciel, G.S. An efficient energy transfer process in Nd3+:Yb3+ codoped SrF2 powders containing Al3+ and prepared by the combustion synthesis technique. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4, 5442-5447.
[http://dx.doi.org/10.1039/C6TC01105E]
[40]
Chen, M.H.; Yoshioka, T.; Ikoma, T.; Hanagata, N.; Lin, F.H.; Tanaka, J. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles. Sci. Technol. Adv. Mater., 2014, 15(5)055005
[http://dx.doi.org/10.1088/1468-6996/15/5/055005] [PMID: 27877717]
[41]
Chen, F.; Huang, P.; Zhu, Y.J.; Wu, J.; Cui, D.X. Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging. Biomaterials, 2012, 33(27), 6447-6455.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.059] [PMID: 22721725]
[42]
Liu, T.M.; Conde, J.; Lipiński, T.; Bednarkiewicz, A.; Huang, C.C. Revisiting the classification of NIR-absorbing/emitting nanomaterials for in vivo bioapplications. NPG Asia Mater., 2016, 8, 295.
[http://dx.doi.org/10.1038/am.2016.106]
[43]
Wang, Y.F.; Liu, G.Y.; Sun, L.D.; Xiao, J.W.; Zhou, J.C.; Yan, C.H. Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano, 2013, 7(8), 7200-7206.
[http://dx.doi.org/10.1021/nn402601d] [PMID: 23869772]
[44]
Ximendes, E.C.; Santos, W.Q.; Rocha, U.; Kagola, U.K.; Sanz-Rodríguez, F.; Fernández, N. Gouveia-Neto, Ada.S.; Bravo, D.; Domingo, A.M.; Del Rosal, B.; Brites, C.D.; Carlos, L.D.; Jaque, D.; Jacinto, C. Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers. Nano Lett., 2016, 16(3), 1695-1703.
[http://dx.doi.org/10.1021/acs.nanolett.5b04611] [PMID: 26845418]
[45]
Marciniak, Ł.; Bednarkiewicz, A.; Stefanski, M.; Tomala, R.; Hreniak, D.; Strek, W. Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd3+ to Yb3+ energy transfer. Phys. Chem. Chem. Phys., 2015, 17(37), 24315-24321.
[http://dx.doi.org/10.1039/C5CP03861H] [PMID: 26327196]
[46]
Muhr, V.; Wilhelm, S.; Hirsch, T.; Wolfbeis, O.S. Upconversion nanoparticles: From hydrophobic to hydrophilic surfaces. Acc. Chem. Res., 2014, 47(12), 3481-3493.
[http://dx.doi.org/10.1021/ar500253g] [PMID: 25347798]
[47]
Wilhelm, S.; Kaiser, M.; Würth, C.; Heiland, J.; Carrillo-Carrion, C.; Muhr, V.; Wolfbeis, O.S.; Parak, W.J.; Resch-Genger, U.; Hirsch, T. Water dispersible upconverting nanoparticles: Effects of surface modification on their luminescence and colloidal stability. Nanoscale, 2015, 7(4), 1403-1410.
[http://dx.doi.org/10.1039/C4NR05954A] [PMID: 25503253]
[48]
Morales, J.G.; Escamilla, C.V.; Penas, R.F.; Parra-Milla, C.M.; Drouet, C.; Bosc, F.M.; Oltolina, F.; Prat, M.J.F. Fernandez-Sanchez, Luminescent biomimetic citrate-coated europiumdoped carbonated apatite nanoparticles for use in bioimaging: Physico-chemistry and cytocompatibility. RSC Advances, 2018, 8, 2385-2397.
[http://dx.doi.org/10.1039/C7RA12536D]
[49]
Lei, L.; Xie, B.; Li, Y.; Zhang, J.; Xu, S. Improvement of the luminescent intensity of Yb/Er:CaF2 nanocrystals by combining Na+-doping and active-core/active-shell structure. J. Lumin., 2017, 190, 462-467.
[50]
Xu, B.; He, H.; Gu, Z.; Jin, S.; Ma, Y.; Zhai, T. Improving 800 nm triggered upconversion emission for lanthanide doped CaF2 nanoparticles through sodium ion doping. J. Phys. Chem. C, 2017, 121, 18280-18287.
[http://dx.doi.org/10.1021/acs.jpcc.7b05639]

© 2025 Bentham Science Publishers | Privacy Policy