Review Article

生物医学应用中的石墨烯和基于石墨烯的料

卷 26, 期 38, 2019

页: [6834 - 6850] 页: 17

弟呕挨: 10.2174/0929867326666190705155854

价格: $65

conference banner
摘要

纳米生物技术在再生医学领域具有巨大的潜力。主要驱动力之一是新型纳米材料的开发。一类发展中的材料是石墨烯及其衍生物,以其在纳米级的新颖特性而得到认可。特别地,已显示石墨烯和基于石墨烯的纳米材料具有优异的电学,力学,光学和热性能。由于这些独特的性能以及调节其生物相容性的能力,这些纳米材料已被推动用于各种应用。最近,这些二维纳米材料因其在生物医学研究中的实用性而得到广泛认可。在这篇综述中,讨论了合成石墨烯及其衍生物的策略的简要概述。接下来,回顾了这些纳米材料作为其生物医学应用的前体的生物相容性概况。最后,强调了基于石墨烯纳米材料在各种生物医学领域的最新应用,包括组织工程,药物和基因传递,生物传感和生物成像以及其他生物相关研究。

关键词: 氧化GN,组织工程,药物输送,生物医学应用,生物相容性,纳米材料。

[1]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[2]
Chimene, D.; Alge, D.L.; Gaharwar, A.K. Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater., 2015, 27(45), 7261-7284.
[http://dx.doi.org/10.1002/adma.201502422] [PMID: 26459239]
[3]
Cha, C.; Shin, S.R.; Annabi, N.; Dokmeci, M.R.; Khademhosseini, A. Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano, 2013, 7(4), 2891-2897.
[http://dx.doi.org/10.1021/nn401196a] [PMID: 23560817]
[4]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56.
[http://dx.doi.org/10.1038/354056a0]
[5]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896]
[6]
Ruoff, R. Graphene: calling all chemists. Nat. Nanotechnol., 2008, 3(1), 10-11.
[http://dx.doi.org/10.1038/nnano.2007.432] [PMID: 18654440]
[7]
Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature, 2006, 442(7100), 282-286.
[http://dx.doi.org/10.1038/nature04969] [PMID: 16855586]
[8]
Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature, 2007, 448(7152), 457-460.
[http://dx.doi.org/10.1038/nature06016] [PMID: 17653188]
[9]
Wang, S.; Ang, P.K.; Wang, Z.; Tang, A.L.L.; Thong, J.T.; Loh, K.P. High mobility, printable, and solution-processed graphene electronics. Nano Lett., 2010, 10(1), 92-98.
[http://dx.doi.org/10.1021/nl9028736] [PMID: 20025234]
[10]
Feng, L.; Liu, Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine (Lond.), 2011, 6(2), 317-324.
[http://dx.doi.org/10.2217/nnm.10.158] [PMID: 21385134]
[11]
Sanchez, V.C.; Jachak, A.; Hurt, R.H.; Kane, A.B. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol., 2012, 25(1), 15-34.
[http://dx.doi.org/10.1021/tx200339h] [PMID: 21954945]
[12]
Wee, A.T.S. Graphene: the game changer? ACS Nano, 2012, 6(7), 5739-5741.
[http://dx.doi.org/10.1021/nn302799p] [PMID: 22823276]
[13]
Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385-388.
[http://dx.doi.org/10.1126/science.1157996] [PMID: 18635798]
[14]
Lau, C.N.; Bao, W.; Velasco, J., Jr Properties of suspended graphene membranes. Mater. Today, 2012, 15(6), 238-245.
[http://dx.doi.org/10.1016/S1369-7021(12)70114-1]
[15]
Butko, A.V.; Butko, V.Y. Electrical transport in graphene with different interface conditions. Phys. Solid State, 2015, 57(5), 1048-1050.
[http://dx.doi.org/10.1134/S1063783415050066]
[16]
Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci., 2017, 90, 75-127.
[http://dx.doi.org/10.1016/j.pmatsci.2017.07.004]
[17]
Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in photocatalysis: a review. Small, 2016, 12(48), 6640-6696.
[http://dx.doi.org/10.1002/smll.201600382] [PMID: 27805773]
[18]
Yang, T.; Jiang, X.; Zhong, Y.; Zhao, X.; Lin, S.; Li, J.; Li, X.; Xu, J.; Li, Z.; Zhu, H. A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens., 2017, 2(7), 967-974.
[http://dx.doi.org/10.1021/acssensors.7b00230] [PMID: 28750520]
[19]
Shiraz, H.G.; Tavakoli, O. Investigation of graphene-based systems for hydrogen storage. Renew. Sustain. Energy Rev., 2017, 74, 104-109.
[http://dx.doi.org/10.1016/j.rser.2017.02.052]
[20]
Lin, X-F.; Zhang, Z-Y.; Yuan, Z-K.; Li, J.; Xiao, X-F.; Hong, W.; Chen, X-D.; Yu, D-S. Graphene-based materials for polymer solar cells. Chin. Chem. Lett., 2016, 27(8), 1259-1270.
[http://dx.doi.org/10.1016/j.cclet.2016.06.041]
[21]
Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov. Today, 2017, 22(9), 1302-1317.
[http://dx.doi.org/10.1016/j.drudis.2017.04.002] [PMID: 28869820]
[22]
Suvarnaphaet, P.; Pechprasarn, S. Graphene-based materials for biosensors: a review. Sensors (Basel), 2017, 17(10)E2161
[http://dx.doi.org/10.3390/s17102161] [PMID: 28934118]
[23]
Karahan, H.E.; Wiraja, C.; Xu, C.; Wei, J.; Wang, Y.; Wang, L.; Liu, F.; Chen, Y. Graphene materials in antimicrobial nanomedicine: current status and future perspectives. Adv. Healthc. Mater., 2018, 7(13)e1701406
[http://dx.doi.org/10.1002/adhm.201701406] [PMID: 29504283]
[24]
Singh, D.P.; Herrera, C.E.; Singh, B.; Singh, S.; Singh, R.K.; Kumar, R. Graphene oxide: an efficient material and recent approach for biotechnological and biomedical applications. Mater. Sci. Eng. C, 2018, 86, 173-197.
[http://dx.doi.org/10.1016/j.msec.2018.01.004] [PMID: 29525091]
[25]
Park, S.; An, J.; Jung, I.; Piner, R.D.; An, S.J.; Li, X.; Velamakanni, A.; Ruoff, R.S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett., 2009, 9(4), 1593-1597.
[http://dx.doi.org/10.1021/nl803798y] [PMID: 19265429]
[26]
Xie, W.; Zhu, X.; Xu, S.; Yi, S.; Guo, Z.; Kuang, J.; Deng, Y. Cost-effective fabrication of graphene-like nanosheets from natural microcrystalline graphite minerals by liquid oxidation-reduction method. RSC Advances, 2017, 7(51), 32008-32019.
[http://dx.doi.org/10.1039/C7RA02171B]
[27]
Balan, A.; Kumar, R.; Boukhicha, M.; Beyssac, O.; Bouillard, J-C.; Taverna, D.; Sacks, W.; Marangolo, M.; Lacaze, E.; Gohler, R. Anodic bonded graphene. J. Phys. D Appl. Phys., 2010, 43(37)374013
[http://dx.doi.org/10.1088/0022-3727/43/37/374013]
[28]
Kazemizadeh, F.; Malekfar, R. One step synthesis of porous graphene by laser ablation: a new and facile approach. Physica B, 2018, 530, 236-241.
[http://dx.doi.org/10.1016/j.physb.2017.11.052]
[29]
Lin, W-C.; Chuang, M-K.; Keshtov, M.L.; Sharma, G.D.; Chen, F-C. Photoexfoliation of two-dimensional materials through continuous UV irradiation. Nanotechnology, 2017, 28(12)125604
[http://dx.doi.org/10.1088/1361-6528/aa5c79] [PMID: 28220757]
[30]
Hummers, W.S., Jr; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), 1339-1339.
[http://dx.doi.org/10.1021/ja01539a017]
[31]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8), 4806-4814.
[http://dx.doi.org/10.1021/nn1006368] [PMID: 20731455]
[32]
Alam, S.N.; Sharma, N.; Kumar, L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene, 2017, 6(1), 1-18.
[http://dx.doi.org/10.4236/graphene.2017.61001]
[33]
Parveen, N.; Ansari, M.O.; Cho, M.H. Simple route for gram synthesis of less defective few layered graphene and its electrochemical performance. RSC Advances, 2015, 5(56), 44920-44927.
[http://dx.doi.org/10.1039/C5RA06404J]
[34]
Ciesielski, A.; Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev., 2014, 43(1), 381-398.
[http://dx.doi.org/10.1039/C3CS60217F] [PMID: 24002478]
[35]
Zhang, Y.; Zhang, L.; Zhou, C. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res., 2013, 46(10), 2329-2339.
[http://dx.doi.org/10.1021/ar300203n] [PMID: 23480816]
[36]
Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y.P.; Pei, S-S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett., 2008, 93(11)113103
[http://dx.doi.org/10.1063/1.2982585]
[37]
Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S.K.; Colombo, L.; Ruoff, R.S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932), 1312-1314.
[http://dx.doi.org/10.1126/science.1171245] [PMID: 19423775]
[38]
Sutter, P.W.; Flege, J-I.; Sutter, E.A. Epitaxial graphene on ruthenium. Nat. Mater., 2008, 7(5), 406-411.
[http://dx.doi.org/10.1038/nmat2166] [PMID: 18391956]
[39]
Walt, A.H.; Claire, B. Epitaxial graphene. J. Phys. D Appl. Phys., 2012, 45(15)150301
[http://dx.doi.org/10.1088/0022-3727/45/15/150301]
[40]
Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J.M. Growth of graphene from solid carbon sources. Nature, 2010, 468(7323), 549-552.
[http://dx.doi.org/10.1038/nature09579] [PMID: 21068724]
[41]
Kim, W.; Oh, H-S.; Shon, I-J. The effect of graphene reinforcement on the mechanical properties of Al2O3 ceramics rapidly sintered by high-frequency induction heating. Int. J. Refract. Met. Hard Mater., 2015, 48, 376-381.
[http://dx.doi.org/10.1016/j.ijrmhm.2014.10.011]
[42]
Kumar, H.G.P.; Xavior, M.A. Graphene reinforced metal matrix composite (GRMMC): a review. Procedia Eng., 2014, 97, 1033-1040.
[http://dx.doi.org/10.1016/j.proeng.2014.12.381]
[43]
Gao, Y. Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res. Lett., 2017, 12(1), 387.
[http://dx.doi.org/10.1186/s11671-017-2150-5] [PMID: 28582964]
[44]
Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon, 2010, 48(2), 487-493.
[http://dx.doi.org/10.1016/j.carbon.2009.09.066]
[45]
Lingappan, N.; Gal, Y-S.; Lim, K.T. Synthesis of reduced graphene oxide/polypyrrole conductive composites. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2013, 585(1), 60-66.
[http://dx.doi.org/10.1080/15421406.2013.849510]
[46]
Mitra, M.; Kulsi, C.; Chatterjee, K.; Kargupta, K.; Ganguly, S.; Banerjee, D.; Goswami, S. Reduced graphene oxide-polyaniline composites-synthesis, characterization and optimization for thermoelectric applications. RSC Advances, 2015, 5(39), 31039-31048.
[http://dx.doi.org/10.1039/C5RA01794G]
[47]
Zheng, X.; Peng, Y.; Yang, Y.; Chen, J.; Tian, H.; Cui, X.; Zheng, W. Hydrothermal reduction of graphene oxide; effect on surface-enhanced Raman scattering. J. Raman Spectrosc., 2017, 48(1), 97-103.
[http://dx.doi.org/10.1002/jrs.4998]
[48]
Donaldson, K.; Aitken, R.; Tran, L.; Stone, V.; Duffin, R.; Forrest, G.; Alexander, A. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci., 2006, 92(1), 5-22.
[http://dx.doi.org/10.1093/toxsci/kfj130] [PMID: 16484287]
[49]
Bianco, A. Graphene: safe or toxic? The two faces of the medal. Angew. Chem. Int. Ed. Engl., 2013, 52(19), 4986-4997.
[http://dx.doi.org/10.1002/anie.201209099] [PMID: 23580235]
[50]
Alshehri, R.; Ilyas, A.M.; Hasan, A.; Arnaout, A.; Ahmed, F.; Memic, A. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J. Med. Chem., 2016, 59(18), 8149-8167.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01770] [PMID: 27142556]
[51]
Ren, H.; Wang, C.; Zhang, J.; Zhou, X.; Xu, D.; Zheng, J.; Guo, S.; Zhang, J. DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano, 2010, 4(12), 7169-7174.
[http://dx.doi.org/10.1021/nn101696r] [PMID: 21082807]
[52]
Chandra, V.; Park, J.; Chun, Y.; Lee, J.W.; Hwang, I-C.; Kim, K.S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 2010, 4(7), 3979-3986.
[http://dx.doi.org/10.1021/nn1008897] [PMID: 20552997]
[53]
Wilczek, P.; Major, R.; Lipinska, L.; Lackner, J.; Mzyk, A. Thrombogenicity and biocompatibility studies of reduced graphene oxide modified acellular pulmonary valve tissue. Mater. Sci. Eng. C, 2015, 53, 310-321.
[http://dx.doi.org/10.1016/j.msec.2015.04.044] [PMID: 26042719]
[54]
Zhang, X.; Yin, J.; Peng, C.; Hu, W.; Zhu, Z.; Li, W.; Fan, C.; Huang, Q. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. carbon,, 2011, 49(3), 986-995.
[http://dx.doi.org/10.1016/j.carbon.2010.11.005]
[55]
Wang, L.; Wang, Y.; Xu, T.; Liao, H.; Yao, C.; Liu, Y.; Li, Z.; Chen, Z.; Pan, D.; Sun, L.; Wu, M. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun., 2014, 5, 5357.
[http://dx.doi.org/10.1038/ncomms6357] [PMID: 25348348]
[56]
Murray, E.; Sayyar, S.; Thompson, B.C.; Gorkin, R., III; Officer, D.L.; Wallace, G.G. A bio-friendly, green route to processable, biocompatible graphene/polymer composites. RSC Advances, 2015, 5(56), 45284-45290.
[http://dx.doi.org/10.1039/C5RA07210G]
[57]
Xu, Y.; Wu, Q.; Sun, Y.; Bai, H.; Shi, G. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano, 2010, 4(12), 7358-7362.
[http://dx.doi.org/10.1021/nn1027104] [PMID: 21080682]
[58]
Yang, K.; Wan, J.; Zhang, S.; Zhang, Y.; Lee, S-T.; Liu, Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano, 2011, 5(1), 516-522.
[http://dx.doi.org/10.1021/nn1024303] [PMID: 21162527]
[59]
Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater., 2009, 8(7), 543-557.
[http://dx.doi.org/10.1038/nmat2442] [PMID: 19525947]
[60]
Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-based antibacterial paper. ACS Nano, 2010, 4(7), 4317-4323.
[http://dx.doi.org/10.1021/nn101097v] [PMID: 20593851]
[61]
Memic, A.; Navaei, A.; Mirani, B.; Cordova, J.A.V.; Aldhahri, M.; Dolatshahi-Pirouz, A.; Akbari, M.; Nikkhah, M. Bioprinting technologies for disease modeling. Biotechnol. Lett., 2017, 39(9), 1279-1290.
[http://dx.doi.org/10.1007/s10529-017-2360-z] [PMID: 28550360]
[62]
Kharaziha, M.; Memic, A.; Akbari, M.; Brafman, D.A.; Nikkhah, M. Nano-enabled approaches for stem cell-based cardiac tissue engineering. Adv. Healthc. Mater., 2016, 5(13), 1533-1553.
[http://dx.doi.org/10.1002/adhm.201600088] [PMID: 27199266]
[63]
Memic, A.; Alhadrami, H.A.; Hussain, M.A.; Aldhahri, M.; Al Nowaiser, F.; Al-Hazmi, F.; Oklu, R.; Khademhosseini, A. Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications. Biomed. Mater., 2015, 11(1)014104
[http://dx.doi.org/10.1088/1748-6041/11/1/014104] [PMID: 26694229]
[64]
Ding, X.; Liu, H.; Fan, Y. Graphene‐based materials in regenerative medicine. Adv. Healthc. Mater., 2015, 4(10), 1451-1468.
[http://dx.doi.org/10.1002/adhm.201500203] [PMID: 26037920]
[65]
Kobolak, J.; Dinnyes, A.; Memic, A.; Khademhosseini, A.; Mobasheri, A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods, 2016, 99, 62-68.
[http://dx.doi.org/10.1016/j.ymeth.2015.09.016] [PMID: 26384580]
[66]
Paul, A.; Manoharan, V.; Krafft, D.; Assmann, A.; Uquillas, J.A.; Shin, S.R.; Hasan, A.; Hussain, M.A.; Memic, A.; Gaharwar, A.K.; Khademhosseini, A. Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(20), 3544-3554.
[http://dx.doi.org/10.1039/C5TB02745D] [PMID: 27525102]
[67]
Memic, A.; Khademhosseini, A. Finding the winning combination. Combinatorial screening of three dimensional niches to guide stem cell osteogenesis. Organogenesis, 2014, 10(3), 299-302.
[http://dx.doi.org/10.4161/org.29646] [PMID: 25482315]
[68]
Kenry; Lee, W.C.; Loh, K.P.; Lim, C.T. When stem cells meet graphene: opportunities and challenges in regenerative medicine. Biomaterials, 2018, 155, 236-250.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.004] [PMID: 29195230]
[69]
Ramos, A.P.; Cruz, M.A.E.; Tovani, C.B.; Ciancaglini, P. Biomedical applications of nanotechnology. Biophys. Rev., 2017, 9(2), 79-89.
[http://dx.doi.org/10.1007/s12551-016-0246-2] [PMID: 28510082]
[70]
Teradal, N.L.; Jelinek, R. Carbon nanomaterials in biological studies and biomedicine. Adv. Healthc. Mater., 2017, 6(17)
[http://dx.doi.org/10.1002/adhm.201700574] [PMID: 28777502]
[71]
Nair, M.; Nancy, D.; Krishnan, A.G.; Anjusree, G.S.; Vadukumpully, S.; Nair, S.V. Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells. Nanotechnology, 2015, 26(16)161001
[http://dx.doi.org/10.1088/0957-4484/26/16/161001] [PMID: 25824014]
[72]
Fu, C.; Bai, H.; Zhu, J.; Niu, Z.; Wang, Y.; Li, J.; Yang, X.; Bai, Y. Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide. PLoS One, 2017, 12(11)e0188352
[http://dx.doi.org/10.1371/journal.pone.0188352] [PMID: 29186202]
[73]
Kim, J.; Kim, H.D.; Park, J.; Lee, E.S.; Kim, E.; Lee, S.S.; Yang, J-K.; Lee, Y-S.; Hwang, N.S. Enhanced osteogenic commitment of murine mesenchymal stem cells on graphene oxide substrate. Biomater. Res., 2018, 22(1), 1.
[http://dx.doi.org/10.1186/s40824-017-0112-8] [PMID: 29308274]
[74]
Niu, Y.; Chen, K.C.; He, T.; Yu, W.; Huang, S.; Xu, K. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration. Biomaterials, 2014, 35(14), 4266-4277.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.013] [PMID: 24582378]
[75]
Li, D.; Luo, L.; Pang, Z.; Ding, L.; Wang, Q.; Ke, H.; Huang, F.; Wei, Q. Novel phenolic biosensor based on a magnetic polydopamine-laccase-nickel nanoparticle loaded carbon nanofiber composite. ACS Appl. Mater. Interfaces, 2014, 6(7), 5144-5151.
[http://dx.doi.org/10.1021/am500375n] [PMID: 24606719]
[76]
Muszanska, A.K.; Rochford, E.T.; Gruszka, A.; Bastian, A.A.; Busscher, H.J.; Norde, W.; van der Mei, H.C.; Herrmann, A. Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules, 2014, 15(6), 2019-2026.
[http://dx.doi.org/10.1021/bm500168s] [PMID: 24833130]
[77]
Qian, Y.; Zhao, X.; Han, Q.; Chen, W.; Li, H.; Yuan, W. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nat. Commun., 2018, 9(1), 323.
[http://dx.doi.org/10.1038/s41467-017-02598-7] [PMID: 29358641]
[78]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[79]
Wang, L.; Zhang, Y.; Wu, A.; Wei, G. Designed graphene-peptide nanocomposites for biosensor applications: a review. Anal. Chim. Acta, 2017, 985, 24-40.
[http://dx.doi.org/10.1016/j.aca.2017.06.054] [PMID: 28864192]
[80]
Li, D.; Zhang, W.; Yu, X.; Wang, Z.; Su, Z.; Wei, G. When biomolecules meet graphene: from molecular level interactions to material design and applications. Nanoscale, 2016, 8(47), 19491-19509.
[http://dx.doi.org/10.1039/C6NR07249F] [PMID: 27878179]
[81]
Kim, H.; Lee, D.; Kim, J.; Kim, T.I.; Kim, W.J. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano, 2013, 7(8), 6735-6746.
[http://dx.doi.org/10.1021/nn403096s] [PMID: 23829596]
[82]
Song, Z.; Xu, Y.; Yang, W.; Cui, L.; Zhang, J.; Liu, J. Graphene/tri-block copolymer composites prepared via RAFT polymerizations for dual controlled drug delivery via pH stimulation and biodegradation. Eur. Polym. J., 2015, 69, 559-572.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.02.014]
[83]
Chowdhury, S.M.; Surhland, C.; Sanchez, Z.; Chaudhary, P.; Suresh Kumar, M.A.; Lee, S.; Peña, L.A.; Waring, M.; Sitharaman, B.; Naidu, M. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomedicine (Lond.), 2015, 11(1), 109-118.
[http://dx.doi.org/10.1016/j.nano.2014.08.001] [PMID: 25131339]
[84]
Xu, Z.; Wang, S.; Li, Y.; Wang, M.; Shi, P.; Huang, X. Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Appl. Mater. Interfaces, 2014, 6(19), 17268-17276.
[http://dx.doi.org/10.1021/am505308f] [PMID: 25216036]
[85]
Park, Y.H.; Park, S.Y.; In, I. Direct noncovalent conjugation of folic acid on reduced graphene oxide as anticancer drug carrier. J. Ind. Eng. Chem., 2015, 30, 190-196.
[http://dx.doi.org/10.1016/j.jiec.2015.05.021]
[86]
Wang, Y.; Polavarapu, L.; Liz-Marzán, L.M. Reduced graphene oxide-supported gold nanostars for improved SERS sensing and drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(24), 21798-21805.
[http://dx.doi.org/10.1021/am501382y] [PMID: 24827538]
[87]
Song, J.; Yang, X.; Jacobson, O.; Lin, L.; Huang, P.; Niu, G.; Ma, Q.; Chen, X. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano, 2015, 9(9), 9199-9209.
[http://dx.doi.org/10.1021/acsnano.5b03804] [PMID: 26308265]
[88]
Chen, H.; Wang, Z.; Zong, S.; Wu, L.; Chen, P.; Zhu, D.; Wang, C.; Xu, S.; Cui, Y. SERS-fluorescence monitored drug release of a redox-responsive nanocarrier based on graphene oxide in tumor cells. ACS Appl. Mater. Interfaces, 2014, 6(20), 17526-17533.
[http://dx.doi.org/10.1021/am505160v] [PMID: 25272041]
[89]
Shi, J.; Wang, L.; Zhang, J.; Ma, R.; Gao, J.; Liu, Y.; Zhang, C.; Zhang, Z. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials, 2014, 35(22), 5847-5861.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.042] [PMID: 24746963]
[90]
Ma, X.; Qu, Q.; Zhao, Y.; Luo, Z.; Zhao, Y.; Ng, K.W.; Zhao, Y. Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(47), 6495-6500.
[http://dx.doi.org/10.1039/c3tb21385d]
[91]
Yang, X.; Wang, Y.; Huang, X.; Ma, Y.; Huang, Y.; Yang, R.; Duan, H.; Chen, Y. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J. Mater. Chem., 2011, 21(10), 3448-3454.
[http://dx.doi.org/10.1039/C0JM02494E]
[92]
Mo, R.; Jiang, T.; Sun, W.; Gu, Z. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomaterials, 2015, 50, 67-74.
[http://dx.doi.org/10.1016/j.biomaterials.2015.01.053] [PMID: 25736497]
[93]
Wu, J.; Chen, A.; Qin, M.; Huang, R.; Zhang, G.; Xue, B.; Wei, J.; Li, Y.; Cao, Y.; Wang, W. Hierarchical construction of a mechanically stable peptide-graphene oxide hybrid hydrogel for drug delivery and pulsatile triggered release in vivo. Nanoscale, 2015, 7(5), 1655-1660.
[http://dx.doi.org/10.1039/C4NR05798H] [PMID: 25559308]
[94]
Wang, H.; Gu, W.; Xiao, N.; Ye, L.; Xu, Q. Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug. Int. J. Nanomedicine, 2014, 9, 1433-1442.
[http://dx.doi.org/10.2147/IJN.S58783] [PMID: 24672236]
[95]
Hu, S.H.; Fang, R.H.; Chen, Y.W.; Liao, B.J.; Chen, I.W.; Chen, S.Y. Photoresponsive protein–graphene–protein hybrid capsules with dual targeted heat‐triggered drug delivery approach for enhanced tumor therapy. Adv. Funct. Mater., 2014, 24(26), 4144-4155.
[http://dx.doi.org/10.1002/adfm.201400080]
[96]
Rana, V.K.; Choi, M.C.; Kong, J.Y.; Kim, G.Y.; Kim, M.J.; Kim, S.H.; Mishra, S.; Singh, R.P.; Ha, C.S. Synthesis and drug‐delivery behavior of chitosan‐functionalized graphene oxide hybrid nanosheets. Macromol. Mater. Eng., 2011, 296(2), 131-140.
[http://dx.doi.org/10.1002/mame.201000307]
[97]
Riley, M.K.; Vermerris, W. Recent advances in nanomaterials for gene delivery-a review. Nanomaterials (Basel), 2017, 7(5), 94.
[http://dx.doi.org/10.3390/nano7050094] [PMID: 28452950]
[98]
Yang, Z.R.; Wang, H.F.; Zhao, J.; Peng, Y.Y.; Wang, J.; Guinn, B.A.; Huang, L.Q. Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther., 2007, 14(7), 599-615.
[http://dx.doi.org/10.1038/sj.cgt.7701054] [PMID: 17479105]
[99]
Mintzer, M.A.; Simanek, E.E. Nonviral vectors for gene delivery. Chem. Rev., 2009, 109(2), 259-302.
[http://dx.doi.org/10.1021/cr800409e] [PMID: 19053809]
[100]
Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov., 2009, 8(2), 129-138.
[http://dx.doi.org/10.1038/nrd2742] [PMID: 19180106]
[101]
Chen, B.; Liu, M.; Zhang, L.; Huang, J.; Yao, J.; Zhang, Z. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J. Mater. Chem., 2011, 21(21), 7736-7741.
[http://dx.doi.org/10.1039/c1jm10341e]
[102]
Feng, L.; Zhang, S.; Liu, Z. Graphene based gene transfection. Nanoscale, 2011, 3(3), 1252-1257.
[http://dx.doi.org/10.1039/c0nr00680g] [PMID: 21270989]
[103]
Sun, Y.; Zhou, J.; Cheng, Q.; Lin, D.; Jiang, Q.; Dong, A.; Liang, Z.; Deng, L. Fabrication of mPEGylated graphene oxide/poly (2‐dimethyl aminoethyl methacrylate) nanohybrids and their primary application for small interfering RNA delivery. J. Appl. Polym. Sci., 2016, 133(16)
[http://dx.doi.org/10.1002/app.43303]
[104]
Liu, X.; Ma, D.; Tang, H.; Tan, L.; Xie, Q.; Zhang, Y.; Ma, M.; Yao, S. Polyamidoamine dendrimer and oleic acid-functionalized graphene as biocompatible and efficient gene delivery vectors. ACS Appl. Mater. Interfaces, 2014, 6(11), 8173-8183.
[http://dx.doi.org/10.1021/am500812h] [PMID: 24836601]
[105]
Yang, H-W.; Huang, C-Y.; Lin, C-W.; Liu, H-L.; Huang, C-W.; Liao, S-S.; Chen, P-Y.; Lu, Y-J.; Wei, K-C.; Ma, C-C.M. Gadolinium-functionalized nanographene oxide for combined drug and microRNA delivery and magnetic resonance imaging. Biomaterials, 2014, 35(24), 6534-6542.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.057] [PMID: 24811259]
[106]
Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N.G.; Wu, T.; Li, L.; Li, J.; Gan, L.H. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small, 2011, 7(11), 1569-1578.
[http://dx.doi.org/10.1002/smll.201100191] [PMID: 21538871]
[107]
Hu, H.; Tang, C.; Yin, C. Folate conjugated trimethyl chitosan/graphene oxide nanocomplexes as potential carriers for drug and gene delivery. Mater. Lett., 2014, 125, 82-85.
[http://dx.doi.org/10.1016/j.matlet.2014.03.133]
[108]
Li, H.; Fierens, K.; Zhang, Z.; Vanparijs, N.; Schuijs, M.J.; Van Steendam, K.; Feiner Gracia, N.; De Rycke, R.; De Beer, T.; De Beuckelaer, A.; De Koker, S.; Deforce, D.; Albertazzi, L.; Grooten, J.; Lambrecht, B.N.; De Geest, B.G. Spontaneous protein adsorption on graphene oxide nanosheets allowing efficient intracellular vaccine protein delivery. ACS Appl. Mater. Interfaces, 2016, 8(2), 1147-1155.
[http://dx.doi.org/10.1021/acsami.5b08963] [PMID: 26694764]
[109]
La, W.G.; Park, S.; Yoon, H.H.; Jeong, G.J.; Lee, T.J.; Bhang, S.H.; Han, J.Y.; Char, K.; Kim, B.S. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small, 2013, 9(23), 4051-4060.
[http://dx.doi.org/10.1002/smll.201300571] [PMID: 23839958]
[110]
Choi, M.; Kim, K-G.; Heo, J.; Jeong, H.; Kim, S.Y.; Hong, J. Multilayered graphene nano-film for controlled protein delivery by desired electro-stimuli. Sci. Rep., 2015, 5, 17631.
[http://dx.doi.org/10.1038/srep17631] [PMID: 26621344]
[111]
Shen, H.; Liu, M.; He, H.; Zhang, L.; Huang, J.; Chong, Y.; Dai, J.; Zhang, Z. PEGylated graphene oxide-mediated protein delivery for cell function regulation. ACS Appl. Mater. Interfaces, 2012, 4(11), 6317-6323.
[http://dx.doi.org/10.1021/am3019367] [PMID: 23106794]
[112]
Cao, X.; Zheng, S.; Zhang, S.; Wang, Y.; Yang, X.; Duan, H.; Huang, Y.; Chen, Y. Functionalized graphene oxide with hepatocyte targeting as anti-tumor drug and gene intracellular transporters. J. Nanosci. Nanotechnol., 2015, 15(3), 2052-2059.
[http://dx.doi.org/10.1166/jnn.2015.9145] [PMID: 26413620]
[113]
Kang, P.; Wang, M.C.; Knapp, P.M.; Nam, S. Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater., 2016, 28(23), 4639-4645.
[http://dx.doi.org/10.1002/adma.201600482] [PMID: 27061899]
[114]
Chang, H-Y.; Yang, S.; Lee, J.; Tao, L.; Hwang, W-S.; Jena, D.; Lu, N.; Akinwande, D. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano, 2013, 7(6), 5446-5452.
[http://dx.doi.org/10.1021/nn401429w] [PMID: 23668386]
[115]
Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun., 2014, 5, 5678.
[http://dx.doi.org/10.1038/ncomms6678] [PMID: 25517105]
[116]
Amani, M.; Lien, D-H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S.R.; Addou, R.; Kc, S.; Dubey, M.; Cho, K.; Wallace, R.M.; Lee, S.C.; He, J.H.; Ager, J.W., III; Zhang, X.; Yablonovitch, E.; Javey, A. Near-unity photoluminescence quantum yield in MoS2. Science, 2015, 350(6264), 1065-1068.
[http://dx.doi.org/10.1126/science.aad2114] [PMID: 26612948]
[117]
Choi, C.; Choi, M.K.; Liu, S.; Kim, M.S.; Park, O.K.; Im, C.; Kim, J.; Qin, X.; Lee, G.J.; Cho, K.W.; Kim, M.; Joh, E.; Lee, J.; Son, D.; Kwon, S.H.; Jeon, N.L.; Song, Y.M.; Lu, N.; Kim, D.H. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun., 2017, 8(1), 1664.
[http://dx.doi.org/10.1038/s41467-017-01824-6] [PMID: 29162854]
[118]
Beik, J.; Abed, Z.; Ghoreishi, F.S.; Hosseini-Nami, S.; Mehrzadi, S.; Shakeri-Zadeh, A.; Kamrava, S.K. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. J. Control. Release, 2016, 235, 205-221.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.062] [PMID: 27264551]
[119]
Dos Santos, M.S.C.; Gouvêa, A.L.; de Moura, L.D.; Paterno, L.G.; de Souza, P.E.N.; Bastos, A.P.; Damasceno, E.A.M.; Veiga-Souza, F.H.; de Azevedo, R.B.; Báo, S.N. Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model. J. Nanobiotechnology, 2018, 16(1), 9.
[http://dx.doi.org/10.1186/s12951-018-0333-6] [PMID: 29382332]
[120]
Taratula, O.; Patel, M.; Schumann, C.; Naleway, M.A.; Pang, A.J.; He, H.; Taratula, O. Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy. Int. J. Nanomedicine, 2015, 10, 2347-2362.
[http://dx.doi.org/10.2147/IJN.S81097] [PMID: 25848255]
[121]
Antoci, A.; Galeotti, M.; Sordi, S. Environmental pollution as engine of industrialization. Commun. Nonlinear Sci. Numer. Simul., 2018, 58, 262-273.
[http://dx.doi.org/10.1016/j.cnsns.2017.06.016]
[122]
Xu, C.; Zhu, J.; Yuan, R.; Fu, X. More effective use of graphene in photocatalysis by conformal attachment of small sheets to TiO2 spheres. Carbon, 2016, 96, 394-402.
[http://dx.doi.org/10.1016/j.carbon.2015.09.088]
[123]
Peng, W.; Li, H.; Liu, Y.; Song, S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq., 2017, 230, 496-504.
[http://dx.doi.org/10.1016/j.molliq.2017.01.064]
[124]
Huang, Z-H.; Zheng, X.; Lv, W.; Wang, M.; Yang, Q-H.; Kang, F. Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir, 2011, 27(12), 7558-7562.
[http://dx.doi.org/10.1021/la200606r] [PMID: 21591809]
[125]
Chandra, V.; Kim, K.S. Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite. Chem. Commun. (Camb.), 2011, 47(13), 3942-3944.
[http://dx.doi.org/10.1039/c1cc00005e] [PMID: 21350767]
[126]
Wan, W.; Zhang, R.; Li, W.; Liu, H.; Lin, Y.; Li, L.; Zhou, Y. Graphene-carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes. Environ. Sci. Nano, 2016, 3(1), 107-113.
[http://dx.doi.org/10.1039/C5EN00125K]
[127]
Liu, J.; Liu, L.; Bai, H.; Wang, Y.; Sun, D.D. Gram-scale production of graphene oxide-TiO2 nanorod composites: towards high-activity photocatalytic materials. Appl. Catal. B, 2011, 106(1), 76-82.
[http://dx.doi.org/10.1016/j.apcatb.2011.05.007]
[128]
Akhavan, O.; Ghaderi, E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C, 2009, 113(47), 20214-20220.
[http://dx.doi.org/10.1021/jp906325q]
[129]
Akhavan, O.; Choobtashani, M.; Ghaderi, E. Protein degradation and RNA efflux of viruses photocatalyzed by graphene–tungsten oxide composite under visible light irradiation. J. Phys. Chem. C, 2012, 116(17), 9653-9659.
[http://dx.doi.org/10.1021/jp301707m]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy