Review Article

代谢组学指导的红树林植物Avicennia Lanata内生真菌抗锥虫化合物的分离

卷 27, 期 11, 2020

页: [1815 - 1835] 页: 21

弟呕挨: 10.2174/0929867326666190704130105

价格: $65

摘要

已经研究了内生真菌,不仅因为它们的生态功能,而且还研究了其次生代谢产物作为这些具有药理活性的天然产物的新来源。因此,已经从内生真菌的培养物中获得了许多结构独特的生物活性化合物。镰刀菌烟草和红眼豆科植物分别是从马来西亚登嘉楼市的红树林植物Avicennia lanata的根和茎中分离出来的。高分辨率质谱和NMR光谱被用作代谢组学分析工具,以鉴定和优化两个菌株在不同生长阶段和培养基中生物活性次生代谢产物的产生。光谱数据通过利用Mzmine 2(一种定量表达分析软件)和一个内部MS-Excel宏进行处理,并结合了天然产物字典进行重复研究。 15天稻镰刀菌培养物中潜在的生物活性代谢产物的研究。产生四个具有萘达沙林结构的1,4-萘醌(1-4)。另一方面,在15天的固体水稻培养物中生长的内生真菌L. theobromae产生了二氢异香豆素(5-8)。所有分离出的化合物(1-8)均显示出对布鲁氏锥虫的显着活性,MIC值为0.32-12.5 µM。还进行了针对正常前列腺细胞(PNT2A)的初步细胞毒性筛选。所有化合物均显示出低细胞毒性,在100 µg / mL时,化合物3和4的最低细胞毒性分别仅为对照值的22.3%和38.6%。使用2D-NMR和HRESI-MS以及与文献数据的比较,可以对分离出的次级代谢产物进行结构解析。

关键词: 内生真菌,重复复制,代谢组学,质谱,多元分析,次生代谢产物。

[1]
Hyde, K.; Soytong, K. The fungal endophyte dilemma. Fungal Divers., 2008, 33, 163-173.
[2]
Nair, D.N.; Padmavathy, S. Impact of endophytic microorganisms on plants, environment and humans. ScientificWorldJournal, 2014, 2014250693
[http://dx.doi.org/10.1155/2014/250693] [PMID: 24587715]
[3]
Cribb, A.B.; Cribb, J.W. Marine fungi from Queensland; University of Queensland Press: Brisbane, 1955.
[4]
Kim, H.K.; Verpoorte, R. Sample preparation for plant metabolomics. Phytochem. Anal., 2010, 21(1), 4-13.
[http://dx.doi.org/10.1002/pca.1188] [PMID: 19904733]
[5]
Verpoorte, R.; Choi, Y.; Kim, H. NMR-based metabolomics at work in phytochemistry. Phytochem. Rev., 2007, 6(1), 3-14.
[http://dx.doi.org/10.1007/s11101-006-9031-3]
[6]
Nielsen, J.; Oliver, S. The next wave in metabolome analysis. Trends Biotechnol., 2005, 23(11), 544-546.
[http://dx.doi.org/10.1016/j.tibtech.2005.08.005] [PMID: 16154652]
[7]
Wolfender, J-L.; Marti, G.; Thomas, A.; Bertrand, S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A, 2015, 1382, 136-164.
[http://dx.doi.org/10.1016/j.chroma.2014.10.091] [PMID: 25464997]
[8]
Horning, E.C.; Horning, M.G. Metabolic profiles: chromatographic methods for isolation and characterization of a variety of metabolites in man. Methods Med. Res., 1970, 12, 369-371.
[PMID: 5432495]
[9]
Devaux, P.; Horning, M.; Horning, E. Benzyloxime derivatives of steroids: a new metabolic profile procedure for human urinary steroids human urinary steroids. Anal. Lett., 1971, 4(3), 151-160.
[http://dx.doi.org/10.1080/00032717108059686]
[10]
Grotewold, E. Plant metabolic diversity: a regulatory perspective. Trends Plant Sci., 2005, 10(2), 57-62.
[http://dx.doi.org/10.1016/j.tplants.2004.12.009] [PMID: 15708342]
[11]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[12]
Fiehn, O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genomics, 2001, 2(3), 155-168.
[http://dx.doi.org/10.1002/cfg.82] [PMID: 18628911]
[13]
Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised pattern recognition in food analysis. J. Chromatogr. A, 2007, 1158(1-2), 196-214.
[http://dx.doi.org/10.1016/j.chroma.2007.05.024] [PMID: 17540392]
[14]
Krug, D.; Zurek, G.; Revermann, O.; Vos, M.; Velicer, G.J.; Müller, R. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl. Environ. Microbiol., 2008, 74(10), 3058-3068.
[http://dx.doi.org/10.1128/AEM.02863-07] [PMID: 18378661]
[15]
Wold, H. In Encyclopedia of Statistical Sciences; , 2004.
[16]
Hotez, P.J.; Molyneux, D.H.; Fenwick, A.; Kumaresan, J.; Sachs, S.E.; Sachs, J.D.; Savioli, L. Control of neglected tropical diseases. N. Engl. J. Med., 2007, 357(10), 1018-1027.
[http://dx.doi.org/10.1056/NEJMra064142] [PMID: 17804846]
[17]
Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human African trypanosomiasis. Lancet, 2010, 375(9709), 148-159.
[http://dx.doi.org/10.1016/S0140-6736(09)60829-1] [PMID: 19833383]
[18]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[19]
Gurnani, N.; Mehta, D.; Gupta, M.; Mehta, B. Natural products: source of potential drugs. Afr. J. Bas. & Appl. Sci. (Basel), 2014, 6(6), 171-186.
[http://dx.doi.org/10.5829/idosi.ajbas.2014.6.6.21983]
[20]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[21]
Ribeiro-Rodrigues, R.; dos Santos, W.G.; Zani, C.L.; Oliveira, A.B.; Snieckus, V.; Romanha, A.J. Growth inhibitory effect of naphthofuran and naphthofuranquinone derivatives on Trypanosoma cruzi epimastigotes. Bioorg. Med. Chem. Lett., 1995, 5(14), 1509-1512.
[http://dx.doi.org/10.1016/0960-894X(95)00248-R]
[22]
Morello, A.; Pavani, M.; Garbarino, J.A.; Chamy, M.C.; Frey, C.; Mancilla, J.; Guerrero, A.; Repetto, Y.; Ferreira, J. Effects and mode of action of 1,4-naphthoquinones isolated from Calceolaria sessilis on tumoral cells and Trypanosoma parasites. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 1995, 112(2), 119-128.
[http://dx.doi.org/10.1016/0742-8413(95)02003-9] [PMID: 8788584]
[23]
Pérez-Castorena, A.L.; Arciniegas, A.; Villaseñor, J.L.; de Vivar, A.R. Furanoeremophilane derivatives from Psacalium beamanii. Rev. Soc. Quím. Méx., 2004, 48, 21-23.
[24]
Sayers, E.W.; Barrett, T.; Benson, D.A.; Bolton, E.; Bryant, S.H.; Canese, K.; Chetvernin, V.; Church, D.M.; Dicuccio, M.; Federhen, S.; Feolo, M.; Geer, L.Y.; Helmberg, W.; Kapustin, Y.; Landsman, D.; Lipman, D.J.; Lu, Z.; Madden, T.L.; Madej, T.; Maglott, D.R.; Marchler-Bauer, A.; Miller, V.; Mizrachi, I.; Ostell, J.; Panchenko, A.; Pruitt, K.D.; Schuler, G.D.; Sequeira, E.; Sherry, S.T.; Shumway, M.; Sirotkin, K.; Slotta, D.; Souvorov, A.; Starchenko, G.; Tatusova, T.A.; Wagner, L.; Wang, Y.; John Wilbur, W.; Yaschenko, E.; Ye, J. Database resources of the national center for biotechnology information. Nucleic Acids Res., 2010, 38(Database issue), D5-D16.
[http://dx.doi.org/10.1093/nar/gkp967] [PMID: 19910364]
[25]
Taylor, D.L.; Houston, S. In:Fungal Genomics; , 2011, pp. 141-155.
[26]
Macintyre, L.; Zhang, T.; Viegelmann, C.; Martinez, I.J.; Cheng, C.; Dowdells, C.; Abdelmohsen, U.R.; Gernert, C.; Hentschel, U.; Edrada-Ebel, R. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Mar. Drugs, 2014, 12(6), 3416-3448.
[http://dx.doi.org/10.3390/md12063416] [PMID: 24905482]
[27]
Abdelmohsen, U.R.; Cheng, C.; Viegelmann, C.; Zhang, T.; Grkovic, T.; Ahmed, S.; Quinn, R.J.; Hentschel, U.; Edrada-Ebel, R. Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-Actinokineospora sp. EG49. Mar. Drugs, 2014, 12(3), 1220-1244.
[http://dx.doi.org/10.3390/md12031220] [PMID: 24663112]
[28]
Räz, B.; Iten, M.; Grether-Bühler, Y.; Kaminsky, R.; Brun, R. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop., 1997, 68(2), 139-147.
[http://dx.doi.org/10.1016/S0001-706X(97)00079-X] [PMID: 9386789]
[29]
O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem., 2000, 267(17), 5421-5426.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01606.x] [PMID: 10951200]
[30]
Medentsev, A.; Baskunov, B.; Akimenko, V. Formation of naphthoquinone pigments by the fungus Fusarium decemcellulare and their influence on the oxidative metabolism of the producer. Biochemistry, 1988.
[31]
Tatum, J.H.; Baker, R.A. Naphthoquinones produced by Fusarium solani isolated from citrus. Phytochemistry, 1983, 22(2), 543-547.
[http://dx.doi.org/10.1016/0031-9422(83)83042-8]
[32]
Kimura, Y.; Shimada, A.; Nakajima, H.; Hamasaki, T. Structures of naphthoquinones produced by the fungus, Fusarium sp., and their biological activity toward pollen germination. Agric. Biol. Chem., 1988, 52(5), 1253-1259.
[http://dx.doi.org/10.1271/bbb1961.52.1253]
[33]
Arnstein, H.R.V.; Cook, A.H. Production of antibiotics by fungi. Part III. Javanicin. An antibacterial pigment from Fusarium javanicum. Journal of the Chemical Society; Resumed, 1947, pp. 1021-1028.
[34]
Chilton, W.S. Isolation and structure of norjavanicin. J. Org. Chem., 1968, 33(11), 4299-4300.
[http://dx.doi.org/10.1021/jo01275a074]
[35]
Kharwar, R.N.; Verma, V.C.; Kumar, A.; Gond, S.K.; Harper, J.K.; Hess, W.M.; Lobkovosky, E.; Ma, C.; Ren, Y.; Strobel, G.A. Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr. Microbiol., 2009, 58(3), 233-238.
[http://dx.doi.org/10.1007/s00284-008-9313-7] [PMID: 19018591]
[36]
Trisuwan, K.; Khamthong, N.; Rukachaisirikul, V.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J. Anthraquinone, cyclopentanone, and naphthoquinone derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14 and PSU-F135. J. Nat. Prod., 2010, 73(9), 1507-1511.
[http://dx.doi.org/10.1021/np100282k] [PMID: 20815366]
[37]
Bentley, R.; Gatenbeck, S. Naphthoquinone biosynthesis in molds. The mechanism for formation of mollisin. Biochemistry, 1965, 4(6), 1150-1156.
[http://dx.doi.org/10.1021/bi00882a025] [PMID: 5840001]
[38]
Miersch, O.; Bohlmann, H.; Wasternack, C. Jasmonates and related compounds from Fusarium oxysporum. Phytochemistry, 1999, 50(4), 517-523.
[http://dx.doi.org/10.1016/S0031-9422(98)00596-2]
[39]
Kobayashi, M.; Krishna, M.M.; Ishida, K.; Anjaneyulu, V. Marine Sterols. XXII. Occurrence of 3-oxo-4, 6, 8(14)- triunsaturated steroids in the sponge Dysidea herbacea. Chem. Pharm. Bull. (Tokyo), 1992, 40(1), 72-74.
[http://dx.doi.org/10.1248/cpb.40.72]
[40]
Fuchser, J.; Zeeck, A. Secondary Metabolites by Chemical screening, 34.-aspinolides and aspinonene/aspyrone co-metabolites, new pentaketides produced by Aspergillus ochraceus. Liebigs Ann., 1997, 1997(1), 87-95.
[http://dx.doi.org/10.1002/jlac.199719970114]
[41]
Quang, D.N.; Bach, D.D.; Hashimoto, T.; Asakawa, Y. Chemical constituents of the Vietnamese inedible mushroom Xylaria intracolorata. Nat. Prod. Res., 2006, 20(4), 317-321.
[http://dx.doi.org/10.1080/14786410600650354] [PMID: 16644525]
[42]
Asha, K.N.; Chowdhury, R.; Hasan, C.M.; Rashid, M.A. Steroids and polyketides from Uvaria hamiltonii stem bark. Acta Pharm., 2004, 54(1), 57-63.
[PMID: 15050045]
[43]
Oliveira, C.M.; Silva, G.H.; Regasini, L.O.; Zanardi, L.M.; Evangelista, A.H.; Young, M.C.; Bolzani, V.S.; Araujo, A.R. Bioactive metabolites produced by Penicillium sp. 1 and sp. 2, two endophytes associated with Alibertia macrophylla (Rubiaceae). Z. Natforsch. C J. Biosci., 2009, 64(11-12), 824-830.
[http://dx.doi.org/10.1515/znc-2009-11-1212] [PMID: 20158153]
[44]
Feng, Z.; Nenkep, V.; Yun, K.; Zhang, D.; Choi, H.D.; Kang, J.S.; Son, B.W. Biotransformation of bioactive (-)-mellein by a marine isolate of bacterium Stappia sp. J. Microbiol. Biotechnol., 2010, 20(6), 985-987.
[http://dx.doi.org/10.4014/jmb.1002.02012] [PMID: 20622496]
[45]
Cole, R.J.; Moore, J.H.; Davis, N.D.; Kirksey, J.W.; Diener, U.L. 4-Hydroxymellein. New metabolite of Aspergillus ochraceus. J. Agric. Food Chem., 1971, 19(5), 909-911.
[http://dx.doi.org/10.1021/jf60177a003]
[46]
Sasaki, M.; Kaneko, Y.; Oshita, K.; Takamatsu, H.; Asao, Y.; Yokotsuka, T. Studies on the compounds produced by molds: Part VII. Isolation of isocoumarin compounds. Agric. Biol. Chem., 1970, 34(9), 1296-1300.
[http://dx.doi.org/10.1080/00021369.1970.10859767]
[47]
Hussain, H.; Krohn, K.; Schulz, B.; Draeger, S.; Nazir, M.; Saleem, M. Two new antimicrobial metabolites from the endophytic fungus, Seimatosporium sp. Nat. Prod. Commun., 2012, 7(3), 293-294.
[http://dx.doi.org/10.1177/1934578X1200700305] [PMID: 22545398]
[48]
Findlay, J.A.; Buthelezi, S.; Lavoie, R.; Peña-Rodriguez, L.; Miller, J.D. Bioactive isocoumarins and related metabolites from conifer endophytes. J. Nat. Prod., 1995, 58(11), 1759-1766.
[http://dx.doi.org/10.1021/np50125a021] [PMID: 8594154]
[49]
Aldridge, D.; Galt, S.; Giles, D.; Turner, W. Metabolites of Lasiodiplodia theobromae. Journal of the Chemical Society C. Organic, 1971, 1623-1627
[http://dx.doi.org/10.1039/j39710001623]
[50]
Montenegro, T.G.C.; Rodrigues, F.A.R.; Jimenez, P.C.; Angelim, A.L.; Melo, V.M.M.; Rodrigues Filho, E.; de Oliveira, Mda.C.; Costa-Lotufo, L.V. Cytotoxic activity of fungal strains isolated from the ascidian Eudistoma vannamei. Chem. Biodivers., 2012, 9(10), 2203-2209.
[http://dx.doi.org/10.1002/cbdv.201100366] [PMID: 23081920]
[51]
Camarda, L.; Merlini, L.; Nasini, G. Metabolites of Cercospora. Taiwapyrone, an α-pyrone of unusual structure from Cercospora taiwanensis. Phytochemistry, 1976, 15(4), 537-539.
[http://dx.doi.org/10.1016/S0031-9422(00)88966-9]
[52]
Garson, M.J.; Staunton, J.; Jones, P.G. New polyketide metabolites from Aspergillus melleus: structural and stereochemical studies. J. Chem. Soc., Perkin Trans. 1, 1984, 1021-1026.
[http://dx.doi.org/10.1039/p19840001021]
[53]
Holker, J.S.; Simpson, T.J. Studies on fungal metabolites. Part 2. Carbon-13 nuclear magnetic resonance biosynthetic studies on pentaketide metabolites of Aspergillus melleus: 3-(1, 2-epoxypropyl)-5, 6-dihydro-5-hydroxy-6-methyl- pyran-2-one and mellein. J. Chem. Soc., Perkin Trans. 1, 1981, 1397-1400
[http://dx.doi.org/10.1039/p19810001397]
[54]
Devys, M.; Barbier, M.; Bousquet, J-F.; Kollmann, A. Isolation of the (-)-(3R)-5-hydroxymellein from the fungus Septoria nodorum. Phytochemistry, 1994, 35(3), 825-826.
[http://dx.doi.org/10.1016/S0031-9422(00)90617-4]
[55]
Venkatasubbaiah, P.; Chilton, W.S. Phytotoxins of Botryosphaeria obtusa. J. Nat. Prod., 1990, 53(6), 1628-1630.
[http://dx.doi.org/10.1021/np50072a044]
[56]
Djoukeng, J.D.; Polli, S.; Larignon, P.; Abou-Mansour, E. Identification of phytotoxins from Botryosphaeria obtusa, a pathogen of black dead arm disease of grapevine. Eur. J. Plant Pathol., 2009, 124(2), 303-308.
[http://dx.doi.org/10.1007/s10658-008-9419-6]
[57]
Schulz, B.; Sucker, J.; Aust, H.J.; Krohn, K.; Ludewig, K.; Jones, P.G.; Döring, D. Biologically active secondary metabolites of endophytic Pezicula species. Mycol. Res., 1995, 99(8), 1007-1015.
[http://dx.doi.org/10.1016/S0953-7562(09)80766-1]
[58]
Nishikawa, H. Biochemistry of filamentous fungi. II: a metabolic product of Aspergillus melleus Yukawa. Part I. Nippon Nogeikagaku Kaishi, 1933, 9(7-9), 107-109.
[59]
Poch, G.K.; Gloer, J.B. Helicascolides A and B: new lactones from the marine fungus Helicascus kanaloanus. J. Nat. Prod., 1989, 52(2), 257-260.
[http://dx.doi.org/10.1021/np50062a006] [PMID: 2746255]
[60]
Parisi, A.; Piattelli, M.; Tringali, C.; Di San Lio, G.M. Identification of the phytotoxin mellein in culture fluids of Phoma tracheiphila. Phytochemistry, 1993, 32(4), 865-867.
[http://dx.doi.org/10.1016/0031-9422(93)85221-C]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy